metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Aqua­(4,7-di­aza­decane-1,10-di­amine-κ4N)fluoridochromium(III) bis­­(perchlorate) monohydrate

aDepartment of Chemistry, Andong National University, Andong 760-749, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 29 July 2008; accepted 13 August 2008; online 20 August 2008)

In the title compound, [CrF(C8H20N4)(H2O)](ClO4)2·H2O, the Cr atom is in a slightly distorted octa­hedral environment, coordinated by four N atoms of the 4,7-diaza­decane-1,10-diamine ligand, one water mol­ecule and an F atom trans to water. The five-membered chelate ring is in a gauche form, while the two six-membered chelate rings are in chair conformations. The crystal structure is stabilized by several hydrogen bonds.

Related literature

For the synthesis, see: Glerup et al. (1970[Glerup, J., Josephsen, J., Michelsen, K., Pedersen, E. & Schaffer, C. (1970). Acta Chem. Scand. 24, 247-254.]). For related structures, see: Brencic et al. (1985[Brencic, J. V., Leban, I. & Zule, J. (1985). Z. Anorg. Allg. Chem. 521, 199-206.]); Choi et al. (1995[Choi, J.-H., Suh, I.-H. & Kwak, S.-H. (1995). Acta Cryst. C51, 1745-1748.], 2004[Choi, J. H., Oh, I. G., Suzuki, T. & Kaizaki, S. (2004). J. Mol. Struct. 694, 39-44.], 2006[Choi, J. H., Oh, I. G., Ryoo, K. S., Lim, W. T., Park, Y. C. & Habibi, M. H. (2006). Spectrochim. Acta [A], 65, 1138-1143.], 2008[Choi, J. H., Choi, S. Y., Hong, Y. P., Ko, S. O., Ryoo, K. S., Lee, S. H. & Park, Y. C. (2008). Spectrochim. Acta [A], 70, 619-625.]). For other related literature, see: Choi & Hoggard (1992[Choi, J. H. & Hoggard, P. E. (1992). Polyhedron, 11, 2399-2407.]); Poon & Pun (1980[Poon, C. K. & Pun, K. C. (1980). Inorg. Chem. 19, 568-569.]); Stearns & Armstrong (1992[Stearns, D. M. & Armstrong, W. H. (1992). Inorg. Chem. 31, 5178-5184.]).

[Scheme 1]

Experimental

Crystal data
  • [CrF(C8H20N4)(H2O)](ClO4)2·H2O

  • Mr = 480.23

  • Monoclinic, P 21 /c

  • a = 9.950 (1) Å

  • b = 16.893 (2) Å

  • c = 12.008 (1) Å

  • β = 108.65 (1)°

  • V = 1912.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 298 (2) K

  • 0.43 × 0.30 × 0.25 mm

Data collection
  • Stoe Stadi-4 diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe, 1996[Stoe & Cie (1996). STADI4, X-RED and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.]) Tmin = 0.686, Tmax = 0.889

  • 4347 measured reflections

  • 4347 independent reflections

  • 3245 reflections with I > 2σ(I)

  • 3 standard reflections frequency: 60 min intensity decay: 3.1%

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.228

  • S = 1.09

  • 4347 reflections

  • 243 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.07 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1OA⋯Fi 0.86 (6) 1.72 (6) 2.564 (5) 168 (8)
O1W—H1OB⋯O2W 0.74 (6) 1.92 (6) 2.617 (6) 158 (7)
N1—H1AN⋯O2ii 0.91 2.42 3.332 (11) 177
N2—H1N2⋯O7iii 0.91 2.45 3.154 (10) 134
N3—H3BN⋯O5 0.90 2.36 3.242 (10) 167
N4—H4BN⋯O5 0.90 2.43 3.062 (10) 127
C1—H1B⋯O4iv 0.97 2.53 3.141 (13) 121
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) x-1, y, z; (iv) x+1, y, z.

Data collection: STADI4 (Stoe & Cie, 1996[Stoe & Cie (1996). STADI4, X-RED and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1996[Stoe & Cie (1996). STADI4, X-RED and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Acyclic flexible 4,7-diazadecane-1,10-diamine (3,2,3-tet) and its related tetradentate ligands provide a rich field of geometric and conformational isomers in octahedral transition metal complexes (Choi et al., 2008). The electronic absorption and infrared spectra often can be used diagnostically to identify the geometric isomers of chromium(III) complexes complexes (Poon & Pun, 1980; Choi & Hoggard, 1992). However, it should be noted that the assignments based on spectroscopic investigations are not always conclusive (Stearns & Armstrong, 1992). [Cr(3,2,3-tet)F(H2O)]X2 can adopt a diverse stereochemistry and configuration, but no structures have been reported. Thus we here report the crystal structure of the title complex (Fig. 1) in order to confirm the geometric configuration.

There are one fluorine atom and one water molecule coordinated to the chromium atom in a trans arrangement with an F—Cr—O1w bond angle of 179.5 (2)°. The rest of the coordination sites are occupied by four nitrogen atoms from 3,2,3-tet ligand in the equatorial plane. The mean Cr—N bond length of 2.079 (4) Å is normal, agreeing with literature values (Choi et al., 1995; Choi et al., 2004). The Cr—N1 and Cr—N2 bond lengths of 2.068 (5) and 2.070 (4) Å of secondary amines are slightly shorter than Cr—N3 and Cr—N4 distances of 2.082 (5) and 2.095 (4) Å of primary amines. The Cr—F distance of 1.881 (3) Å and Cr—O1W of 1.996 (4) Å are also compararble to the values of 1.870 (1) Å and 2.023 (2) Å found in trans-[Cr([15]aneN4)F2]ClO4 (Choi et al., 2006) and trans-[Cr(NH3)4Cl(H2O)]Cl2 (Brencic et al., 1985), respectively. The short Cr—F bond length suggests a strong bond.

The uncoordinated ClO4- anions and one water molecule remain outside the coordination sphere. There is an extensive hydrogen bonding network (Table 2) between the oxygens of the ClO4- anions, fluorine atom, water molecule, C—H and the N—H groups of the 3,2,3-tet ligand as shown in Figure 2. These hydrogen-bonded networks help to stabilize the crystal structure.

Related literature top

For the synthesis, see: Glerup et al. (1970). For related structures, see: Brencic et al. (1985); Choi et al. (1995, 2004, 2006, 2008). For other related literature, see: Choi & Hoggard (1992); Poon & Pun (1980); Stearns & Armstrong (1992).

Experimental top

As starting material, trans-[Cr(3,2,3-tet)F2]ClO4 was prepared according to the literature (Glerup et al., 1970). The complex trans-[Cr(3,2,3-tet)F2]ClO4 was dissolved in 0.2 M HClO4. The solution was heated at 333 K for 50 min and then a saturated solution of sodium perchlorate was added. Dark red crystals suitable for an X-ray structural determination were deposited over several days as the solution evaporated.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms and 0.98 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic and Uiso(H) = 1.5Ueq(C) for methyl H atoms. H atoms of O1w were located in a difference Fourier map and refined with constraints. Reasonable positions of H atoms for O2w could not obtained from a difference Fourier map.

Computing details top

Data collection: STADI4 (Stoe & Cie, 1996); cell refinement: STADI4 (Stoe & Cie, 1996); data reduction: X-RED (Stoe & Cie, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure (30% probability ellipsoids) of the title compound.
[Figure 2] Fig. 2. Hydrogen-bond interactions (dashed lines) in the title compound. [Symmetry codes: (i) x, -y+3/2, z-1/2; (ii) -x+1, -y+1, -z+1; (iii) x-1, y, z; (iv) x+1, y, z; (v) x, -y+3/2, z+1/2.]
trans-Aqua(4,7-diazadecane-1,10-diamine-κ4N)fluoridochromium(III) bis(perchlorate) monohydrate top
Crystal data top
[CrF(C8H20N4)(H2O)](ClO4)2·H2OF(000) = 996
Mr = 480.23Dx = 1.668 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 32 reflections
a = 9.950 (1) Åθ = 19.0–20.8°
b = 16.893 (2) ŵ = 0.94 mm1
c = 12.008 (1) ÅT = 298 K
β = 108.65 (1)°Block, dark red
V = 1912.4 (4) Å30.43 × 0.30 × 0.25 mm
Z = 4
Data collection top
Stoe Stadi-4
diffractometer
3245 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 27.5°, θmin = 2.2°
ω/2–θ scansh = 1212
Absorption correction: numerical
(X-SHAPE; Stoe, 1996)
k = 021
Tmin = 0.686, Tmax = 0.889l = 015
4347 measured reflections3 standard reflections every 60 min
4347 independent reflections intensity decay: 3.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.228H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.1014P)2 + 6.2787P]
where P = (Fo2 + 2Fc2)/3
4347 reflections(Δ/σ)max < 0.001
243 parametersΔρmax = 1.07 e Å3
3 restraintsΔρmin = 0.60 e Å3
Crystal data top
[CrF(C8H20N4)(H2O)](ClO4)2·H2OV = 1912.4 (4) Å3
Mr = 480.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.950 (1) ŵ = 0.94 mm1
b = 16.893 (2) ÅT = 298 K
c = 12.008 (1) Å0.43 × 0.30 × 0.25 mm
β = 108.65 (1)°
Data collection top
Stoe Stadi-4
diffractometer
3245 reflections with I > 2σ(I)
Absorption correction: numerical
(X-SHAPE; Stoe, 1996)
Rint = 0.000
Tmin = 0.686, Tmax = 0.8893 standard reflections every 60 min
4347 measured reflections intensity decay: 3.1%
4347 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0763 restraints
wR(F2) = 0.228H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 1.07 e Å3
4347 reflectionsΔρmin = 0.60 e Å3
243 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr0.77207 (8)0.74161 (4)0.61410 (6)0.0294 (2)
Cl10.25308 (17)0.51481 (9)0.64339 (13)0.0538 (4)
Cl21.24851 (16)0.84876 (12)0.62990 (16)0.0643 (5)
F0.7140 (3)0.74557 (18)0.7485 (2)0.0404 (7)
N10.6809 (5)0.6308 (3)0.5748 (4)0.0458 (11)
H1AN0.71060.61060.51640.055*
N20.5732 (4)0.7824 (3)0.5160 (4)0.0454 (11)
H1N20.52720.79280.56880.055*
N30.8507 (5)0.8564 (3)0.6485 (4)0.0435 (10)
H3AN0.83380.87310.71390.052*
H3BN0.94550.85390.66540.052*
N40.9663 (4)0.6910 (3)0.7114 (4)0.0414 (10)
H4AN1.01050.67480.66070.050*
H4BN1.02030.72910.75650.050*
C10.9611 (7)0.6231 (4)0.7887 (5)0.0523 (14)
H1A0.91980.64050.84760.063*
H1B1.05690.60510.82910.063*
C20.8750 (8)0.5550 (4)0.7202 (7)0.0643 (18)
H2A0.89050.50890.77110.077*
H2B0.90950.54230.65540.077*
C30.7171 (8)0.5710 (4)0.6718 (6)0.0639 (18)
H3A0.66790.52190.64250.077*
H3B0.68400.58980.73480.077*
C40.5235 (7)0.6431 (5)0.5235 (6)0.0643 (19)
H4A0.47970.59670.47880.077*
H4B0.48270.65100.58600.077*
C50.4968 (6)0.7142 (5)0.4451 (5)0.065 (2)
H5A0.53110.70490.37910.078*
H5B0.39590.72520.41470.078*
C60.5603 (7)0.8554 (5)0.4447 (5)0.0629 (19)
H6A0.46070.86900.41100.076*
H6B0.59720.84520.38050.076*
C70.6384 (8)0.9245 (4)0.5152 (7)0.068 (2)
H7A0.61170.97190.46770.082*
H7B0.60700.93110.58330.082*
C80.7971 (7)0.9183 (4)0.5569 (6)0.0586 (16)
H8A0.82890.90630.49040.070*
H8B0.83720.96900.58850.070*
O10.2360 (12)0.5429 (5)0.5295 (7)0.143 (3)
O20.1991 (14)0.4382 (5)0.6357 (8)0.183 (5)
O30.3986 (11)0.5079 (10)0.6805 (16)0.257 (8)
O40.2177 (16)0.5591 (8)0.7161 (12)0.231 (7)
O51.1848 (9)0.8171 (7)0.7049 (9)0.173 (5)
O61.1523 (12)0.9046 (7)0.5676 (8)0.186 (5)
O71.2769 (14)0.7974 (8)0.5576 (17)0.277 (10)
O81.3760 (9)0.8831 (8)0.6872 (10)0.188 (5)
O1W0.8322 (4)0.7379 (3)0.4706 (3)0.0412 (9)
H1OA0.782 (7)0.743 (4)0.398 (6)0.07 (2)*
H1OB0.896 (6)0.714 (4)0.474 (5)0.046 (19)*
O2W1.0660 (6)0.6849 (4)0.4419 (5)0.0841 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr0.0281 (4)0.0384 (4)0.0229 (4)0.0002 (3)0.0098 (3)0.0013 (3)
Cl10.0632 (9)0.0531 (8)0.0533 (8)0.0025 (7)0.0302 (7)0.0047 (6)
Cl20.0436 (8)0.0758 (11)0.0728 (11)0.0005 (7)0.0175 (7)0.0124 (9)
F0.0427 (16)0.0559 (18)0.0266 (13)0.0032 (13)0.0166 (12)0.0043 (12)
N10.049 (3)0.050 (3)0.044 (2)0.015 (2)0.022 (2)0.013 (2)
N20.032 (2)0.073 (3)0.032 (2)0.010 (2)0.0118 (17)0.001 (2)
N30.048 (3)0.040 (2)0.048 (3)0.0004 (19)0.022 (2)0.0008 (19)
N40.035 (2)0.051 (3)0.037 (2)0.0042 (19)0.0107 (18)0.0039 (19)
C10.064 (4)0.053 (3)0.042 (3)0.014 (3)0.019 (3)0.010 (3)
C20.083 (5)0.036 (3)0.078 (5)0.007 (3)0.032 (4)0.011 (3)
C30.082 (5)0.048 (3)0.071 (4)0.019 (3)0.038 (4)0.002 (3)
C40.043 (3)0.082 (5)0.068 (4)0.026 (3)0.018 (3)0.027 (4)
C50.033 (3)0.113 (6)0.041 (3)0.008 (3)0.001 (2)0.018 (4)
C60.048 (3)0.097 (5)0.045 (3)0.030 (3)0.017 (3)0.029 (3)
C70.077 (5)0.060 (4)0.077 (5)0.033 (4)0.036 (4)0.022 (4)
C80.067 (4)0.044 (3)0.077 (4)0.008 (3)0.041 (4)0.012 (3)
O10.220 (10)0.118 (6)0.095 (5)0.040 (6)0.058 (6)0.005 (5)
O20.337 (15)0.099 (6)0.131 (7)0.105 (8)0.099 (9)0.011 (5)
O30.109 (8)0.285 (16)0.40 (2)0.041 (10)0.120 (11)0.135 (16)
O40.320 (17)0.204 (12)0.246 (13)0.030 (11)0.198 (13)0.117 (10)
O50.113 (6)0.241 (12)0.196 (10)0.005 (7)0.091 (7)0.089 (9)
O60.198 (10)0.226 (12)0.105 (6)0.110 (9)0.007 (6)0.029 (7)
O70.226 (13)0.185 (11)0.53 (3)0.062 (9)0.278 (17)0.190 (15)
O80.091 (6)0.270 (13)0.173 (9)0.082 (7)0.002 (5)0.040 (9)
O1W0.0369 (19)0.063 (2)0.0266 (17)0.0085 (18)0.0144 (15)0.0048 (16)
O2W0.061 (3)0.110 (5)0.088 (4)0.030 (3)0.033 (3)0.003 (3)
Geometric parameters (Å, º) top
Cr—F1.881 (3)N4—H4BN0.900
Cr—O1W1.997 (3)C1—C21.511 (10)
Cr—N12.068 (5)C1—H1A0.970
Cr—N22.070 (4)C1—H1B0.970
Cr—N32.082 (5)C2—C31.516 (10)
Cr—N42.095 (4)C2—H2A0.970
Cl1—O41.282 (8)C2—H2B0.970
Cl1—O31.377 (11)C3—H3A0.970
Cl1—O21.392 (8)C3—H3B0.970
Cl1—O11.405 (8)C4—C51.498 (11)
Cl2—O71.321 (10)C4—H4A0.970
Cl2—O81.364 (8)C4—H4B0.970
Cl2—O51.365 (7)C5—H5A0.970
Cl2—O61.381 (9)C5—H5B0.970
N1—C31.496 (8)C6—C71.504 (11)
N1—C41.502 (8)C6—H6A0.970
N1—H1AN0.910C6—H6B0.970
N2—C61.484 (8)C7—C81.499 (10)
N2—C51.488 (8)C7—H7A0.970
N2—H1N20.910C7—H7B0.970
N3—C81.488 (8)C8—H8A0.970
N3—H3AN0.900C8—H8B0.970
N3—H3BN0.900O1W—H1OA0.86 (6)
N4—C11.487 (7)O1W—H1OB0.74 (6)
N4—H4AN0.900
F—Cr—O1W179.49 (16)N4—C1—C2112.0 (5)
F—Cr—N189.72 (16)N4—C1—H1A109.2
O1W—Cr—N190.30 (18)C2—C1—H1A109.2
F—Cr—N288.63 (15)N4—C1—H1B109.2
O1W—Cr—N290.87 (17)C2—C1—H1B109.2
N1—Cr—N284.3 (2)H1A—C1—H1B107.9
F—Cr—N389.77 (16)C1—C2—C3114.3 (5)
O1W—Cr—N390.17 (18)C1—C2—H2A108.7
N1—Cr—N3176.23 (19)C3—C2—H2A108.7
N2—Cr—N391.9 (2)C1—C2—H2B108.7
F—Cr—N491.04 (15)C3—C2—H2B108.7
O1W—Cr—N489.47 (17)H2A—C2—H2B107.6
N1—Cr—N490.98 (19)N1—C3—C2112.4 (5)
N2—Cr—N4175.3 (2)N1—C3—H3A109.1
N3—Cr—N492.77 (19)C2—C3—H3A109.1
O4—Cl1—O3108.6 (11)N1—C3—H3B109.1
O4—Cl1—O2113.8 (8)C2—C3—H3B109.1
O3—Cl1—O2106.6 (9)H3A—C3—H3B107.9
O4—Cl1—O1119.5 (9)C5—C4—N1108.7 (5)
O3—Cl1—O197.5 (8)C5—C4—H4A109.9
O2—Cl1—O1108.9 (5)N1—C4—H4A109.9
O7—Cl2—O8104.5 (8)C5—C4—H4B109.9
O7—Cl2—O5114.7 (9)N1—C4—H4B109.9
O8—Cl2—O5112.8 (7)H4A—C4—H4B108.3
O7—Cl2—O6110.5 (10)N2—C5—C4107.8 (5)
O8—Cl2—O6110.7 (8)N2—C5—H5A110.1
O5—Cl2—O6103.7 (7)C4—C5—H5A110.1
C3—N1—C4111.9 (5)N2—C5—H5B110.1
C3—N1—Cr117.1 (4)C4—C5—H5B110.1
C4—N1—Cr107.0 (4)H5A—C5—H5B108.5
C3—N1—H1AN106.8N2—C6—C7112.8 (5)
C4—N1—H1AN106.8N2—C6—H6A109.0
Cr—N1—H1AN106.8C7—C6—H6A109.0
C6—N2—C5112.3 (5)N2—C6—H6B109.0
C6—N2—Cr119.7 (4)C7—C6—H6B109.0
C5—N2—Cr106.8 (4)H6A—C6—H6B107.8
C6—N2—H1N2105.7C8—C7—C6115.7 (6)
C5—N2—H1N2105.7C8—C7—H7A108.4
Cr—N2—H1N2105.7C6—C7—H7A108.4
C8—N3—Cr119.0 (4)C8—C7—H7B108.4
C8—N3—H3AN107.6C6—C7—H7B108.4
Cr—N3—H3AN107.6H7A—C7—H7B107.4
C8—N3—H3BN107.6N3—C8—C7112.7 (5)
Cr—N3—H3BN107.6N3—C8—H8A109.0
H3AN—N3—H3BN107.0C7—C8—H8A109.0
C1—N4—Cr116.9 (4)N3—C8—H8B109.0
C1—N4—H4AN108.1C7—C8—H8B109.0
Cr—N4—H4AN108.1H8A—C8—H8B107.8
C1—N4—H4BN108.1Cr—O1W—H1OA129 (5)
Cr—N4—H4BN108.1Cr—O1W—H1OB117 (5)
H4AN—N4—H4BN107.3H1OA—O1W—H1OB109 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1OA···Fi0.86 (6)1.72 (6)2.564 (5)168 (8)
O1W—H1OB···O2W0.74 (6)1.92 (6)2.617 (6)158 (7)
N1—H1AN···O2ii0.912.423.332 (11)177
N2—H1N2···O7iii0.912.453.154 (10)134
N3—H3BN···O50.902.363.242 (10)167
N4—H4BN···O50.902.433.062 (10)127
C1—H1B···O4iv0.972.533.141 (13)121
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+1; (iii) x1, y, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[CrF(C8H20N4)(H2O)](ClO4)2·H2O
Mr480.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.950 (1), 16.893 (2), 12.008 (1)
β (°) 108.65 (1)
V3)1912.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.43 × 0.30 × 0.25
Data collection
DiffractometerStoe Stadi-4
diffractometer
Absorption correctionNumerical
(X-SHAPE; Stoe, 1996)
Tmin, Tmax0.686, 0.889
No. of measured, independent and
observed [I > 2σ(I)] reflections
4347, 4347, 3245
Rint0.000
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.228, 1.09
No. of reflections4347
No. of parameters243
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.07, 0.60

Computer programs: STADI4 (Stoe & Cie, 1996), X-RED (Stoe & Cie, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1OA···Fi0.86 (6)1.72 (6)2.564 (5)168 (8)
O1W—H1OB···O2W0.74 (6)1.92 (6)2.617 (6)158 (7)
N1—H1AN···O2ii0.912.423.332 (11)176.8
N2—H1N2···O7iii0.912.453.154 (10)134.1
N3—H3BN···O50.902.363.242 (10)167.3
N4—H4BN···O50.902.433.062 (10)127.2
C1—H1B···O4iv0.972.533.141 (13)121.1
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z+1; (iii) x1, y, z; (iv) x+1, y, z.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrencic, J. V., Leban, I. & Zule, J. (1985). Z. Anorg. Allg. Chem. 521, 199–206.  CrossRef CAS Web of Science Google Scholar
First citationChoi, J. H., Choi, S. Y., Hong, Y. P., Ko, S. O., Ryoo, K. S., Lee, S. H. & Park, Y. C. (2008). Spectrochim. Acta [A], 70, 619–625.  CrossRef Google Scholar
First citationChoi, J. H. & Hoggard, P. E. (1992). Polyhedron, 11, 2399–2407.  CrossRef CAS Web of Science Google Scholar
First citationChoi, J. H., Oh, I. G., Ryoo, K. S., Lim, W. T., Park, Y. C. & Habibi, M. H. (2006). Spectrochim. Acta [A], 65, 1138–1143.  CrossRef Google Scholar
First citationChoi, J. H., Oh, I. G., Suzuki, T. & Kaizaki, S. (2004). J. Mol. Struct. 694, 39–44.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H., Suh, I.-H. & Kwak, S.-H. (1995). Acta Cryst. C51, 1745–1748.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGlerup, J., Josephsen, J., Michelsen, K., Pedersen, E. & Schaffer, C. (1970). Acta Chem. Scand. 24, 247–254.  CrossRef CAS Web of Science Google Scholar
First citationPoon, C. K. & Pun, K. C. (1980). Inorg. Chem. 19, 568–569.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStearns, D. M. & Armstrong, W. H. (1992). Inorg. Chem. 31, 5178–5184.  CSD CrossRef CAS Web of Science Google Scholar
First citationStoe & Cie (1996). STADI4, X-RED and X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds