organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(4-Hy­droxy­benzyl­­idene)-4-meth­oxybenzohydrazide

aDepartment of Chemistry, Huainan Normal College, Huainan 232001, People's Republic of China
*Correspondence e-mail: huainanweiyijun@163.com

(Received 18 July 2008; accepted 26 July 2008; online 6 August 2008)

The title compound, C15H14N2O3, was prepared by the reaction of 4-hydroxy­benzaldehyde and 4-methoxy­benzohydrazide in methanol. The dihedral angle between the two benzene rings is 6.8 (1)°. The meth­oxy group is disordered over two orientations with occupancies of ca 0.63 and 0.37. In the major disorder component, the meth­oxy group is coplanar with the attached ring. In the crystal structure, the mol­ecules are linked into a three-dimensional framework by inter­molecular O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For the synthesis of Schiff bases, see: Akitsu & Einaga (2006[Akitsu, T. & Einaga, Y. (2006). Acta Cryst. E62, o4315-o4317.]); Butcher et al. (2005[Butcher, R. J., Basu Baul, T. S., Singh, K. S. & Smith, F. E. (2005). Acta Cryst. E61, o1007-o1009.]); Habibi et al. (2007[Habibi, M. H., Mokhtari, R., Harrington, R. W. & Clegg, W. (2007). Acta Cryst. E63, o2881.]); Pradeep (2005[Pradeep, C. P. (2005). Acta Cryst. E61, o3825-o3827.]). For related Schiff base compounds, see: Wang et al. (2006[Wang, F.-W., Wei, Y.-J. & Zhu, Q.-Y. (2006). Chin. J. Struct. Chem. 25, 1179-1182.]); Wei et al. (2006[Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2006). Chin. J. Struct. Chem. 25, 1090-1094.], 2008a[Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2008a). Acta Cryst. E64, m859-m860.],b[Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2008b). Transition Met. Chem. 33, 543-546.]); Wei & Wang (2006[Wei, Y.-J. & Wang, F.-W. (2006). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 36, 723-727.]); Zhu et al. (2007[Zhu, C.-G., Wei, Y.-J. & Wang, F.-W. (2007). Acta Cryst. E63, m3197-m3198.]). For related structures, see: Odabaşoğlu et al. (2007[Odabaşoğlu, M., Büyükgüngör, O., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o1916-o1918.]); Yathirajan et al. (2007[Yathirajan, H. S., Vijesh, A. M., Narayana, B., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o936-o938.]); Yehye et al. (2008[Yehye, W. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o1452.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O3

  • Mr = 270.28

  • Orthorhombic, P b c a

  • a = 12.342 (2) Å

  • b = 7.854 (2) Å

  • c = 27.889 (3) Å

  • V = 2703.4 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 (2) K

  • 0.23 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.979, Tmax = 0.981

  • 12214 measured reflections

  • 2308 independent reflections

  • 1591 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.135

  • S = 1.04

  • 2308 reflections

  • 201 parameters

  • 26 restraints

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.86 2.15 3.007 (3) 172
O1—H1⋯O2ii 0.82 1.88 2.696 (2) 170
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases are readily synthesized by the reaction of aldehydes with primary amines (Akitsu & Einaga, 2006; Pradeep, 2005; Butcher et al., 2005; Habibi et al., 2007). We have reported a few Schiff bases and their complexes (Wei et al., 2008a,b; Wei et al., 2006; Wei & Wang, 2006; Zhu et al., 2007; Wang et al., 2006). In this paper, we report the crystal structure of a new Schiff base compound.

Bond lengths and angles in the title compound (Fig. 1) are comparable with those observed in other Schiff bases (Yehye et al., 2008; Odabaşoğlu et al., 2007; Yathirajan et al., 2007). The dihedral angle between the C1–C6 and C9–C14 phenyl rings is 6.8 (1)°, indicating that they are nearly coplanar. In the major disorder component, the methoxy group is coplanar with the attached ring [C15—O3—C12—C11 = -2.6 (6)°].

The crystal structure is stabilized by intermolecular O—H···O and N—H···O hydrogen bonds (Table 1). These hydrogen bonds link the molecules into a three-dimensional framework (Fig. 2).

Related literature top

For the synthesis of Schiff bases, see: Akitsu & Einaga (2006); Butcher et al. (2005); Habibi et al. (2007); Pradeep (2005). For related Schiff base compounds, see: Wang et al. (2006); Wei et al. (2006, 2008a,b); Wei & Wang (2006); Zhu et al. (2007). For related structures, see: Odabaşoğlu et al. (2007); Yathirajan et al. (2007); Yehye et al. (2008).

Experimental top

4-Hydroxybenzaldehyde (1.0 mmol, 122.1 mg) and 4-methoxybenzohydrazide (1.0 mmol, 166.2 mg) were added to methanol (30 ml). The mixture was stirred at reflux for 10 min to give a clear colourless solution. After keeping the solution in air for 12 d, colourless needle-shaped crystals were formed.

Refinement top

H atoms were positioned geometrically (C–H = 0.93–0.96 Å, O–H = 0.82 Å, N–H = 0.86 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(O,Cmethyl). The methoxy group is disordered over two sites with occupancies of 0.630 (2) and 0.370 (2). The corresponding C—O distances in both disorder components were restrained to be equal. The displacement parameters of atoms O3, O3A, C15 and C15A were restrained to an approximate isotropic behaviour. The low resolution is caused by weak diffraction of the crystal.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compounnd, showing 30% probability displacement ellipsoids. Both disorder components are shown.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed approximately along the a axis. Hydrogen bonds are shown as dashed lines. Only the major disorder component is shown.
N'-(4-Hydroxybenzylidene)-4-methoxybenzohydrazide top
Crystal data top
C15H14N2O3F(000) = 1136
Mr = 270.28Dx = 1.328 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2798 reflections
a = 12.342 (2) Åθ = 2.4–24.1°
b = 7.854 (2) ŵ = 0.09 mm1
c = 27.889 (3) ÅT = 296 K
V = 2703.4 (9) Å3Cut from needle, colourless
Z = 80.23 × 0.20 × 0.20 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2308 independent reflections
Radiation source: fine-focus sealed tube1591 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 24.7°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1412
Tmin = 0.979, Tmax = 0.981k = 99
12214 measured reflectionsl = 3229
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0514P)2 + 1.0313P]
where P = (Fo2 + 2Fc2)/3
2308 reflections(Δ/σ)max = 0.001
201 parametersΔρmax = 0.24 e Å3
26 restraintsΔρmin = 0.24 e Å3
Crystal data top
C15H14N2O3V = 2703.4 (9) Å3
Mr = 270.28Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.342 (2) ŵ = 0.09 mm1
b = 7.854 (2) ÅT = 296 K
c = 27.889 (3) Å0.23 × 0.20 × 0.20 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2308 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1591 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.981Rint = 0.033
12214 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04926 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.04Δρmax = 0.24 e Å3
2308 reflectionsΔρmin = 0.24 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.91965 (15)0.0226 (3)0.86782 (6)0.0813 (6)
H10.97790.01150.87820.122*
O20.61634 (13)0.0498 (2)0.59539 (5)0.0645 (5)
N10.76203 (15)0.1620 (2)0.65728 (6)0.0591 (5)
N20.74642 (15)0.2399 (2)0.61337 (6)0.0599 (5)
H2A0.78480.32650.60510.072*
C10.86057 (18)0.1561 (3)0.73055 (8)0.0588 (6)
C20.7901 (2)0.0470 (3)0.75378 (8)0.0700 (7)
H20.72710.01230.73830.084*
C30.8111 (2)0.0109 (4)0.79911 (8)0.0752 (8)
H30.76230.08380.81410.090*
C40.90430 (19)0.0382 (3)0.82278 (8)0.0596 (6)
C50.9763 (2)0.1447 (3)0.80018 (8)0.0653 (6)
H51.04010.17680.81550.078*
C60.9535 (2)0.2038 (3)0.75471 (8)0.0701 (7)
H61.00200.27770.73990.084*
C70.8374 (2)0.2223 (3)0.68288 (8)0.0673 (7)
H70.87920.31130.67090.081*
C80.67021 (18)0.1775 (3)0.58398 (7)0.0546 (6)
C90.65325 (19)0.2623 (3)0.53725 (8)0.0605 (6)
C100.5570 (2)0.2357 (4)0.51343 (10)0.0882 (9)
H100.50310.16930.52740.106*
C110.5400 (3)0.3083 (4)0.46835 (11)0.1097 (12)
H110.47470.29010.45250.132*
C120.6183 (4)0.4056 (4)0.44727 (10)0.1047 (12)
C130.7138 (3)0.4305 (4)0.47006 (9)0.0938 (10)
H130.76780.49530.45560.113*
C140.7314 (2)0.3606 (3)0.51443 (8)0.0735 (7)
H140.79730.37950.52970.088*
O30.6249 (4)0.4882 (5)0.40185 (13)0.0866 (14)0.630 (7)
C150.5326 (4)0.4557 (6)0.37318 (19)0.0891 (18)0.630 (7)
H15A0.53970.51420.34310.134*0.630 (7)
H15B0.46890.49530.38950.134*0.630 (7)
H15C0.52660.33550.36750.134*0.630 (7)
O3A0.5470 (5)0.4517 (9)0.40930 (19)0.092 (2)0.370 (7)
C15A0.6242 (10)0.5249 (18)0.3782 (4)0.123 (5)0.370 (7)
H15D0.58890.56320.34950.185*0.370 (7)
H15E0.67810.44160.37020.185*0.370 (7)
H15F0.65820.61990.39380.185*0.370 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0866 (13)0.0986 (14)0.0586 (10)0.0037 (11)0.0139 (9)0.0213 (10)
O20.0700 (10)0.0642 (10)0.0593 (9)0.0056 (9)0.0002 (8)0.0010 (8)
N10.0716 (12)0.0616 (12)0.0440 (10)0.0018 (10)0.0069 (9)0.0074 (9)
N20.0738 (12)0.0587 (11)0.0472 (10)0.0070 (10)0.0092 (10)0.0078 (8)
C10.0698 (15)0.0560 (13)0.0507 (12)0.0037 (12)0.0085 (11)0.0039 (11)
C20.0712 (16)0.0746 (17)0.0641 (14)0.0120 (14)0.0162 (12)0.0100 (13)
C30.0751 (16)0.0836 (19)0.0668 (15)0.0157 (14)0.0104 (13)0.0229 (14)
C40.0702 (15)0.0594 (14)0.0491 (13)0.0066 (12)0.0070 (11)0.0040 (11)
C50.0717 (15)0.0651 (15)0.0591 (14)0.0069 (13)0.0155 (12)0.0025 (12)
C60.0786 (17)0.0702 (17)0.0615 (14)0.0191 (13)0.0114 (13)0.0109 (12)
C70.0794 (17)0.0673 (16)0.0553 (14)0.0134 (13)0.0090 (12)0.0096 (12)
C80.0612 (13)0.0529 (13)0.0498 (12)0.0038 (11)0.0007 (11)0.0037 (10)
C90.0812 (17)0.0507 (13)0.0495 (12)0.0051 (12)0.0145 (12)0.0050 (10)
C100.104 (2)0.0766 (19)0.0841 (19)0.0048 (16)0.0388 (17)0.0022 (15)
C110.142 (3)0.087 (2)0.099 (2)0.010 (2)0.075 (2)0.0072 (19)
C120.193 (4)0.0605 (18)0.0604 (18)0.013 (2)0.040 (2)0.0018 (14)
C130.155 (3)0.0744 (19)0.0519 (15)0.0010 (19)0.0118 (18)0.0050 (13)
C140.103 (2)0.0662 (16)0.0512 (13)0.0025 (15)0.0111 (13)0.0014 (12)
O30.105 (3)0.090 (3)0.064 (2)0.025 (2)0.024 (2)0.0248 (19)
C150.115 (4)0.090 (3)0.063 (3)0.003 (3)0.032 (3)0.010 (2)
O3A0.101 (5)0.116 (5)0.059 (4)0.009 (4)0.019 (3)0.019 (3)
C15A0.137 (8)0.137 (8)0.095 (7)0.006 (6)0.002 (7)0.043 (6)
Geometric parameters (Å, º) top
O1—C41.357 (2)C9—C101.377 (3)
O1—H10.82C9—C141.389 (3)
O2—C81.245 (3)C10—C111.396 (4)
N1—C71.265 (3)C10—H100.93
N1—N21.382 (2)C11—C121.365 (5)
N2—C81.340 (3)C11—H110.93
N2—H2A0.86C12—C131.354 (5)
C1—C61.382 (3)C12—O3A1.424 (6)
C1—C21.382 (3)C12—O31.426 (4)
C1—C71.456 (3)C13—C141.371 (3)
C2—C31.368 (3)C13—H130.93
C2—H20.93C14—H140.93
C3—C41.381 (3)O3—C151.415 (5)
C3—H30.93C15—H15A0.96
C4—C51.373 (3)C15—H15B0.96
C5—C61.379 (3)C15—H15C0.96
C5—H50.93O3A—C15A1.412 (8)
C6—H60.93C15A—H15D0.96
C7—H70.93C15A—H15E0.96
C8—C91.479 (3)C15A—H15F0.96
C4—O1—H1109.5C9—C10—C11120.1 (3)
C7—N1—N2115.9 (2)C9—C10—H10120.0
C8—N2—N1118.51 (19)C11—C10—H10120.0
C8—N2—H2A120.7C12—C11—C10120.7 (3)
N1—N2—H2A120.7C12—C11—H11119.6
C6—C1—C2117.5 (2)C10—C11—H11119.6
C6—C1—C7120.7 (2)C13—C12—C11119.7 (3)
C2—C1—C7121.7 (2)C13—C12—O3A148.3 (4)
C3—C2—C1121.3 (2)C11—C12—O3A91.4 (4)
C3—C2—H2119.3C13—C12—O3107.6 (3)
C1—C2—H2119.3C11—C12—O3132.7 (3)
C2—C3—C4120.5 (2)C12—C13—C14120.2 (3)
C2—C3—H3119.8C12—C13—H13119.9
C4—C3—H3119.8C14—C13—H13119.9
O1—C4—C5123.3 (2)C13—C14—C9121.8 (3)
O1—C4—C3117.4 (2)C13—C14—H14119.1
C5—C4—C3119.3 (2)C9—C14—H14119.1
C4—C5—C6119.7 (2)C15—O3—C12111.9 (4)
C4—C5—H5120.2O3—C15—H15A109.5
C6—C5—H5120.2O3—C15—H15B109.5
C5—C6—C1121.7 (2)H15A—C15—H15B109.5
C5—C6—H6119.1O3—C15—H15C109.5
C1—C6—H6119.1H15A—C15—H15C109.5
N1—C7—C1121.7 (2)H15B—C15—H15C109.5
N1—C7—H7119.1C15A—O3A—C1298.2 (8)
C1—C7—H7119.1O3A—C15A—H15D109.5
O2—C8—N2120.9 (2)O3A—C15A—H15E109.5
O2—C8—C9120.8 (2)H15D—C15A—H15E109.5
N2—C8—C9118.3 (2)O3A—C15A—H15F109.5
C10—C9—C14117.5 (2)H15D—C15A—H15F109.5
C10—C9—C8118.6 (2)H15E—C15A—H15F109.5
C14—C9—C8123.8 (2)
C7—N1—N2—C8177.7 (2)N2—C8—C9—C1423.2 (3)
C6—C1—C2—C30.4 (4)C14—C9—C10—C110.9 (4)
C7—C1—C2—C3178.2 (2)C8—C9—C10—C11177.4 (2)
C1—C2—C3—C40.3 (4)C9—C10—C11—C120.2 (5)
C2—C3—C4—O1179.4 (2)C10—C11—C12—C130.8 (5)
C2—C3—C4—C50.6 (4)C10—C11—C12—O3A173.0 (4)
O1—C4—C5—C6178.6 (2)C10—C11—C12—O3177.2 (4)
C3—C4—C5—C61.4 (4)C11—C12—C13—C141.0 (5)
C4—C5—C6—C11.3 (4)O3A—C12—C13—C14167.1 (6)
C2—C1—C6—C50.4 (4)O3—C12—C13—C14178.3 (3)
C7—C1—C6—C5179.0 (2)C12—C13—C14—C90.3 (4)
N2—N1—C7—C1178.0 (2)C10—C9—C14—C130.6 (4)
C6—C1—C7—N1169.3 (2)C8—C9—C14—C13176.9 (2)
C2—C1—C7—N112.1 (4)C13—C12—O3—C15174.2 (4)
N1—N2—C8—O21.7 (3)C11—C12—O3—C152.5 (7)
N1—N2—C8—C9179.47 (18)O3A—C12—O3—C1517.1 (5)
O2—C8—C9—C1020.6 (3)C13—C12—O3A—C15A22.4 (11)
N2—C8—C9—C10160.5 (2)C11—C12—O3A—C15A167.9 (7)
O2—C8—C9—C14155.7 (2)O3—C12—O3A—C15A1.4 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.153.007 (3)172
O1—H1···O2ii0.821.882.696 (2)170
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+1/2, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC15H14N2O3
Mr270.28
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)12.342 (2), 7.854 (2), 27.889 (3)
V3)2703.4 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.23 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.979, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
12214, 2308, 1591
Rint0.033
(sin θ/λ)max1)0.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.135, 1.04
No. of reflections2308
No. of parameters201
No. of restraints26
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.24

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.153.007 (3)172
O1—H1···O2ii0.821.882.696 (2)170
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+1/2, y, z+3/2.
 

Acknowledgements

The authors thank the Natural Science Foundation, Education Office of Anhui Province, People's Republic of China, for research grant No. KJ2007A126ZC.

References

First citationAkitsu, T. & Einaga, Y. (2006). Acta Cryst. E62, o4315–o4317.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. J., Basu Baul, T. S., Singh, K. S. & Smith, F. E. (2005). Acta Cryst. E61, o1007–o1009.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHabibi, M. H., Mokhtari, R., Harrington, R. W. & Clegg, W. (2007). Acta Cryst. E63, o2881.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOdabaşoğlu, M., Büyükgüngör, O., Narayana, B., Vijesh, A. M. & Yathirajan, H. S. (2007). Acta Cryst. E63, o1916–o1918.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPradeep, C. P. (2005). Acta Cryst. E61, o3825–o3827.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, F.-W., Wei, Y.-J. & Zhu, Q.-Y. (2006). Chin. J. Struct. Chem. 25, 1179–1182.  CAS Google Scholar
First citationWei, Y.-J. & Wang, F.-W. (2006). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 36, 723–727.  Web of Science CSD CrossRef CAS Google Scholar
First citationWei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2006). Chin. J. Struct. Chem. 25, 1090–1094.  CAS Google Scholar
First citationWei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2008a). Acta Cryst. E64, m859–m860.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2008b). Transition Met. Chem. 33, 543–546.  Web of Science CSD CrossRef CAS Google Scholar
First citationYathirajan, H. S., Vijesh, A. M., Narayana, B., Sarojini, B. K. & Bolte, M. (2007). Acta Cryst. E63, o936–o938.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYehye, W. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o1452.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, C.-G., Wei, Y.-J. & Wang, F.-W. (2007). Acta Cryst. E63, m3197–m3198.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds