organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Eth­oxy­pyridin-2-amine

aSchool of City Development, University of Jinan, Jinan 250002, People's Republic of China, and bShandong Blood Center, Jinan 250014, People's Republic of China
*Correspondence e-mail: maolihua2008@yahoo.cn

(Received 1 August 2008; accepted 2 August 2008; online 13 August 2008)

The title compound, C7H10N2O, crystallizes with two independent mol­ecules in the asymmetric unit. The bond lengths and angles in the mol­ecules are within normal ranges. The crystal structure is stabilized by inter­molecular N—H⋯N hydrogen bonds, linking the two independent mol­ecules into hydrogen-bonded dimers.

Related literature

For related literatures, see: Cai et al. (2006[Cai, L., Brouwer, C., Sinclair, K., Cuevas, J. & Pike, V. W. (2006). Synthesis, pp. 133-145.]); Yale (1976[Yale, H. L. (1976). US patent 3 965 100.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C7H10N2O

  • Mr = 138.17

  • Triclinic, [P \overline 1]

  • a = 9.167 (2) Å

  • b = 9.470 (2) Å

  • c = 9.541 (3) Å

  • α = 87.716 (3)°

  • β = 87.714 (4)°

  • γ = 64.189 (3)°

  • V = 744.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 (2) K

  • 0.60 × 0.38 × 0.31 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.901, Tmax = 0.974

  • 3749 measured reflections

  • 2582 independent reflections

  • 2110 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.123

  • S = 1.02

  • 2582 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯N1i 0.86 2.19 3.029 (2) 164
N4—H4B⋯N3ii 0.86 2.16 3.013 (2) 173
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

2-Amino-4-ethoxypyridine is a useful intermediate for the synthesis of various heterocyclic compounds (Cai et al., 2006; Yale, 1976). In this paper, we report the crystal structure of the title compound (I). The title compound crystallizes with two independent molecules in the asymmetric unit. All bond lengths are normal (Allen et al., 1987). Intermolecular N—H···N hydrogen bonds link the two independent molecules into hydrogen-bonded dimers. The crystal packing is further stabilized by van der Waals forces.

Related literature top

For related literatures, see: Cai et al. (2006); Yale (1976). For bond-length data, see: Allen et al. (1987).

Experimental top

2-amino-4-chloropyridine (12.9 g, 0.1 mol) and sodium ethoxide (12.8 g, 0.2 mol) were reacted in 100 ml ethanol in a stainless steel bomb at 150°C for 3 h. The desired compound was obtained as a slightly yellow solid in 50% yield (1.9 g). Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a solution in a hexane/dichloromethane mixture (1:4 v/v) at room temperature over a period of one week.

Refinement top

H atoms bonded to N atoms were located in a difference map and refined with distance restraints of N—H = 0.86Å, and with Uiso(H) = 1.2Ueq(N). Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. View of the title compound (I), with displacement ellipsoids drawn at the 40% probability level.
[Figure 2] Fig. 2. Packing diagram of structure of (I), view along the c axis. Hydrogen bonds are shown as dashed lines.
4-Ethoxypyridin-2-amine top
Crystal data top
C7H10N2OZ = 4
Mr = 138.17F(000) = 296
Triclinic, P1Dx = 1.232 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.167 (2) ÅCell parameters from 1699 reflections
b = 9.470 (2) Åθ = 2.8–23.1°
c = 9.541 (3) ŵ = 0.09 mm1
α = 87.716 (3)°T = 298 K
β = 87.714 (4)°Block, yellow
γ = 64.189 (3)°0.60 × 0.38 × 0.31 mm
V = 744.8 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2582 independent reflections
Radiation source: fine-focus sealed tube2110 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1010
Tmin = 0.901, Tmax = 0.974k = 1011
3749 measured reflectionsl = 117
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0632P)2 + 0.1056P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2582 reflectionsΔρmax = 0.18 e Å3
182 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.040 (5)
Crystal data top
C7H10N2Oγ = 64.189 (3)°
Mr = 138.17V = 744.8 (3) Å3
Triclinic, P1Z = 4
a = 9.167 (2) ÅMo Kα radiation
b = 9.470 (2) ŵ = 0.09 mm1
c = 9.541 (3) ÅT = 298 K
α = 87.716 (3)°0.60 × 0.38 × 0.31 mm
β = 87.714 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2582 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2110 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.974Rint = 0.018
3749 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.02Δρmax = 0.18 e Å3
2582 reflectionsΔρmin = 0.16 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.59961 (14)0.31435 (14)0.17306 (12)0.0647 (3)
O20.09387 (12)0.83919 (12)0.15720 (11)0.0568 (3)
N10.93140 (16)0.44443 (15)0.33834 (14)0.0559 (4)
N20.8694 (2)0.3953 (2)0.56360 (15)0.0763 (5)
H2B0.94180.42210.59100.092*
H2C0.81500.36660.62420.092*
N30.44815 (15)0.88727 (15)0.37838 (14)0.0557 (4)
N40.26244 (17)1.10399 (17)0.49027 (15)0.0703 (5)
H4B0.34101.10610.53500.084*
H4C0.16491.17360.50560.084*
C10.84095 (18)0.39828 (17)0.42438 (16)0.0516 (4)
C20.72722 (18)0.35088 (17)0.37698 (16)0.0521 (4)
H2A0.66690.31890.44010.063*
C30.70648 (18)0.35259 (17)0.23495 (16)0.0508 (4)
C40.8027 (2)0.39719 (19)0.14405 (17)0.0576 (4)
H4A0.79380.39700.04730.069*
C50.9098 (2)0.44086 (19)0.20049 (17)0.0586 (4)
H5A0.97310.47070.13890.070*
C60.4922 (2)0.2715 (2)0.25818 (19)0.0682 (5)
H6A0.43400.35190.32600.082*
H6B0.55280.17320.30850.082*
C70.3764 (3)0.2550 (3)0.1622 (2)0.0951 (7)
H7A0.30230.22630.21590.143*
H7B0.43540.17520.09570.143*
H7C0.31710.35300.11320.143*
C80.29236 (18)0.99108 (18)0.39569 (15)0.0506 (4)
C90.16603 (18)0.98351 (18)0.32351 (16)0.0511 (4)
H9A0.05941.05730.33800.061*
C100.20318 (18)0.86432 (17)0.23054 (15)0.0480 (4)
C110.36506 (19)0.75665 (18)0.21075 (17)0.0568 (4)
H11A0.39410.67530.14830.068*
C120.47882 (19)0.77452 (19)0.28565 (18)0.0596 (4)
H12A0.58640.70290.27140.072*
C130.07465 (19)0.9457 (2)0.17306 (18)0.0605 (4)
H13A0.09391.04860.13480.073*
H13B0.10690.95570.27160.073*
C140.1699 (2)0.8813 (2)0.0962 (2)0.0806 (6)
H14A0.28320.95080.10490.121*
H14B0.15070.77990.13520.121*
H14C0.13710.87180.00120.121*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0665 (7)0.0772 (8)0.0598 (7)0.0395 (7)0.0091 (6)0.0017 (6)
O20.0522 (6)0.0562 (7)0.0601 (7)0.0206 (5)0.0068 (5)0.0106 (5)
N10.0577 (8)0.0564 (8)0.0557 (8)0.0264 (7)0.0021 (6)0.0038 (6)
N20.1046 (12)0.0994 (12)0.0514 (8)0.0687 (11)0.0128 (8)0.0064 (8)
N30.0489 (7)0.0531 (8)0.0580 (8)0.0148 (6)0.0073 (6)0.0054 (6)
N40.0526 (8)0.0734 (10)0.0741 (10)0.0143 (7)0.0102 (7)0.0284 (8)
C10.0562 (9)0.0425 (8)0.0532 (9)0.0186 (7)0.0054 (7)0.0003 (6)
C20.0557 (9)0.0466 (9)0.0535 (9)0.0219 (7)0.0009 (7)0.0002 (7)
C30.0501 (8)0.0418 (8)0.0572 (9)0.0164 (7)0.0049 (7)0.0040 (7)
C40.0648 (10)0.0591 (10)0.0486 (9)0.0263 (8)0.0019 (7)0.0045 (7)
C50.0624 (10)0.0625 (10)0.0538 (9)0.0303 (8)0.0052 (7)0.0040 (7)
C60.0628 (10)0.0736 (12)0.0730 (11)0.0342 (9)0.0093 (9)0.0062 (9)
C70.0799 (14)0.1224 (19)0.1023 (16)0.0620 (14)0.0346 (12)0.0319 (14)
C80.0507 (9)0.0497 (9)0.0464 (8)0.0167 (7)0.0048 (6)0.0018 (7)
C90.0450 (8)0.0487 (9)0.0523 (8)0.0130 (7)0.0030 (6)0.0040 (7)
C100.0515 (8)0.0476 (8)0.0451 (8)0.0216 (7)0.0043 (6)0.0023 (6)
C110.0557 (9)0.0493 (9)0.0603 (9)0.0172 (8)0.0001 (7)0.0118 (7)
C120.0481 (9)0.0513 (9)0.0693 (10)0.0116 (7)0.0018 (8)0.0083 (8)
C130.0528 (9)0.0603 (10)0.0650 (10)0.0207 (8)0.0045 (8)0.0074 (8)
C140.0627 (11)0.0813 (13)0.1024 (15)0.0335 (10)0.0108 (10)0.0174 (11)
Geometric parameters (Å, º) top
O1—C31.3460 (19)C5—H5A0.9300
O1—C61.433 (2)C6—C71.490 (3)
O2—C101.3518 (18)C6—H6A0.9700
O2—C131.4364 (19)C6—H6B0.9700
N1—C11.336 (2)C7—H7A0.9600
N1—C51.342 (2)C7—H7B0.9600
N2—C11.361 (2)C7—H7C0.9600
N2—H2B0.8600C8—C91.400 (2)
N2—H2C0.8600C9—C101.378 (2)
N3—C121.340 (2)C9—H9A0.9300
N3—C81.3434 (19)C10—C111.397 (2)
N4—C81.3545 (19)C11—C121.360 (2)
N4—H4B0.8600C11—H11A0.9300
N4—H4C0.8600C12—H12A0.9300
C1—C21.398 (2)C13—C141.491 (2)
C2—C31.374 (2)C13—H13A0.9700
C2—H2A0.9300C13—H13B0.9700
C3—C41.394 (2)C14—H14A0.9600
C4—C51.355 (2)C14—H14B0.9600
C4—H4A0.9300C14—H14C0.9600
C3—O1—C6119.52 (13)C6—C7—H7B109.5
C10—O2—C13118.61 (11)H7A—C7—H7B109.5
C1—N1—C5116.21 (13)C6—C7—H7C109.5
C1—N2—H2B120.0H7A—C7—H7C109.5
C1—N2—H2C120.0H7B—C7—H7C109.5
H2B—N2—H2C120.0N3—C8—N4116.04 (14)
C12—N3—C8116.47 (13)N3—C8—C9122.94 (14)
C8—N4—H4B120.0N4—C8—C9121.01 (14)
C8—N4—H4C120.0C10—C9—C8118.52 (14)
H4B—N4—H4C120.0C10—C9—H9A120.7
N1—C1—N2115.68 (14)C8—C9—H9A120.7
N1—C1—C2123.24 (14)O2—C10—C9125.11 (14)
N2—C1—C2121.06 (15)O2—C10—C11115.89 (13)
C3—C2—C1118.51 (14)C9—C10—C11118.98 (14)
C3—C2—H2A120.7C12—C11—C10117.94 (14)
C1—C2—H2A120.7C12—C11—H11A121.0
O1—C3—C2125.72 (14)C10—C11—H11A121.0
O1—C3—C4115.54 (14)N3—C12—C11125.14 (15)
C2—C3—C4118.74 (14)N3—C12—H12A117.4
C5—C4—C3118.19 (15)C11—C12—H12A117.4
C5—C4—H4A120.9O2—C13—C14107.85 (14)
C3—C4—H4A120.9O2—C13—H13A110.1
N1—C5—C4125.08 (15)C14—C13—H13A110.1
N1—C5—H5A117.5O2—C13—H13B110.1
C4—C5—H5A117.5C14—C13—H13B110.1
O1—C6—C7107.17 (15)H13A—C13—H13B108.4
O1—C6—H6A110.3C13—C14—H14A109.5
C7—C6—H6A110.3C13—C14—H14B109.5
O1—C6—H6B110.3H14A—C14—H14B109.5
C7—C6—H6B110.3C13—C14—H14C109.5
H6A—C6—H6B108.5H14A—C14—H14C109.5
C6—C7—H7A109.5H14B—C14—H14C109.5
C5—N1—C1—N2177.01 (15)C12—N3—C8—N4179.60 (15)
C5—N1—C1—C21.1 (2)C12—N3—C8—C90.8 (2)
N1—C1—C2—C30.4 (2)N3—C8—C9—C100.0 (2)
N2—C1—C2—C3178.37 (15)N4—C8—C9—C10178.74 (15)
C6—O1—C3—C21.9 (2)C13—O2—C10—C91.6 (2)
C6—O1—C3—C4178.15 (14)C13—O2—C10—C11179.93 (13)
C1—C2—C3—O1178.26 (14)C8—C9—C10—O2177.69 (14)
C1—C2—C3—C41.8 (2)C8—C9—C10—C110.6 (2)
O1—C3—C4—C5178.35 (14)O2—C10—C11—C12178.04 (14)
C2—C3—C4—C51.7 (2)C9—C10—C11—C120.4 (2)
C1—N1—C5—C41.2 (2)C8—N3—C12—C111.1 (3)
C3—C4—C5—N10.2 (3)C10—C11—C12—N30.5 (3)
C3—O1—C6—C7173.22 (16)C10—O2—C13—C14173.07 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N1i0.862.193.029 (2)164
N4—H4B···N3ii0.862.163.013 (2)173
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC7H10N2O
Mr138.17
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.167 (2), 9.470 (2), 9.541 (3)
α, β, γ (°)87.716 (3), 87.714 (4), 64.189 (3)
V3)744.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.60 × 0.38 × 0.31
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.901, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
3749, 2582, 2110
Rint0.018
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.123, 1.02
No. of reflections2582
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.16

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N1i0.862.193.029 (2)163.9
N4—H4B···N3ii0.862.163.013 (2)172.8
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+2, z+1.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, L., Brouwer, C., Sinclair, K., Cuevas, J. & Pike, V. W. (2006). Synthesis, pp. 133–145.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYale, H. L. (1976). US patent 3 965 100.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds