organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N′-(2-hy­droxy­benzyl­­idene)benzohydrazide monohydrate

aSchool of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong 723000, People's Republic of China
*Correspondence e-mail: jiufulu@163.com

(Received 28 July 2008; accepted 31 July 2008; online 6 August 2008)

The asymmetric unit of the title compound, C14H11ClN2O2·H2O, contains a Schiff base mol­ecule and a water mol­ecule of crystallization. The dihedral angle between the two aromatic rings is 27.3 (4)°. In the crystal structure, mol­ecules are linked into a two-dimensional network parallel to the bc plane by inter­molecular O—H⋯O and N—H⋯O hydrogen bonds involving the water mol­ecules.

Related literature

For general background on Schiff bases derived from condensation of aldehydes with benzohydrazides, see: Fun et al. (2008[Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594-o1595.]); Alhadi et al. (2008[Alhadi, A. A., Ali, H. M., Puvaneswary, S., Robinson, W. T. & Ng, S. W. (2008). Acta Cryst. E64, o1584.]); Ali et al. (2007[Ali, H. M., Zuraini, K., Wan Jefrey, B. & Ng, S. W. (2007). Acta Cryst. E63, o1729-o1730.]); Zou et al. (2004[Zou, W., Yu, H. & Meng, J. (2004). Acta Cryst. E60, o671-o673.]); Shan et al. (2008[Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1363.]); Bedia et al. (2006[Bedia, K.-K., Elcin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261.]); Terzioglu & Gürsoy (2003[Terzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem. 38, 781-786.]). For related structures, see: Nie (2008[Nie, Y. (2008). Acta Cryst. E64, o471.]); He (2008[He, L. (2008). Acta Cryst. E64, o82.]); Shi et al. (2007[Shi, X.-F., Liu, C.-Y., Liu, B. & Yuan, C.-C. (2007). Acta Cryst. E63, o1295-o1296.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11ClN2O2·H2O

  • Mr = 292.71

  • Monoclinic, P 21 /c

  • a = 22.397 (3) Å

  • b = 4.853 (2) Å

  • c = 12.642 (3) Å

  • β = 97.15 (3)°

  • V = 1363.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 298 (2) K

  • 0.23 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.937, Tmax = 0.945

  • 10537 measured reflections

  • 2946 independent reflections

  • 1251 reflections with I > 2σ(I)

  • Rint = 0.106

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.214

  • S = 0.99

  • 2946 reflections

  • 191 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2 0.84 (3) 1.97 (3) 2.800 (4) 170 (5)
O3—H3B⋯O2i 0.85 (3) 2.07 (3) 2.828 (4) 149 (5)
N2—H2⋯O3ii 0.90 (1) 1.96 (1) 2.856 (4) 172 (5)
O1—H1⋯N1 0.82 1.96 2.667 (5) 143
Symmetry codes: (i) x, y-1, z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases derived from the condensation of aldehydes with benzohydrazides have been widely investigated, either for their structures (Fun et al., 2008; Alhadi et al., 2008; Ali et al., 2007; Zou et al., 2004; Shan et al., 2008) or for their biological properties (Bedia et al., 2006; Terzioglu & Gürsoy, 2003). This study extends the structural study on such compounds.

The asymmetric unit of the title compound consists of a Schiff base molecule and a water molecule of crystallization (Fig. 1). The bond lengths are within normal values (Allen et al., 1987), and comparable to the values observed in related compounds (Nie, 2008; He, 2008; Shi et al., 2007). The dihedral angle between the two aromatic rings in the Schiff base molecule is 27.3 (4)°. An intramolecular O—H···N hydrogen bond is observed.

In the crystal structure, the molecules are linked into a two-dimensional network parallel to the bc plane by intermolecular O–H···O and N–H···O hydrogen bonds (Table 1) involving the water molecules (Fig. 2).

Related literature top

For general background on Schiff bases derived from condensation of aldehydes with benzohydrazides, see: Fun et al. (2008); Alhadi et al. (2008); Ali et al. (2007); Zou et al. (2004); Shan et al. (2008); Bedia et al. (2006); Terzioglu & Gürsoy (2003). For related structures, see: Nie (2008); He (2008); Shi et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the Schiff base condensation of salicylaldehyde (0.1 mol) and 4-chlorobenzohydrazide (0.1 mmol) in ethanol (50 ml). The excess ethanol was removed by distillation. The colourless solid formed was filtered and washed with ethanol. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement top

The imino and water H atoms were located in a difference map and refined with N–H, O–H and H···H distances restrained to 0.90 (1), 0.85 (1), and 1.37 (2)Å, respectively. The other H atoms were positioned geometrically [C–H = 0.93 Å and O–H = 0.82Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O1).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines.
4-Chloro-N'-(2-hydroxybenzylidene)benzohydrazide monohydrate top
Crystal data top
C14H11ClN2O2·H2OF(000) = 608
Mr = 292.71Dx = 1.426 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 600 reflections
a = 22.397 (3) Åθ = 2.6–24.5°
b = 4.853 (2) ŵ = 0.29 mm1
c = 12.642 (3) ÅT = 298 K
β = 97.15 (3)°Block, colourless
V = 1363.4 (7) Å30.23 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2946 independent reflections
Radiation source: fine-focus sealed tube1251 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.106
ω scansθmax = 27.0°, θmin = 0.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 2828
Tmin = 0.937, Tmax = 0.945k = 66
10537 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.214H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0902P)2]
where P = (Fo2 + 2Fc2)/3
2946 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.27 e Å3
4 restraintsΔρmin = 0.27 e Å3
Crystal data top
C14H11ClN2O2·H2OV = 1363.4 (7) Å3
Mr = 292.71Z = 4
Monoclinic, P21/cMo Kα radiation
a = 22.397 (3) ŵ = 0.29 mm1
b = 4.853 (2) ÅT = 298 K
c = 12.642 (3) Å0.23 × 0.20 × 0.20 mm
β = 97.15 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2946 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1251 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.945Rint = 0.106
10537 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0684 restraints
wR(F2) = 0.214H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.27 e Å3
2946 reflectionsΔρmin = 0.27 e Å3
191 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.02717 (6)1.4002 (3)0.66329 (12)0.0731 (5)
N20.24096 (15)0.4463 (8)0.6210 (3)0.0392 (9)
C80.21035 (19)0.5999 (9)0.5457 (3)0.0412 (11)
N10.28603 (15)0.2706 (7)0.5952 (3)0.0420 (10)
O20.21956 (14)0.5852 (6)0.4508 (2)0.0538 (9)
C90.16460 (18)0.7918 (8)0.5783 (3)0.0365 (10)
C140.16219 (18)0.8667 (9)0.6822 (3)0.0426 (12)
H140.18930.78950.73590.051*
C10.35917 (19)0.0643 (9)0.6600 (3)0.0415 (11)
C70.31165 (18)0.1242 (9)0.6720 (3)0.0428 (12)
H70.29870.14160.73880.051*
O10.36902 (17)0.0745 (9)0.4810 (3)0.0779 (12)
H10.34470.18970.49630.117*
C110.0808 (2)1.0889 (10)0.5252 (4)0.0537 (13)
H110.05311.16310.47200.064*
C120.07965 (19)1.1639 (9)0.6292 (4)0.0457 (12)
C130.1200 (2)1.0561 (10)0.7088 (4)0.0512 (13)
H130.11911.10860.77930.061*
C20.3871 (2)0.0802 (11)0.5669 (4)0.0536 (13)
C100.12292 (19)0.9047 (10)0.4998 (3)0.0466 (12)
H100.12360.85430.42900.056*
C60.3802 (2)0.2325 (10)0.7435 (4)0.0577 (14)
H60.36240.22360.80600.069*
C40.4539 (2)0.4315 (13)0.6486 (5)0.0726 (17)
H40.48510.55580.64430.087*
C50.4271 (2)0.4144 (11)0.7380 (5)0.0656 (15)
H50.44020.52550.79620.079*
C30.4344 (2)0.2616 (12)0.5632 (5)0.0739 (17)
H30.45360.26970.50210.089*
O30.23525 (17)0.0885 (7)0.3450 (2)0.0568 (9)
H20.236 (2)0.445 (11)0.6905 (12)0.080*
H3B0.245 (2)0.049 (5)0.385 (3)0.080*
H3A0.235 (2)0.234 (5)0.381 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0598 (8)0.0587 (9)0.1059 (12)0.0176 (7)0.0301 (8)0.0051 (9)
N20.042 (2)0.044 (2)0.0329 (19)0.0072 (18)0.0065 (17)0.002 (2)
C80.044 (3)0.040 (3)0.039 (3)0.000 (2)0.003 (2)0.004 (2)
N10.041 (2)0.042 (2)0.044 (2)0.0057 (19)0.0121 (18)0.006 (2)
O20.078 (2)0.050 (2)0.0345 (18)0.0109 (18)0.0142 (16)0.0034 (16)
C90.038 (2)0.030 (3)0.041 (3)0.002 (2)0.005 (2)0.003 (2)
C140.045 (3)0.046 (3)0.035 (3)0.005 (2)0.001 (2)0.004 (2)
C10.037 (2)0.038 (3)0.049 (3)0.001 (2)0.003 (2)0.007 (2)
C70.044 (3)0.052 (3)0.033 (2)0.005 (2)0.005 (2)0.001 (2)
O10.084 (3)0.098 (3)0.054 (2)0.030 (2)0.0195 (19)0.002 (2)
C110.050 (3)0.058 (3)0.053 (3)0.001 (3)0.001 (2)0.005 (3)
C120.040 (2)0.033 (3)0.065 (3)0.004 (2)0.010 (2)0.007 (2)
C130.053 (3)0.051 (3)0.050 (3)0.006 (3)0.010 (2)0.001 (3)
C20.051 (3)0.061 (4)0.048 (3)0.009 (3)0.004 (2)0.005 (3)
C100.044 (3)0.054 (3)0.041 (3)0.007 (3)0.003 (2)0.004 (3)
C60.050 (3)0.055 (3)0.066 (3)0.003 (3)0.002 (3)0.005 (3)
C40.051 (3)0.068 (4)0.096 (5)0.019 (3)0.001 (3)0.024 (4)
C50.063 (4)0.050 (4)0.077 (4)0.001 (3)0.019 (3)0.002 (3)
C30.064 (4)0.078 (4)0.083 (4)0.017 (3)0.020 (3)0.025 (4)
O30.091 (2)0.047 (2)0.0328 (17)0.007 (2)0.0107 (17)0.0014 (17)
Geometric parameters (Å, º) top
Cl1—C121.735 (4)C11—C101.366 (6)
N2—C81.330 (5)C11—C121.367 (6)
N2—N11.391 (5)C11—H110.93
N2—H20.899 (10)C12—C131.370 (6)
C8—O21.245 (5)C13—H130.93
C8—C91.481 (6)C2—C31.384 (7)
N1—C71.280 (5)C10—H100.93
C9—C141.370 (6)C6—C51.380 (7)
C9—C101.388 (6)C6—H60.93
C14—C131.390 (6)C4—C51.346 (7)
C14—H140.93C4—C31.386 (7)
C1—C61.371 (6)C4—H40.93
C1—C21.401 (6)C5—H50.93
C1—C71.426 (6)C3—H30.93
C7—H70.93O3—H3B0.85 (3)
O1—C21.340 (5)O3—H3A0.84 (3)
O1—H10.82
C8—N2—N1120.0 (3)C11—C12—Cl1120.7 (4)
C8—N2—H2126 (3)C13—C12—Cl1118.3 (4)
N1—N2—H2114 (3)C12—C13—C14118.8 (4)
O2—C8—N2121.7 (4)C12—C13—H13120.6
O2—C8—C9120.5 (4)C14—C13—H13120.6
N2—C8—C9117.8 (4)O1—C2—C3119.0 (5)
C7—N1—N2115.6 (3)O1—C2—C1121.9 (4)
C14—C9—C10118.5 (4)C3—C2—C1119.1 (5)
C14—C9—C8123.0 (4)C11—C10—C9120.8 (4)
C10—C9—C8118.4 (4)C11—C10—H10119.6
C9—C14—C13121.1 (4)C9—C10—H10119.6
C9—C14—H14119.5C1—C6—C5122.2 (5)
C13—C14—H14119.5C1—C6—H6118.9
C6—C1—C2117.9 (4)C5—C6—H6118.9
C6—C1—C7119.3 (4)C5—C4—C3119.1 (5)
C2—C1—C7122.8 (4)C5—C4—H4120.4
N1—C7—C1123.0 (4)C3—C4—H4120.4
N1—C7—H7118.5C4—C5—C6120.3 (5)
C1—C7—H7118.5C4—C5—H5119.9
C2—O1—H1109.5C6—C5—H5119.9
C10—C11—C12119.8 (4)C2—C3—C4121.4 (5)
C10—C11—H11120.1C2—C3—H3119.3
C12—C11—H11120.1C4—C3—H3119.3
C11—C12—C13121.0 (4)H3B—O3—H3A111 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.84 (3)1.97 (3)2.800 (4)170 (5)
O3—H3B···O2i0.85 (3)2.07 (3)2.828 (4)149 (5)
N2—H2···O3ii0.90 (1)1.96 (1)2.856 (4)172 (5)
O1—H1···N10.821.962.667 (5)143
Symmetry codes: (i) x, y1, z; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H11ClN2O2·H2O
Mr292.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)22.397 (3), 4.853 (2), 12.642 (3)
β (°) 97.15 (3)
V3)1363.4 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.23 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.937, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
10537, 2946, 1251
Rint0.106
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.214, 0.99
No. of reflections2946
No. of parameters191
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.27

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.84 (3)1.97 (3)2.800 (4)170 (5)
O3—H3B···O2i0.85 (3)2.07 (3)2.828 (4)149 (5)
N2—H2···O3ii0.90 (1)1.96 (1)2.856 (4)172 (5)
O1—H1···N10.821.962.667 (5)143
Symmetry codes: (i) x, y1, z; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge Shaanxi University of Technology for the research fund.

References

First citationAlhadi, A. A., Ali, H. M., Puvaneswary, S., Robinson, W. T. & Ng, S. W. (2008). Acta Cryst. E64, o1584.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAli, H. M., Zuraini, K., Wan Jefrey, B. & Ng, S. W. (2007). Acta Cryst. E63, o1729–o1730.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBedia, K.-K., Elcin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594–o1595.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, L. (2008). Acta Cryst. E64, o82.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNie, Y. (2008). Acta Cryst. E64, o471.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1363.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, X.-F., Liu, C.-Y., Liu, B. & Yuan, C.-C. (2007). Acta Cryst. E63, o1295–o1296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTerzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem. 38, 781–786.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZou, W., Yu, H. & Meng, J. (2004). Acta Cryst. E60, o671–o673.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds