organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(2,3-Di­methoxyphenyl)-1-(2-hy­droxy-4-methoxyphenyl)prop-2-en-1-one

aUniversidad Andres Bello, Departamento de Ciencias Químicas, Santiago, Chile, bInstitut für Organische Chemie, Universität Leipzig, D-04103 Leipzig, Germany, and cLaboratorio de Cristalografía, Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile
*Correspondence e-mail: cescobar@unab.cl

(Received 12 August 2008; accepted 20 August 2008; online 30 August 2008)

The mol­ecular conformation of the title compound, C18H18O5, is stabilized by a strong intra­molecular hydrogen bond between the hydroxyl and carbonyl groups. The C=C double bond displays an E configuration while the carbonyl group shows an S-cis configuration relative to the double bond. The dihedral angle between the two rings is 15.0 (1)°.

Related literature

For related literature, see: Chu et al. (2004[Chu, H.-W., Wu, H.-T. & Lee, Y.-J. (2004). Tetrahedron, 60, 2647-2655.]); Desiraju (2002[Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565-573.]); Fronczek et al. (1987[Fronczek, F. R., Tanrisever, N. & Fischer, N. H. (1987). Acta Cryst. C43, 158-160.]); Radha Krishna et al. (2005[Radha Krishna, J., Jagadeesh Kumar, N., Krishnaiah, M., Venkata Rao, C., Koteswara Rao, Y. & Puranik, V. G. (2005). Acta Cryst. E61, o1323-o1325.]); Rao et al. (2004[Rao, Y. K., Fang, S.-H. & Tzeng, Y.-M. (2004). Bioorg. Med. Chem. 12, 2679-2686.]); Shoja (1999[Shoja, M. (1999). Z. Kristallogr. 214, 235-240.]); Subbiah Pandi et al. (2003[Subbiah Pandi, A., Velmurugan, D., Shanmuga Sundara Raj, S., Fun, H.-K. & Bansal, M. C. (2003). Acta Cryst. C59, o302-o304.]); Usman et al. (2006[Usman, H., Jalaluddin, M. N., Hakim, E. H., Syah, Y. M. & Yamin, B. M. (2006). Acta Cryst. E62, o209-o211.]); Wafo et al. (2005[Wafo, P., Hussain, H., Kouam, S. F., Ngadjui, B. T., Flörke, U. & Krohn, K. (2005). Acta Cryst. E61, o3017-o3019.]); Wallet et al. (1995[Wallet, J.-C., Molins, E. & Miravitlles, C. (1995). Acta Cryst. C51, 123-125.]); Wu et al. (2005[Wu, H., Xu, Z. & Liang, Y.-M. (2005). Acta Cryst. E61, o1434-o1435.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18O5

  • Mr = 314.32

  • Monoclinic, P 21 /c

  • a = 4.8793 (5) Å

  • b = 24.283 (3) Å

  • c = 13.0770 (14) Å

  • β = 97.044 (2)°

  • V = 1537.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 150 (2) K

  • 0.25 × 0.10 × 0.07 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.993

  • 9482 measured reflections

  • 2717 independent reflections

  • 1522 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.139

  • S = 1.03

  • 2717 reflections

  • 212 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O20—H20⋯O1 0.84 1.77 2.515 (3) 147

Data collection: SMART-NT (Bruker, 2001[Bruker (2001). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-NT (Bruker, 1999[Bruker (1999). SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-NT; program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL-NT; molecular graphics: SHELXTL-NT; software used to prepare material for publication: SHELXTL-NT.

Supporting information


Comment top

From the synthetic point of view, 2'-hydroxy acetophenones are the choice precursors for the synthesis of 2'-hydroxychalcones trough the Claisen-Schmidt condensation with an aldehyde. Under such basic conditions (i.e. KOH), a proton is removed to form the enolate anion at the acetyl moiety. Interestingly, in such a condition the 2'-hydroxyl proton remains unaffected by the base. Deprotonation of this 2'-hydroxy group occurs only under the action of a strong base (i.e. hydride) if the methyl ketone's protons in the acetophenone are blocked, as for instance, in the form of a Chalcone.

This behavior is attributed to the intense H-bonding interaction between the 2'-hydroxyl proton and the acetyl moiety of the acetophenone, which is preserved in the derivatives like 2'-hydroxy-chalcones. This structural characteristic of the title compound has been recognized to play a key role in its biological activity and seems to be the basis to its potential as an anti carcinogenic agent. In fact 2'-hydroxychalcones have been found to be cytotoxic against human tumor cells. In the particular case of the title compound this was found to be a potent cytotoxic agent against human lymphocytic and also to monocytic cell linies (Rao et al., 2004). It has been also proved to be a potent antiproliferative agent against tumor cell lines without being more cytotoxic to normal cells (Rao et al., 2004).

The structure of the title compound displays two phenyl rings connected through a three carbon propenone moiety. As shown in Figure 1, one phenyl ring is substituted at positions 2 and 3 with methoxy groups, while the other is substituted at positions 2' and 4' with one hydroxy and one methoxy group respectively.

The hydroxy substitution at 2' produces a six-membered intramolecular O—H···O hydrogen bond with the keto group (Desiraju, 2002). This hydrogen bond is present with almost no exception through the series of compounds with this core, startintg with 2'-Hydroxy-4-methylchalcone (Shoja, 1999). This intramolecular bond leads the carbonyl group to display an S-cis configuration in relation to the double bond. The double bond displays an E configuration.

The molecule is significantly planar, as reflected in the values determined for the torsion angles. This is also true for molecules substituted with methoxy and/or hydroxy groups at different points of both phenyl sub-systems (Fronczek et al., 1987; Wallet et al., 1995; Subbiah Pandi et al., 2003; Chu et al., 2004; Wafo et al., 2005; Radha Krishna et al., 2005; Wu et al., 2005; Usman et al., 2006).

The packing shows no significant intermolecular hydrogen bonding.

Related literature top

For related literature, see: Chu et al. (2004); Desiraju (2002); Fronczek et al. (1987); Radha Krishna et al. (2005); Rao et al. (2004); Shoja (1999); Subbiah Pandi et al. (2003); Usman et al. (2006); Wafo et al. (2005); Wallet et al. (1995); Wu et al. (2005).

Experimental top

The title compound was prepared as follows: A solution of the 2,3-dimethoxybenzaldehyde, (7.34 mmol in ethanol, 20 ml) was added dropwise to a mixture of 2'-hydroxy-4'-methoxyacetophenone (7.34 mmol, in ethanol, 20 ml) and potassium hydroxide (2 g in 10 ml distilled water) with stirring. The mixture was allowed to react overnight, was then diluted with distilled water (200 ml), neutralized with hydrochloric acid and extracted with ethyl acetate (4 x 50 ml). The combined organic phases were concentrated in a rotatory evaporator, redissolved in ethanol and allowed to crystallize, as yellow crystals (31%); mp 98–101 °C.

Refinement top

The hydrogen atoms positions were calculated after each cycle of refinement with SHELXL (Bruker,1999) using a riding model for each structure, with C—H distances in the range 0.95 to 0.98 Å. Uiso(H) values were set equal to 1.5Ueq of the parent carbon atom for methyl groups and 1.2Ueq for the others. The exception were the hydroxyl hydrogen atom which were located in the Fourier and then refined with the O—H distance constrained to be 0.84 Å and the Ueq free to refine.

Computing details top

Data collection: SMART-NT (Bruker, 2001); cell refinement: SAINT-NT (Bruker, 1999); data reduction: SAINT-NT (Bruker, 1999); program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-NT (Sheldrick, 2008); molecular graphics: SHELXTL-NT (Sheldrick, 2008); software used to prepare material for publication: SHELXTL-NT (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure diagramas for I showing numbering scheme. Displacement ellipsoids are at 33% probability level and H atoms are shown as spheres of arbitrary radii.
(E)-3-(2,3-Dimethoxyphenyl)-1-(2-hydroxy-4-methoxyphenyl)prop-2-en-1-one top
Crystal data top
C18H18O5F(000) = 664
Mr = 314.32Dx = 1.358 Mg m3
Monoclinic, P21/cMelting point: 98-101 οC K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 4.8793 (5) ÅCell parameters from 935 reflections
b = 24.283 (3) Åθ = 3.0–19.9°
c = 13.0770 (14) ŵ = 0.10 mm1
β = 97.044 (2)°T = 150 K
V = 1537.7 (3) Å3Plate, orange
Z = 40.25 × 0.10 × 0.07 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
2717 independent reflections
Radiation source: fine-focus sealed tube1522 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
phi and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 55
Tmin = 0.976, Tmax = 0.993k = 2828
9482 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0553P)2]
where P = (Fo2 + 2Fc2)/3
2717 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C18H18O5V = 1537.7 (3) Å3
Mr = 314.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.8793 (5) ŵ = 0.10 mm1
b = 24.283 (3) ÅT = 150 K
c = 13.0770 (14) Å0.25 × 0.10 × 0.07 mm
β = 97.044 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2717 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
1522 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.993Rint = 0.080
9482 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
2717 reflectionsΔρmin = 0.16 e Å3
212 parameters
Special details top

Experimental. 0.3 ° between frames and 30 secs exposure (per frame)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1000.5970 (6)0.41587 (14)0.7398 (2)0.0353 (8)
O10.6194 (4)0.45867 (9)0.68878 (17)0.0458 (6)
C2000.3714 (6)0.37731 (13)0.7078 (2)0.0353 (8)
H2000.34220.34730.75180.042*
C3000.2072 (6)0.38252 (12)0.6203 (2)0.0375 (8)
H3000.24170.41320.57870.045*
C10.0221 (6)0.34652 (12)0.5798 (2)0.0334 (8)
C20.1667 (6)0.35684 (13)0.4845 (2)0.0330 (8)
O20.0892 (4)0.40002 (9)0.42551 (16)0.0438 (6)
C200.2738 (7)0.44601 (13)0.4198 (3)0.0514 (10)
H20A0.46140.43360.39510.077*
H20B0.21520.47350.37200.077*
H20C0.27130.46250.48830.077*
C30.3817 (6)0.32244 (13)0.4428 (2)0.0373 (8)
O30.5036 (5)0.33541 (9)0.34667 (17)0.0504 (7)
C300.7260 (7)0.30177 (15)0.3026 (3)0.0552 (10)
H30A0.65990.26400.29510.083*
H30B0.79870.31630.23470.083*
H30C0.87260.30180.34750.083*
C40.4506 (6)0.27696 (13)0.4990 (3)0.0409 (9)
H40.59510.25300.47150.049*
C50.3078 (6)0.26662 (13)0.5953 (3)0.0397 (8)
H50.35610.23570.63390.048*
C60.0971 (6)0.30068 (13)0.6354 (3)0.0386 (8)
H60.00090.29310.70150.046*
C1'0.7965 (6)0.40449 (13)0.8300 (2)0.0314 (7)
C6'0.8088 (7)0.35443 (13)0.8848 (2)0.0381 (8)
H6'0.67770.32650.86350.046*
C5'1.0022 (6)0.34452 (13)0.9674 (2)0.0387 (8)
H5'1.00670.31001.00180.046*
C4'1.1930 (6)0.38540 (14)1.0010 (2)0.0377 (8)
O41.3722 (4)0.37200 (9)1.08503 (16)0.0454 (6)
C401.5663 (6)0.41353 (14)1.1273 (3)0.0490 (9)
H40A1.68790.42351.07600.074*
H40B1.67720.39901.18900.074*
H40C1.46520.44621.14580.074*
C3'1.1901 (6)0.43537 (13)0.9511 (2)0.0362 (8)
H3'1.31790.46340.97490.043*
C2'0.9974 (6)0.44402 (13)0.8654 (2)0.0351 (8)
O201.0090 (4)0.49305 (9)0.81665 (18)0.0453 (6)
H200.89380.49330.76340.046 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1000.0270 (18)0.040 (2)0.0400 (19)0.0031 (15)0.0089 (15)0.0042 (16)
O10.0407 (14)0.0398 (15)0.0549 (15)0.0023 (11)0.0017 (11)0.0059 (12)
C2000.0277 (18)0.037 (2)0.0410 (19)0.0003 (15)0.0057 (15)0.0033 (16)
C3000.0309 (19)0.035 (2)0.048 (2)0.0034 (15)0.0100 (16)0.0035 (16)
C10.0270 (18)0.0325 (19)0.0414 (19)0.0058 (15)0.0070 (15)0.0060 (15)
C20.0237 (18)0.0351 (19)0.041 (2)0.0032 (14)0.0085 (15)0.0037 (16)
O20.0394 (14)0.0424 (14)0.0498 (14)0.0008 (12)0.0067 (11)0.0088 (12)
C200.054 (2)0.038 (2)0.061 (2)0.0044 (18)0.0015 (19)0.0061 (18)
C30.0296 (19)0.045 (2)0.037 (2)0.0013 (16)0.0043 (16)0.0064 (16)
O30.0408 (14)0.0594 (17)0.0487 (15)0.0070 (12)0.0038 (12)0.0063 (13)
C300.040 (2)0.067 (3)0.057 (2)0.009 (2)0.0025 (18)0.021 (2)
C40.033 (2)0.041 (2)0.051 (2)0.0035 (16)0.0113 (17)0.0148 (17)
C50.0344 (19)0.033 (2)0.053 (2)0.0007 (16)0.0106 (17)0.0048 (16)
C60.033 (2)0.0360 (19)0.047 (2)0.0051 (16)0.0060 (16)0.0003 (17)
C1'0.0231 (17)0.039 (2)0.0342 (18)0.0007 (15)0.0100 (14)0.0062 (15)
C6'0.0313 (19)0.039 (2)0.046 (2)0.0031 (16)0.0104 (17)0.0017 (16)
C5'0.0308 (19)0.043 (2)0.043 (2)0.0002 (16)0.0077 (16)0.0013 (17)
C4'0.0278 (19)0.046 (2)0.0392 (19)0.0019 (16)0.0048 (16)0.0034 (17)
O40.0364 (13)0.0522 (15)0.0457 (14)0.0042 (12)0.0020 (11)0.0029 (12)
C400.034 (2)0.060 (2)0.051 (2)0.0078 (18)0.0034 (17)0.0113 (19)
C3'0.0290 (19)0.040 (2)0.0400 (19)0.0036 (15)0.0047 (16)0.0064 (17)
C2'0.0337 (19)0.035 (2)0.039 (2)0.0008 (15)0.0133 (16)0.0006 (16)
O200.0411 (14)0.0414 (15)0.0516 (16)0.0057 (11)0.0021 (13)0.0028 (11)
Geometric parameters (Å, º) top
C100—O11.247 (4)O4—C401.446 (3)
C100—C1'1.461 (4)C3'—C2'1.388 (4)
C100—C2001.467 (4)C2'—O201.355 (3)
C200—C3001.319 (4)C200—H2000.9500
C300—C11.467 (4)C300—H3000.9500
C1—C21.377 (4)C20—H20A0.9800
C1—C61.403 (4)C20—H20B0.9800
C2—O21.382 (3)C20—H20C0.9800
C2—C31.398 (4)C30—H30A0.9800
O2—C201.431 (4)C30—H30B0.9800
C3—O31.360 (4)C30—H30C0.9800
C3—C41.391 (4)C4—H40.9500
O3—C301.423 (3)C5—H50.9500
C4—C51.385 (4)C6—H60.9500
C5—C61.372 (4)C6'—H6'0.9500
C1'—C6'1.409 (4)C5'—H5'0.9500
C1'—C2'1.409 (4)C40—H40A0.9800
C6'—C5'1.366 (4)C40—H40B0.9800
C5'—C4'1.394 (4)C40—H40C0.9800
C4'—O41.357 (3)C3'—H3'0.9500
C4'—C3'1.377 (4)O20—H200.8400
O1—C100—C1'119.7 (3)C200—C300—H300116.1
O1—C100—C200119.4 (3)C1—C300—H300116.1
C1'—C100—C200120.8 (3)O2—C20—H20A109.5
C300—C200—C100122.8 (3)O2—C20—H20B109.5
C200—C300—C1127.7 (3)H20A—C20—H20B109.5
C2—C1—C6118.4 (3)O2—C20—H20C109.5
C2—C1—C300120.1 (3)H20A—C20—H20C109.5
C6—C1—C300121.4 (3)H20B—C20—H20C109.5
C1—C2—O2119.9 (3)O3—C30—H30A109.5
C1—C2—C3121.4 (3)O3—C30—H30B109.5
O2—C2—C3118.7 (3)H30A—C30—H30B109.5
C2—O2—C20114.1 (2)O3—C30—H30C109.5
O3—C3—C4124.5 (3)H30A—C30—H30C109.5
O3—C3—C2116.4 (3)H30B—C30—H30C109.5
C4—C3—C2119.1 (3)C5—C4—H4120.1
C3—O3—C30117.8 (3)C3—C4—H4120.1
C5—C4—C3119.8 (3)C6—C5—H5119.7
C6—C5—C4120.5 (3)C4—C5—H5119.7
C5—C6—C1120.7 (3)C5—C6—H6119.6
C6'—C1'—C2'115.9 (3)C1—C6—H6119.6
C6'—C1'—C100123.8 (3)C5'—C6'—H6'118.8
C2'—C1'—C100120.3 (3)C1'—C6'—H6'118.8
C5'—C6'—C1'122.4 (3)C6'—C5'—H5'120.2
C6'—C5'—C4'119.6 (3)C4'—C5'—H5'120.2
O4—C4'—C3'124.3 (3)O4—C40—H40A109.5
O4—C4'—C5'115.0 (3)O4—C40—H40B109.5
C3'—C4'—C5'120.7 (3)H40A—C40—H40B109.5
C4'—O4—C40118.0 (3)O4—C40—H40C109.5
C4'—C3'—C2'118.9 (3)H40A—C40—H40C109.5
O20—C2'—C3'116.7 (3)H40B—C40—H40C109.5
O20—C2'—C1'120.8 (3)C4'—C3'—H3'120.6
C3'—C2'—C1'122.5 (3)C2'—C3'—H3'120.6
C300—C200—H200118.6C2'—O20—H20109.5
C100—C200—H200118.6
O1—C100—C200—C3007.8 (5)C2—C1—C6—C50.6 (4)
C1'—C100—C200—C300171.6 (3)C300—C1—C6—C5178.4 (3)
C100—C200—C300—C1179.4 (3)O1—C100—C1'—C6'171.9 (3)
C200—C300—C1—C2177.5 (3)C200—C100—C1'—C6'7.5 (4)
C200—C300—C1—C61.5 (5)O1—C100—C1'—C2'6.2 (4)
C6—C1—C2—O2176.8 (3)C200—C100—C1'—C2'174.4 (3)
C300—C1—C2—O22.3 (4)C2'—C1'—C6'—C5'0.2 (4)
C6—C1—C2—C30.7 (4)C100—C1'—C6'—C5'178.4 (3)
C300—C1—C2—C3178.4 (3)C1'—C6'—C5'—C4'1.2 (4)
C1—C2—O2—C20107.3 (3)C6'—C5'—C4'—O4178.5 (3)
C3—C2—O2—C2076.5 (3)C6'—C5'—C4'—C3'0.7 (5)
C1—C2—C3—O3177.7 (3)C3'—C4'—O4—C402.4 (4)
O2—C2—C3—O31.6 (4)C5'—C4'—O4—C40176.8 (3)
C1—C2—C3—C40.1 (4)O4—C4'—C3'—C2'179.6 (3)
O2—C2—C3—C4176.2 (3)C5'—C4'—C3'—C2'1.3 (4)
C4—C3—O3—C303.2 (4)C4'—C3'—C2'—O20177.7 (3)
C2—C3—O3—C30179.0 (3)C4'—C3'—C2'—C1'2.8 (4)
O3—C3—C4—C5178.2 (3)C6'—C1'—C2'—O20178.2 (3)
C2—C3—C4—C50.5 (4)C100—C1'—C2'—O200.0 (4)
C3—C4—C5—C60.6 (5)C6'—C1'—C2'—C3'2.3 (4)
C4—C5—C6—C10.0 (5)C100—C1'—C2'—C3'179.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O20—H20···O10.841.772.515 (3)147

Experimental details

Crystal data
Chemical formulaC18H18O5
Mr314.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)4.8793 (5), 24.283 (3), 13.0770 (14)
β (°) 97.044 (2)
V3)1537.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.10 × 0.07
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.976, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
9482, 2717, 1522
Rint0.080
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.139, 1.03
No. of reflections2717
No. of parameters212
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.16

Computer programs: SMART-NT (Bruker, 2001), SAINT-NT (Bruker, 1999), SHELXTL-NT (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
C100—O11.247 (4)C200—C3001.319 (4)
C100—C2001.467 (4)
O1—C100—C200119.4 (3)C300—C200—C100122.8 (3)
O1—C100—C200—C3007.8 (5)C100—C200—C300—C1179.4 (3)
C1'—C100—C200—C300171.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O20—H20···O10.841.772.515 (3)147.0
 

Acknowledgements

The authors gratefully acknowledge generous financial support from FONDECYT (grant No. 1080147) and Universidad Andres Bello (grant No. DI-UNAB-20–06/R).

References

First citationBruker (1999). SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChu, H.-W., Wu, H.-T. & Lee, Y.-J. (2004). Tetrahedron, 60, 2647–2655.  Web of Science CSD CrossRef CAS Google Scholar
First citationDesiraju, G. R. (2002). Acc. Chem. Res. 35, 565–573.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFronczek, F. R., Tanrisever, N. & Fischer, N. H. (1987). Acta Cryst. C43, 158–160.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRadha Krishna, J., Jagadeesh Kumar, N., Krishnaiah, M., Venkata Rao, C., Koteswara Rao, Y. & Puranik, V. G. (2005). Acta Cryst. E61, o1323–o1325.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRao, Y. K., Fang, S.-H. & Tzeng, Y.-M. (2004). Bioorg. Med. Chem. 12, 2679–2686.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShoja, M. (1999). Z. Kristallogr. 214, 235–240.  CAS Google Scholar
First citationSubbiah Pandi, A., Velmurugan, D., Shanmuga Sundara Raj, S., Fun, H.-K. & Bansal, M. C. (2003). Acta Cryst. C59, o302–o304.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationUsman, H., Jalaluddin, M. N., Hakim, E. H., Syah, Y. M. & Yamin, B. M. (2006). Acta Cryst. E62, o209–o211.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWafo, P., Hussain, H., Kouam, S. F., Ngadjui, B. T., Flörke, U. & Krohn, K. (2005). Acta Cryst. E61, o3017–o3019.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWallet, J.-C., Molins, E. & Miravitlles, C. (1995). Acta Cryst. C51, 123–125.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWu, H., Xu, Z. & Liang, Y.-M. (2005). Acta Cryst. E61, o1434–o1435.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds