organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2-Hy­droxy­phen­yl)-5-(2-meth­oxy­phenyl)-1H-pyrazole

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: flavonoids@hotmail.com

(Received 18 July 2008; accepted 9 August 2008; online 16 August 2008)

The title compound, C16H14N2O2, was derived from 1-(2-hydroxy­phen­yl)-3-(2-methoxy­phen­yl)propane-1,3-dione. The mol­ecule is essentially planar (r.m.s. deviation for all non-H atoms = 0.089 Å). Two intra­molecular hydrogen bonds stabilize the mol­ecular conformation and one N—H⋯O hydrogen bond stabilizes the crystal structure.

Related literature

For related literature, see: Ahmad et al. (1990[Ahmad, R., Malik, M. A. & Zia-ul-Haq, M. (1990). J. Chem. Soc. Pak. 12, 352-354.], 1997[Ahmad, R., Malik, M. A., Zia-ul-Haq, M., Duddeek, H., Stefaniak, L. & Kowski, J. S. (1997). Monatsh. Chem. 128, 633-640.]); Ezava et al. (2005[Ezava, M., Garvey, D. S., Janero, D. R., Khanapure, S. P., Letts, L. G., Martino, A., Ranatunge, R. R., Schwalb, D. J. & Young, D. V. (2005). Lett. Drug Des. Discov. 2, 40-43.]); Feierman & Cederbaum (1986[Feierman, D. E. & Cederbaum, A. I. (1986). Biochem. J. 239, 671-677.]); Sanz et al. (1998[Sanz, A. M., Navarro, P., Gomez-Contreras, F., Pardo, M., Pepe, G. & Samat, A. (1998). Can. J. Chem. 76, 1174-1179.]); Alcaraz et al. (1993[Alcaraz, J. M., Lecacheur, M. & Robin,Y. (1993) US Patent 5 191 087.]); Hamper et al. (1997[Hamper, B. C., Mao, M. K. & Phillips, W. G. (1997). US Patent 5 698 708.]); Fujio (1999[Suzuki, F. (1999). US Patent 5 908 857.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14N2O2

  • Mr = 266.29

  • Orthorhombic, P n a 21

  • a = 17.5626 (15) Å

  • b = 10.2239 (7) Å

  • c = 7.4513 (7) Å

  • V = 1337.94 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 (2) K

  • 0.27 × 0.25 × 0.24 mm

Data collection
  • Stoe IPDSII two-circle diffractometer

  • Absorption correction: none

  • 10969 measured reflections

  • 1777 independent reflections

  • 1620 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.090

  • S = 1.03

  • 1777 reflections

  • 191 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N2 0.99 (4) 1.64 (4) 2.560 (2) 152 (3)
N1—H1⋯O1 0.92 (3) 2.07 (3) 2.628 (2) 118 (2)
N1—H1⋯O2i 0.92 (3) 2.09 (3) 2.892 (2) 146 (3)
Symmetry code: (i) [-x+1, -y+2, z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

3,5-substituted Pyrazoles are important class of compounds.These have been proven to be a selective inhibitor of COX in isoenzyme in human blood and are used for the development of anti-inflamatory drugs and analgesic medicines (Ezava et al., 2005). Disubstituted pyrazoles have been reported as an important intermediate in the synthesis of herbicides (US patent 5191087, 1993; US patent 5698708, 1997) and for the treatmet of pain and disorders such as Arthritis (US patent 5908857, 1999).Pyrazoles are inhibitors of alchol dehydrogenase and have been found to be effective inhibitors for the oxidation of ethanol by liver microsomes (Feierman & Cederbaum, 1986). 3,5-disubstituted pyrazoles are also uesd to form solid dinuclear complexes (Sanz et al., 1998). The molecule is essentially planar (r.m.s. deviation for all non-H atoms 0.089 Å). Two intramolecular hydrogen bonds stabilize the molecular conformation and one N—H···O hydrogen bond is stabilizing the crystal structure.

Related literature top

For related literature, see: Ahmad et al. (1990, 1997); Ezava et al. (2005); Feierman & Cederbaum (1986); Sanz et al. (1998); Authors (1993, 1997, 1999).

Experimental top

1-(2'-hydroxyphenyl)-3-(2''-methoxyphenyl) propane-1,3-dione was prepared by a modified Baker Venkataram rearrangement as reported earlier (Ahmad et al., 1997). Purification was carried out by recrystallization using absolute ethanol. 1-H-3(2-hydroxyphenyl)-5-(2-methoxyphenyl) pyrazole was synthesized by reacting hydrazine hydrate (0.5 g, 10 mmol) with 1-(2-hydroxyphenyl)-3-(2-methoxyphenyl) propane-1,3-dione (2.7 g, 10 mmol) in 100 ml of absolute ethanol. The mixture was refluxed for seven hours. Solvent was removed under reduced pressure. Compound (II) was synthesized by adding 0.1 mole of phenyl hydrazine in 0.1 mole of compound (II) dissolved in 200 ml of absolute ethanol. The mixture was refluxed for 7 h. Solvent was removed under reduced pressure. Highly viscous residue was recrystallized using absolute ethanol. (Yield: 96%, m.p: 456k)

Refinement top

In the absence of anomalous scatterers 1544 Friedel pairs were merged. H atoms were located in a difference map, but those bonded to C were geometrically positioned and refined using a riding model with fixed individual displacement parameters [U(H) = 1.2 Ueq(C) or U(H) = 1.5 Ueq(Cmethyl)] and with C—H = 0.95 Å or Cmethyl—H = 0.98 Å. The methyl group was allowed to rotate but not to tip. The H atoms bonded to N and O were freely refined.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with the atom numbering scheme; displacement ellipsoids are at the 50% probability level; H atoms are drawn as small spheres of arbitrary radii.
3-(2-Hydroxyphenyl)-5-(2-methoxyphenyl)-1H-pyrazole top
Crystal data top
C16H14N2O2Dx = 1.322 Mg m3
Mr = 266.29Melting point: 456 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 11915 reflections
a = 17.5626 (15) Åθ = 3.4–29.6°
b = 10.2239 (7) ŵ = 0.09 mm1
c = 7.4513 (7) ÅT = 173 K
V = 1337.94 (19) Å3Block, light yellow
Z = 40.27 × 0.25 × 0.24 mm
F(000) = 560
Data collection top
Stoe IPDSII two-circle
diffractometer
1620 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.057
Graphite monochromatorθmax = 28.3°, θmin = 3.6°
ω scansh = 2023
10969 measured reflectionsk = 1113
1777 independent reflectionsl = 89
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0644P)2 + 0.0395P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1777 reflectionsΔρmax = 0.18 e Å3
191 parametersΔρmin = 0.16 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.049 (6)
Crystal data top
C16H14N2O2V = 1337.94 (19) Å3
Mr = 266.29Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 17.5626 (15) ŵ = 0.09 mm1
b = 10.2239 (7) ÅT = 173 K
c = 7.4513 (7) Å0.27 × 0.25 × 0.24 mm
Data collection top
Stoe IPDSII two-circle
diffractometer
1620 reflections with I > 2σ(I)
10969 measured reflectionsRint = 0.057
1777 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0341 restraint
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.18 e Å3
1777 reflectionsΔρmin = 0.16 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.49830 (7)0.72482 (13)0.76358 (19)0.0401 (3)
O20.42612 (9)1.04511 (15)0.0584 (2)0.0507 (4)
H20.441 (2)0.992 (4)0.165 (6)0.093 (11)*
N10.44362 (8)0.80017 (15)0.4520 (2)0.0340 (3)
H10.4833 (15)0.825 (3)0.525 (4)0.058 (7)*
N20.43083 (8)0.86611 (15)0.2984 (2)0.0369 (3)
C10.39489 (9)0.69783 (15)0.4736 (2)0.0289 (3)
C20.34823 (9)0.69776 (15)0.3232 (2)0.0306 (3)
H2A0.30830.63810.29680.037*
C30.37225 (9)0.80434 (16)0.2179 (2)0.0304 (3)
C110.39509 (9)0.61110 (16)0.6314 (2)0.0306 (3)
C120.44651 (9)0.62379 (17)0.7757 (2)0.0339 (3)
C130.44373 (11)0.5373 (2)0.9203 (3)0.0425 (4)
H130.47880.54611.01650.051*
C140.38945 (12)0.4381 (2)0.9235 (3)0.0461 (5)
H140.38820.37861.02140.055*
C150.33733 (11)0.42539 (19)0.7852 (3)0.0437 (4)
H150.29980.35850.78910.052*
C160.34031 (10)0.51098 (17)0.6410 (3)0.0353 (4)
H160.30450.50180.54630.042*
C170.55036 (12)0.7438 (3)0.9090 (3)0.0520 (5)
H17A0.58250.66600.92220.078*
H17B0.52180.75831.02020.078*
H17C0.58250.82010.88430.078*
C310.34524 (9)0.85273 (17)0.0429 (2)0.0314 (3)
C320.37398 (10)0.96997 (18)0.0313 (3)0.0367 (4)
C330.34958 (11)1.0130 (2)0.1993 (3)0.0438 (4)
H330.36931.09190.24820.053*
C340.29652 (12)0.9407 (2)0.2952 (3)0.0437 (4)
H340.28050.97000.41020.052*
C350.26648 (11)0.82574 (19)0.2245 (3)0.0417 (4)
H350.22970.77720.29000.050*
C360.29090 (10)0.78266 (17)0.0569 (2)0.0354 (4)
H360.27040.70410.00890.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0371 (6)0.0507 (8)0.0327 (6)0.0037 (5)0.0084 (5)0.0025 (6)
O20.0531 (8)0.0541 (8)0.0448 (8)0.0219 (7)0.0050 (7)0.0142 (7)
N10.0363 (7)0.0385 (7)0.0273 (7)0.0070 (6)0.0052 (6)0.0026 (6)
N20.0390 (7)0.0402 (7)0.0314 (8)0.0087 (6)0.0060 (6)0.0038 (6)
C10.0298 (7)0.0302 (7)0.0268 (8)0.0005 (6)0.0005 (6)0.0037 (6)
C20.0306 (7)0.0329 (7)0.0283 (8)0.0029 (6)0.0024 (6)0.0014 (6)
C30.0304 (7)0.0336 (8)0.0271 (8)0.0008 (6)0.0013 (6)0.0018 (6)
C110.0325 (7)0.0330 (7)0.0263 (7)0.0057 (6)0.0020 (6)0.0017 (6)
C120.0325 (7)0.0394 (8)0.0299 (8)0.0063 (6)0.0008 (6)0.0018 (7)
C130.0413 (9)0.0537 (11)0.0326 (9)0.0113 (8)0.0018 (7)0.0071 (8)
C140.0493 (10)0.0513 (11)0.0378 (10)0.0074 (8)0.0033 (8)0.0156 (9)
C150.0476 (9)0.0410 (9)0.0426 (11)0.0005 (7)0.0046 (8)0.0065 (8)
C160.0389 (8)0.0333 (8)0.0337 (9)0.0004 (7)0.0005 (7)0.0010 (7)
C170.0431 (10)0.0746 (14)0.0384 (11)0.0055 (10)0.0137 (8)0.0031 (10)
C310.0314 (7)0.0365 (8)0.0263 (8)0.0041 (6)0.0016 (6)0.0006 (6)
C320.0357 (8)0.0434 (9)0.0310 (9)0.0011 (7)0.0048 (7)0.0015 (7)
C330.0483 (10)0.0488 (10)0.0342 (10)0.0069 (8)0.0084 (8)0.0103 (8)
C340.0510 (10)0.0530 (10)0.0271 (8)0.0189 (9)0.0001 (7)0.0001 (8)
C350.0464 (9)0.0464 (9)0.0324 (9)0.0122 (7)0.0083 (7)0.0067 (8)
C360.0384 (8)0.0370 (8)0.0307 (8)0.0036 (7)0.0040 (7)0.0037 (7)
Geometric parameters (Å, º) top
O1—C121.379 (2)C14—C151.384 (3)
O1—C171.431 (2)C14—H140.9500
O2—C321.369 (2)C15—C161.387 (3)
O2—H20.99 (4)C15—H150.9500
N1—N21.347 (2)C16—H160.9500
N1—C11.361 (2)C17—H17A0.9800
N1—H10.92 (3)C17—H17B0.9800
N2—C31.348 (2)C17—H17C0.9800
C1—C21.388 (2)C31—C361.406 (2)
C1—C111.473 (2)C31—C321.413 (2)
C2—C31.408 (2)C32—C331.395 (3)
C2—H2A0.9500C33—C341.387 (3)
C3—C311.473 (2)C33—H330.9500
C11—C161.407 (2)C34—C351.392 (3)
C11—C121.410 (2)C34—H340.9500
C12—C131.394 (3)C35—C361.392 (3)
C13—C141.392 (3)C35—H350.9500
C13—H130.9500C36—H360.9500
C12—O1—C17118.24 (16)C16—C15—H15120.2
C32—O2—H2105 (2)C15—C16—C11121.61 (18)
N2—N1—C1112.35 (14)C15—C16—H16119.2
N2—N1—H1119.2 (18)C11—C16—H16119.2
C1—N1—H1128.3 (18)O1—C17—H17A109.5
N1—N2—C3105.72 (14)O1—C17—H17B109.5
N1—C1—C2106.03 (15)H17A—C17—H17B109.5
N1—C1—C11123.76 (15)O1—C17—H17C109.5
C2—C1—C11130.20 (14)H17A—C17—H17C109.5
C1—C2—C3105.82 (14)H17B—C17—H17C109.5
C1—C2—H2A127.1C36—C31—C32117.91 (16)
C3—C2—H2A127.1C36—C31—C3121.03 (15)
N2—C3—C2110.08 (15)C32—C31—C3121.05 (16)
N2—C3—C31118.85 (15)O2—C32—C33117.80 (17)
C2—C3—C31131.07 (15)O2—C32—C31121.61 (17)
C16—C11—C12117.79 (16)C33—C32—C31120.59 (18)
C16—C11—C1118.49 (15)C34—C33—C32120.02 (18)
C12—C11—C1123.71 (15)C34—C33—H33120.0
O1—C12—C13123.28 (17)C32—C33—H33120.0
O1—C12—C11116.16 (15)C33—C34—C35120.64 (18)
C13—C12—C11120.56 (17)C33—C34—H34119.7
C14—C13—C12119.95 (18)C35—C34—H34119.7
C14—C13—H13120.0C36—C35—C34119.34 (18)
C12—C13—H13120.0C36—C35—H35120.3
C15—C14—C13120.55 (18)C34—C35—H35120.3
C15—C14—H14119.7C35—C36—C31121.49 (17)
C13—C14—H14119.7C35—C36—H36119.3
C14—C15—C16119.51 (18)C31—C36—H36119.3
C14—C15—H15120.2
C1—N1—N2—C30.2 (2)C12—C13—C14—C150.9 (3)
N2—N1—C1—C20.46 (19)C13—C14—C15—C161.2 (3)
N2—N1—C1—C11178.61 (14)C14—C15—C16—C110.1 (3)
N1—C1—C2—C30.50 (18)C12—C11—C16—C151.2 (3)
C11—C1—C2—C3178.48 (16)C1—C11—C16—C15179.75 (16)
N1—N2—C3—C20.1 (2)N2—C3—C31—C36172.07 (16)
N1—N2—C3—C31179.01 (14)C2—C3—C31—C366.5 (3)
C1—C2—C3—N20.4 (2)N2—C3—C31—C327.0 (2)
C1—C2—C3—C31179.10 (16)C2—C3—C31—C32174.43 (18)
N1—C1—C11—C16178.05 (15)C36—C31—C32—O2178.95 (17)
C2—C1—C11—C160.8 (3)C3—C31—C32—O22.0 (3)
N1—C1—C11—C120.9 (2)C36—C31—C32—C330.8 (2)
C2—C1—C11—C12179.75 (17)C3—C31—C32—C33178.21 (15)
C17—O1—C12—C131.8 (3)O2—C32—C33—C34179.68 (18)
C17—O1—C12—C11178.37 (16)C31—C32—C33—C340.1 (3)
C16—C11—C12—O1178.60 (15)C32—C33—C34—C350.7 (3)
C1—C11—C12—O10.4 (2)C33—C34—C35—C360.8 (3)
C16—C11—C12—C131.5 (2)C34—C35—C36—C310.1 (3)
C1—C11—C12—C13179.50 (16)C32—C31—C36—C350.8 (2)
O1—C12—C13—C14179.62 (17)C3—C31—C36—C35178.30 (16)
C11—C12—C13—C140.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N20.99 (4)1.64 (4)2.560 (2)152 (3)
N1—H1···O10.92 (3)2.07 (3)2.628 (2)118 (2)
N1—H1···O2i0.92 (3)2.09 (3)2.892 (2)146 (3)
Symmetry code: (i) x+1, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H14N2O2
Mr266.29
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)173
a, b, c (Å)17.5626 (15), 10.2239 (7), 7.4513 (7)
V3)1337.94 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.27 × 0.25 × 0.24
Data collection
DiffractometerStoe IPDSII two-circle
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10969, 1777, 1620
Rint0.057
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.091, 1.03
No. of reflections1777
No. of parameters191
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.16

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N20.99 (4)1.64 (4)2.560 (2)152 (3)
N1—H1···O10.92 (3)2.07 (3)2.628 (2)118 (2)
N1—H1···O2i0.92 (3)2.09 (3)2.892 (2)146 (3)
Symmetry code: (i) x+1, y+2, z+1/2.
 

Acknowledgements

AH is grateful to the Higher Education Commission of Pakistan for a grant.

References

First citationAhmad, R., Malik, M. A. & Zia-ul-Haq, M. (1990). J. Chem. Soc. Pak. 12, 352–354.  Google Scholar
First citationAhmad, R., Malik, M. A., Zia-ul-Haq, M., Duddeek, H., Stefaniak, L. & Kowski, J. S. (1997). Monatsh. Chem. 128, 633-640.  CrossRef CAS Web of Science Google Scholar
First citationAlcaraz, J. M., Lecacheur, M. & Robin,Y. (1993) US Patent 5 191 087.  Google Scholar
First citationEzava, M., Garvey, D. S., Janero, D. R., Khanapure, S. P., Letts, L. G., Martino, A., Ranatunge, R. R., Schwalb, D. J. & Young, D. V. (2005). Lett. Drug Des. Discov. 2, 40-43.  Google Scholar
First citationFeierman, D. E. & Cederbaum, A. I. (1986). Biochem. J. 239, 671–677.  CAS PubMed Web of Science Google Scholar
First citationHamper, B. C., Mao, M. K. & Phillips, W. G. (1997). US Patent 5 698 708.  Google Scholar
First citationSanz, A. M., Navarro, P., Gomez-Contreras, F., Pardo, M., Pepe, G. & Samat, A. (1998). Can. J. Chem. 76, 1174–1179.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSuzuki, F. (1999). US Patent 5 908 857.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds