metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Bis(butyl­amine-κN)bis­­[sulfa­diazine(1−)-κ2N,N′]copper(II) penta­hydrate

aOndokuz Mayıs University, Department of Physics, Faculty of Arts and Sciences, 55139 Kurupelit Samsun, Turkey, and bOndokuz Mayıs University, Department of Chemistry, Faculty of Arts and Sciences, 55139 Kurupelit Samsun, Turkey
*Correspondence e-mail: gkastas@omu.edu.tr

(Received 15 August 2008; accepted 17 August 2008; online 23 August 2008)

In the title compound {systematic name: cis-bis­[4-amino-N-(pyrimidin-2-yl)benzene­sulfonamidato-κ2N,N′]bis­(butyl­amine-κN)copper(II) penta­hydrate}, [Cu(C10H9N4O2S)2(C4H11N)2]·5H2O or [Cu(sdz)2(ba)2]·5H2O [ba is butyl­amine and sdz = sulfadiazine(1−)], the copper(II) cation is six-coordinated by four N atoms of two sulfadiazine ligands and two N atoms of butyl­amine ligands. The copper(II) ion and one of the water mol­ecules lie on twofold rotation axes. One of the butyl groups is disordered over two sites, with occupancies of 0.395 (8) and 0.605 (8). The geometry around the S atom is distorted tetra­hedral. The crystal structure involves inter­molecular N—H⋯N and N—H⋯O hydrogen bonds. N—H⋯N hydrogen bonds between sdz ligands lead to a sheet structure parallel to the ab plane.

Related literature

For related structures, see: Heren et al. (2006[Heren, Z., Paşaoğlu, H. & Kaştaş, G. (2006). Acta Cryst. E62, o3437-o3439.]); Chung et al. (1975[Chung, H. K., Hoon, S. K., Young, K. Y. & Il-Hwan, S. (1975). J. Korean Phys. Soc. 8, 37-48.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C10H9N4O2S)2(C4H11N)2]·5H2O

  • Mr = 790.04

  • Orthorhombic, P b c n

  • a = 22.623 (6) Å

  • b = 10.342 (5) Å

  • c = 16.250 (6) Å

  • V = 3802 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 296 K

  • 0.34 × 0.21 × 0.19 mm

Data collection
  • Stoe IPDS2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.821, Tmax = 0.899

  • 57960 measured reflections

  • 4235 independent reflections

  • 2098 reflections with I > 2σ(I)

  • Rint = 0.085

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.141

  • S = 0.90

  • 4235 reflections

  • 234 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯N2i 0.86 2.53 3.359 (5) 162
N4—H4A⋯O5ii 0.90 2.45 3.337 (6) 171
N4—H4B⋯O4iii 0.90 2.25 3.119 (6) 161
N5—H5B⋯O5iv 0.86 2.26 3.113 (5) 170
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the title complex (I), the copper(II) ion is six-coordinated by four N atoms of sulfadiazine ligands and two N atoms of butylammonium ligands. The copper(II) ion and one of the water molecules lie on twofold rotation axes. It is found that the Cu–Nsdz and Cu–Nba bond distances are nearly equal. The bond angles around the S atom correspond to a distorted tetrahedral geometry. The C4–N5 bond distance and the torsion angle C1–S1–N1–C7 are comparable to those observed in related structures (Heren et al., 2006; Chung et al., 1975). One of the butyl groups is disordered over two sites with occupancies of 0.395 (8):0.605 (8) (see Fig. 1).

The packing of (I) is stabilized by intermolecular N—H···N and N—H···O hydrogen bonds (Table 1). The N—H···N hydrogen bond takes place between sdz ligands and it is seen that these hydrogen bonds generate a sheet structure parallel to the ab plane (Fig. 2). The H atoms of water molecules could not be located from a Fourier map. However, it is possible to see that water molecules are involved in hydrogen bonds with sdz and ba ligands on the basis of interatomic distances.

Related literature top

For related structures, see: Heren et al. (2006); Chung et al. (1975).

Experimental top

A solution of butylamine (2 mmol) in ethanol (20 ml) was added dropwise with stirring to a solution of Cu(II) sulfadiazine (1 mmol) in methanol (40 ml). The solution was heated and stirred for 3 h at 343 K and then the mixture was cooled to room temperature. The blue crystals were filtered off, washed with cold distilled water and acetone, and dried in vacuo. Analysis calculated: C 42.62, H 5.84, N 17.76%; found: C 43.08, H 5.72, N 18.25%.

Refinement top

One butyl group shows disorder and was modelled with two different orientations and site occupancies of 0.395 (8):0.605 (8). The H atoms of water molecules could not be located from a Fourier map. All other H atoms were placed in geometrically idealized positions with distances N—H = 0.86–0.90 Å, C—H = 0.93–0.97 Å, and were refined as riding atoms with Uiso(H) = 1.2Ueq(C,N) and Uiso(Hmethyl) = 1.5Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids. Only the major part of the disordered ba ligand is included. [Symmetry code: (i) -x + 1, y, -z + 1/2.]
[Figure 2] Fig. 2. A view of the complex showing the sheet structure parallel to the ab plane. The butyl groups, water molecules and some hydrogen bonds have been omitted for clarity. Other hydrogen bonds are shown as dashed lines. [Symmetry code: (i) -x + 1/2, y - 1/2, z.]
cis-bis[4-amino-N-(pyrimidin-2-yl)benzenesulfonamidato- κ2N,N']bis(butylamine-κN)copper(II) pentahydrate} top
Crystal data top
[Cu(C10H9N4O2S)2(C4H11N)2]·5H2OF(000) = 1594
Mr = 790.04Dx = 1.347 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2n 2abCell parameters from 30097 reflections
a = 22.623 (6) Åθ = 1.8–27.1°
b = 10.342 (5) ŵ = 0.74 mm1
c = 16.250 (6) ÅT = 296 K
V = 3802 (2) Å3Prism, blue
Z = 40.34 × 0.21 × 0.19 mm
Data collection top
Stoe IPDS2
diffractometer
4235 independent reflections
Radiation source: fine-focus sealed tube2098 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
rotation method scansθmax = 27.2°, θmin = 1.8°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 2828
Tmin = 0.821, Tmax = 0.900k = 1313
57960 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0787P)2]
where P = (Fo2 + 2Fc2)/3
4235 reflections(Δ/σ)max < 0.001
234 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Cu(C10H9N4O2S)2(C4H11N)2]·5H2OV = 3802 (2) Å3
Mr = 790.04Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 22.623 (6) ŵ = 0.74 mm1
b = 10.342 (5) ÅT = 296 K
c = 16.250 (6) Å0.34 × 0.21 × 0.19 mm
Data collection top
Stoe IPDS2
diffractometer
4235 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2098 reflections with I > 2σ(I)
Tmin = 0.821, Tmax = 0.900Rint = 0.085
57960 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 0.90Δρmax = 0.65 e Å3
4235 reflectionsΔρmin = 0.45 e Å3
234 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.33524 (14)0.7316 (3)0.45323 (19)0.0565 (8)
C20.29637 (16)0.8185 (4)0.4879 (2)0.0684 (9)
H20.31090.89290.51290.082*
C30.23634 (16)0.7970 (4)0.4860 (2)0.0752 (10)
H30.21080.85590.51070.090*
C40.21358 (15)0.6879 (4)0.4473 (2)0.0689 (9)
C50.25293 (17)0.6011 (4)0.4128 (2)0.0728 (10)
H50.23870.52710.38700.087*
C60.31255 (15)0.6227 (3)0.4160 (2)0.0664 (9)
H60.33820.56280.39270.080*
C70.41743 (13)0.8242 (3)0.3032 (2)0.0565 (8)
C80.36943 (17)0.9966 (4)0.2474 (3)0.0800 (11)
H80.34521.06860.25360.096*
C90.39032 (17)0.9691 (4)0.1702 (3)0.0847 (12)
H90.38021.01900.12470.102*
C100.42700 (16)0.8638 (4)0.1637 (2)0.0745 (10)
H100.44270.84260.11250.089*
C110.3906 (2)0.4981 (5)0.2216 (4)0.124 (2)
H11A0.37060.58010.21360.149*
H11B0.39250.48410.28060.149*
C120.3518 (2)0.4000 (5)0.1892 (4)0.1116 (17)
H12A0.37400.31990.18540.134*
H12B0.34090.42460.13370.134*
C13A0.2962 (4)0.3733 (8)0.2362 (5)0.088 (2)0.605 (8)
H13A0.27640.45490.24610.105*0.605 (8)
H13B0.30700.33760.28930.105*0.605 (8)
C13B0.2848 (5)0.4111 (13)0.1823 (9)0.088 (2)0.395 (8)
H13C0.27090.48510.21340.105*0.395 (8)
H13D0.27330.42230.12530.105*0.395 (8)
C14A0.2505 (12)0.277 (3)0.1934 (18)0.108 (4)0.605 (8)
H14A0.21690.26580.22860.162*0.605 (8)
H14B0.26920.19540.18410.162*0.605 (8)
H14C0.23800.31320.14180.162*0.605 (8)
C14B0.261 (2)0.299 (4)0.213 (3)0.108 (4)0.395 (8)
H14D0.21860.30430.21150.162*0.395 (8)
H14E0.27360.28790.26930.162*0.395 (8)
H14F0.27410.22700.18100.162*0.395 (8)
N10.43499 (11)0.7422 (3)0.36300 (16)0.0586 (7)
N20.38163 (12)0.9265 (3)0.31428 (17)0.0635 (7)
N30.44067 (12)0.7910 (3)0.22883 (16)0.0596 (7)
N40.44912 (14)0.5158 (3)0.1947 (2)0.0896 (10)
H4A0.44780.53560.14080.108*
H4B0.46770.43910.19900.108*
N50.15418 (15)0.6661 (4)0.4447 (2)0.1001 (11)
H5A0.14070.59760.42130.120*
H5B0.13020.72090.46640.120*
O10.42208 (10)0.8844 (2)0.48919 (14)0.0690 (6)
O20.43907 (10)0.6530 (2)0.49927 (15)0.0731 (7)
O30.02149 (14)0.6126 (3)0.4017 (2)0.1193 (11)
O40.00000.7493 (5)0.25000.151 (2)
O50.43200 (14)0.3833 (3)0.5011 (3)0.1410 (15)
S20.41156 (4)0.75774 (8)0.45398 (5)0.0588 (2)
Cu10.50000.64823 (6)0.25000.0647 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0482 (17)0.062 (2)0.0590 (17)0.0025 (16)0.0034 (15)0.0033 (16)
C20.056 (2)0.068 (2)0.081 (2)0.0050 (18)0.0009 (18)0.0092 (19)
C30.053 (2)0.080 (2)0.093 (3)0.0044 (19)0.0133 (19)0.005 (2)
C40.051 (2)0.078 (2)0.078 (2)0.0120 (19)0.0005 (17)0.007 (2)
C50.059 (2)0.077 (2)0.083 (2)0.013 (2)0.0008 (19)0.005 (2)
C60.054 (2)0.069 (2)0.076 (2)0.0018 (17)0.0045 (17)0.0079 (18)
C70.0426 (17)0.064 (2)0.063 (2)0.0072 (16)0.0046 (15)0.0020 (16)
C80.067 (2)0.084 (3)0.088 (3)0.012 (2)0.003 (2)0.020 (2)
C90.068 (2)0.105 (3)0.081 (3)0.004 (2)0.003 (2)0.028 (2)
C100.057 (2)0.100 (3)0.066 (2)0.001 (2)0.0069 (17)0.007 (2)
C110.089 (3)0.096 (3)0.187 (6)0.029 (3)0.050 (3)0.047 (4)
C120.080 (3)0.108 (4)0.146 (4)0.006 (3)0.002 (3)0.049 (3)
C13A0.079 (4)0.092 (5)0.092 (5)0.012 (4)0.002 (4)0.018 (4)
C13B0.079 (4)0.092 (5)0.092 (5)0.012 (4)0.002 (4)0.018 (4)
C14A0.081 (11)0.103 (9)0.140 (15)0.017 (6)0.014 (8)0.034 (8)
C14B0.081 (11)0.103 (9)0.140 (15)0.017 (6)0.014 (8)0.034 (8)
N10.0480 (15)0.0615 (16)0.0664 (16)0.0056 (13)0.0059 (12)0.0030 (14)
N20.0588 (17)0.0636 (17)0.0679 (17)0.0086 (14)0.0022 (14)0.0019 (15)
N30.0506 (16)0.0697 (17)0.0585 (16)0.0061 (14)0.0041 (12)0.0026 (14)
N40.070 (2)0.087 (2)0.112 (3)0.0022 (18)0.0034 (19)0.021 (2)
N50.0505 (18)0.110 (3)0.140 (3)0.0131 (19)0.004 (2)0.009 (2)
O10.0574 (14)0.0741 (15)0.0755 (14)0.0064 (12)0.0044 (12)0.0138 (12)
O20.0606 (15)0.0799 (16)0.0787 (15)0.0053 (13)0.0093 (12)0.0243 (13)
O30.079 (2)0.125 (3)0.155 (3)0.0017 (19)0.018 (2)0.008 (2)
O40.174 (6)0.091 (3)0.188 (6)0.0000.053 (4)0.000
O50.073 (2)0.096 (2)0.253 (5)0.0007 (18)0.015 (3)0.001 (3)
S20.0469 (4)0.0667 (5)0.0629 (5)0.0008 (4)0.0020 (4)0.0035 (4)
Cu10.0516 (3)0.0697 (4)0.0726 (4)0.0000.0051 (3)0.000
Geometric parameters (Å, º) top
C1—C61.377 (5)C12—C13B1.524 (13)
C1—C21.378 (5)C12—H12A0.970
C1—S21.748 (3)C12—H12B0.970
C2—C31.377 (5)C13A—C14A1.592 (16)
C2—H20.930C13A—H13A0.970
C3—C41.391 (5)C13A—H13B0.970
C3—H30.930C13B—C14B1.37 (5)
C4—N51.363 (5)C13B—H13C0.970
C4—C51.382 (5)C13B—H13D0.970
C5—C61.368 (5)C14A—H14A0.960
C5—H50.930C14A—H14B0.960
C6—H60.930C14A—H14C0.960
C7—N21.344 (4)C14B—H14D0.960
C7—N11.351 (4)C14B—H14E0.960
C7—N31.361 (4)C14B—H14F0.960
C8—N21.334 (5)N1—S21.579 (3)
C8—C91.371 (6)N3—Cu12.025 (3)
C8—H80.930N4—Cu12.002 (3)
C9—C101.373 (5)N4—H4A0.900
C9—H90.930N4—H4B0.900
C10—N31.336 (4)N5—H5A0.860
C10—H100.930N5—H5B0.860
C11—N41.407 (5)O1—S21.449 (2)
C11—C121.441 (6)O2—S21.450 (2)
C11—H11A0.970Cu1—N4i2.002 (3)
C11—H11B0.970Cu1—N3i2.025 (3)
C12—C13A1.496 (9)
C6—C1—C2118.4 (3)C12—C13A—H13B108.3
C6—C1—S2119.9 (3)C14A—C13A—H13B108.3
C2—C1—S2121.8 (3)H13A—C13A—H13B107.4
C3—C2—C1121.0 (3)C14B—C13B—C12107 (2)
C3—C2—H2119.5C14B—C13B—H13C110.2
C1—C2—H2119.5C12—C13B—H13C110.2
C2—C3—C4120.4 (4)C14B—C13B—H13D110.2
C2—C3—H3119.8C12—C13B—H13D110.2
C4—C3—H3119.8H13C—C13B—H13D108.5
N5—C4—C5121.0 (4)C13A—C14A—H14A109.5
N5—C4—C3120.8 (4)C13A—C14A—H14B109.5
C5—C4—C3118.1 (3)H14A—C14A—H14B109.5
C6—C5—C4120.9 (4)C13A—C14A—H14C109.5
C6—C5—H5119.6H14A—C14A—H14C109.5
C4—C5—H5119.6H14B—C14A—H14C109.5
C5—C6—C1121.2 (3)C13B—C14B—H14D109.5
C5—C6—H6119.4C13B—C14B—H14E109.5
C1—C6—H6119.4H14D—C14B—H14E109.5
N2—C7—N1125.1 (3)C13B—C14B—H14F109.5
N2—C7—N3123.4 (3)H14D—C14B—H14F109.5
N1—C7—N3111.5 (3)H14E—C14B—H14F109.5
N2—C8—C9124.2 (4)C7—N1—S2120.8 (2)
N2—C8—H8117.9C8—N2—C7116.2 (3)
C9—C8—H8117.9C10—N3—C7118.1 (3)
C8—C9—C10116.3 (4)C10—N3—Cu1134.4 (2)
C8—C9—H9121.8C7—N3—Cu1106.8 (2)
C10—C9—H9121.8C11—N4—Cu1119.4 (3)
N3—C10—C9121.7 (4)C11—N4—H4A107.5
N3—C10—H10119.1Cu1—N4—H4A107.5
C9—C10—H10119.1C11—N4—H4B107.5
N4—C11—C12123.4 (4)Cu1—N4—H4B107.5
N4—C11—H11A106.5H4A—N4—H4B107.0
C12—C11—H11A106.5C4—N5—H5A120.0
N4—C11—H11B106.5C4—N5—H5B120.0
C12—C11—H11B106.5H5A—N5—H5B120.0
H11A—C11—H11B106.5O1—S2—O2113.88 (15)
C11—C12—C13A117.0 (5)O1—S2—N1113.99 (15)
C11—C12—C13B125.3 (6)O2—S2—N1104.77 (15)
C11—C12—H12A108.0O1—S2—C1107.76 (15)
C13A—C12—H12A108.0O2—S2—C1108.16 (15)
C13B—C12—H12A125.1N1—S2—C1108.02 (15)
C11—C12—H12B108.0N4—Cu1—N4i93.7 (2)
C13A—C12—H12B108.0N4—Cu1—N3i162.98 (13)
C13B—C12—H12B70.1N4i—Cu1—N3i92.38 (13)
H12A—C12—H12B107.3N4—Cu1—N392.38 (13)
C12—C13A—C14A116.0 (14)N4i—Cu1—N3162.98 (13)
C12—C13A—H13A108.3N3i—Cu1—N386.36 (16)
C14A—C13A—H13A108.3
C6—C1—C2—C30.5 (5)C9—C10—N3—Cu1169.6 (3)
S2—C1—C2—C3179.3 (3)N2—C7—N3—C100.2 (5)
C1—C2—C3—C41.4 (6)N1—C7—N3—C10179.9 (3)
C2—C3—C4—N5179.6 (4)N2—C7—N3—Cu1171.8 (2)
C2—C3—C4—C51.4 (6)N1—C7—N3—Cu18.1 (3)
N5—C4—C5—C6179.5 (4)C12—C11—N4—Cu1176.0 (5)
C3—C4—C5—C60.5 (6)C7—N1—S2—O155.6 (3)
C4—C5—C6—C10.4 (6)C7—N1—S2—O2179.3 (2)
C2—C1—C6—C50.4 (5)C7—N1—S2—C164.1 (3)
S2—C1—C6—C5178.4 (3)C6—C1—S2—O1174.2 (3)
N2—C8—C9—C101.4 (6)C2—C1—S2—O14.6 (3)
C8—C9—C10—N31.1 (6)C6—C1—S2—O262.3 (3)
N4—C11—C12—C13A166.6 (7)C2—C1—S2—O2118.9 (3)
N4—C11—C12—C13B149.2 (9)C6—C1—S2—N150.6 (3)
C11—C12—C13A—C14A172.7 (14)C2—C1—S2—N1128.2 (3)
C13B—C12—C13A—C14A59.0 (16)C11—N4—Cu1—N4i108.9 (5)
C11—C12—C13B—C14B132 (2)C11—N4—Cu1—N3i140.5 (5)
C13A—C12—C13B—C14B42 (2)C11—N4—Cu1—N355.2 (4)
N2—C7—N1—S22.7 (4)C10—N3—Cu1—N479.3 (4)
N3—C7—N1—S2177.4 (2)C7—N3—Cu1—N4110.6 (2)
C9—C8—N2—C70.9 (6)C10—N3—Cu1—N4i169.9 (4)
N1—C7—N2—C8179.8 (3)C7—N3—Cu1—N4i0.1 (5)
N3—C7—N2—C80.1 (5)C10—N3—Cu1—N3i83.7 (3)
C9—C10—N3—C70.4 (5)C7—N3—Cu1—N3i86.4 (2)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···N2ii0.862.533.359 (5)162
N4—H4A···O5iii0.902.453.337 (6)171
N4—H4B···O4iv0.902.253.119 (6)161
N5—H5B···O5v0.862.263.113 (5)170
Symmetry codes: (ii) x+1/2, y1/2, z; (iii) x, y+1, z1/2; (iv) x+1/2, y1/2, z+1/2; (v) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Cu(C10H9N4O2S)2(C4H11N)2]·5H2O
Mr790.04
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)296
a, b, c (Å)22.623 (6), 10.342 (5), 16.250 (6)
V3)3802 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.34 × 0.21 × 0.19
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.821, 0.900
No. of measured, independent and
observed [I > 2σ(I)] reflections
57960, 4235, 2098
Rint0.085
(sin θ/λ)max1)0.644
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.141, 0.90
No. of reflections4235
No. of parameters234
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.45

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···N2i0.862.533.359 (5)161.7
N4—H4A···O5ii0.902.453.337 (6)170.5
N4—H4B···O4iii0.902.253.119 (6)161.4
N5—H5B···O5iv0.862.263.113 (5)169.6
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1, z1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z.
 

Acknowledgements

The authors thank the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS2 diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationChung, H. K., Hoon, S. K., Young, K. Y. & Il-Hwan, S. (1975). J. Korean Phys. Soc. 8, 37–48.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHeren, Z., Paşaoğlu, H. & Kaştaş, G. (2006). Acta Cryst. E62, o3437–o3439.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds