organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Meth­­oxy-N′-(2-meth­oxy­benzyl­­idene)benzohydrazide

aSchool of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong 723000, People's Republic of China
*Correspondence e-mail: jiufulu@163.com

(Received 28 July 2008; accepted 31 July 2008; online 6 August 2008)

The title Schiff base compound, C16H16N2O3, was derived from the condensation of 2-methoxy­benzaldehyde with 2-methoxy­benzohydrazide in an ethanol solution. The dihedral angle between the two aromatic rings is 87.5 (3)°. In the crystal structure, the mol­ecules are linked into chains running parallel to the a axis by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Lu et al. (2008a[Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008a). Acta Cryst. E64, o1693.],b[Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008b). Acta Cryst. E64, o1694.]); Nie (2008[Nie, Y. (2008). Acta Cryst. E64, o471.]); He (2008[He, L. (2008). Acta Cryst. E64, o82.]); Shi et al. (2007[Shi, X.-F., Liu, C.-Y., Liu, B. & Yuan, C.-C. (2007). Acta Cryst. E63, o1295-o1296.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O3

  • Mr = 284.31

  • Monoclinic, P 21

  • a = 4.9998 (13) Å

  • b = 13.475 (4) Å

  • c = 10.824 (3) Å

  • β = 93.674 (4)°

  • V = 727.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 (2) K

  • 0.30 × 0.30 × 0.28 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.973, Tmax = 0.975

  • 6081 measured reflections

  • 1647 independent reflections

  • 1229 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.095

  • S = 1.11

  • 1647 reflections

  • 195 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.90 (1) 1.99 (1) 2.873 (3) 167 (4)
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our investigation of the crystal structures of Schiff bases derived from the condensation of aldehydes with benzohydrazides (Lu et al., 2008a,b), we report here the crystal structure of the title new Schiff base compound.

In the title molecule (Fig. 1). the bond lengths have normal values (Allen et al., 1987), and are comparable to those observed in related compounds (Nie, 2008; He, 2008; Shi et al., 2007). The dihedral angle between the two aromatic rings is 87.5 (3)°, indicating that they are almost perpendicular to one another.

In the crystal structure, the molecules are linked into chains (Fig. 2) running parallel to the a axis by intermolecular N–H···O hydrogen bonds (Table 1).

Related literature top

For related literature, see: Lu et al. (2008a,b); Nie (2008); He (2008); Shi et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the Schiff base condensation of 2-methoxybenzaldehyde (0.1 mol) and 2-methoxybenzohydrazide (0.1 mmol) in ethanol (50 ml). The excess ethanol was removed by distillation. The colorless solid obtained was filtered and washed with ethanol. Single crystals suitable for X-ray diffraction were obatined by slow evaporation of an ethanol solution at room temperature.

Refinement top

The imino H atom was located in a difference map and refined with a N–H distance restraint of 0.90 (1) Å. The other H atoms were positioned geometrically (C–H = 0.93-0.96 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl). In the absence of significant anomalous scattering, Friedel pairs were merged.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. Dashed lines indicate hydrogen bonds.
2-Methoxy-N'-(2-methoxybenzylidene)benzohydrazide top
Crystal data top
C16H16N2O3F(000) = 300
Mr = 284.31Dx = 1.297 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 744 reflections
a = 4.9998 (13) Åθ = 2.5–24.0°
b = 13.475 (4) ŵ = 0.09 mm1
c = 10.824 (3) ÅT = 298 K
β = 93.674 (4)°Block, colourless
V = 727.7 (4) Å30.30 × 0.30 × 0.28 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1647 independent reflections
Radiation source: fine-focus sealed tube1229 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 66
Tmin = 0.973, Tmax = 0.975k = 1716
6081 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0297P)2]
where P = (Fo2 + 2Fc2)/3
1647 reflections(Δ/σ)max = 0.001
195 parametersΔρmax = 0.16 e Å3
2 restraintsΔρmin = 0.14 e Å3
Crystal data top
C16H16N2O3V = 727.7 (4) Å3
Mr = 284.31Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.9998 (13) ŵ = 0.09 mm1
b = 13.475 (4) ÅT = 298 K
c = 10.824 (3) Å0.30 × 0.30 × 0.28 mm
β = 93.674 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1647 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1229 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.975Rint = 0.055
6081 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0502 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.16 e Å3
1647 reflectionsΔρmin = 0.14 e Å3
195 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4130 (5)0.5063 (2)1.0258 (2)0.0579 (8)
O21.2673 (4)0.71624 (19)0.6930 (2)0.0436 (6)
O30.6361 (5)0.7245 (2)0.4683 (2)0.0513 (6)
N10.8931 (5)0.5916 (2)0.7771 (2)0.0357 (7)
N20.8339 (5)0.67811 (19)0.7116 (3)0.0354 (7)
C10.7337 (7)0.4561 (2)0.8904 (3)0.0371 (9)
C20.5766 (7)0.4321 (3)0.9892 (3)0.0426 (9)
C30.6008 (7)0.3398 (3)1.0439 (3)0.0501 (10)
H30.49530.32331.10860.060*
C40.7794 (8)0.2725 (3)1.0032 (4)0.0549 (11)
H40.79280.21021.04000.066*
C50.9407 (8)0.2954 (3)0.9081 (4)0.0537 (10)
H51.06450.24980.88180.064*
C60.9142 (7)0.3876 (3)0.8529 (3)0.0455 (9)
H61.02160.40360.78870.055*
C70.6996 (7)0.5520 (2)0.8295 (3)0.0377 (8)
H70.53530.58440.82910.045*
C81.0305 (6)0.7328 (2)0.6674 (3)0.0296 (7)
C90.9390 (6)0.8198 (2)0.5913 (3)0.0343 (8)
C100.7391 (6)0.8162 (3)0.4959 (3)0.0358 (8)
C110.6635 (7)0.9012 (3)0.4321 (3)0.0518 (10)
H110.52570.89900.37030.062*
C120.7913 (8)0.9890 (3)0.4597 (4)0.0606 (12)
H120.73841.04620.41680.073*
C130.9946 (8)0.9936 (3)0.5493 (4)0.0617 (12)
H131.08351.05330.56590.074*
C141.0677 (7)0.9096 (3)0.6151 (4)0.0478 (10)
H141.20590.91310.67670.057*
C150.2563 (8)0.4878 (4)1.1267 (4)0.0653 (12)
H15A0.14950.42951.11050.098*
H15B0.14100.54351.13850.098*
H15C0.37140.47781.20010.098*
C160.4372 (8)0.7167 (4)0.3692 (3)0.0712 (12)
H16A0.28210.75420.38850.107*
H16B0.38840.64830.35730.107*
H16C0.50660.74220.29490.107*
H20.662 (3)0.696 (3)0.696 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0577 (16)0.0581 (19)0.0601 (19)0.0064 (15)0.0196 (15)0.0132 (15)
O20.0265 (12)0.0451 (14)0.0586 (14)0.0050 (12)0.0024 (10)0.0062 (13)
O30.0604 (15)0.0471 (15)0.0439 (13)0.0052 (14)0.0149 (11)0.0053 (14)
N10.0391 (16)0.0318 (15)0.0356 (15)0.0028 (13)0.0030 (13)0.0079 (13)
N20.0271 (14)0.0357 (16)0.0428 (16)0.0036 (13)0.0018 (13)0.0124 (13)
C10.037 (2)0.038 (2)0.0354 (19)0.0036 (16)0.0070 (16)0.0053 (16)
C20.041 (2)0.046 (2)0.040 (2)0.0060 (18)0.0050 (18)0.0062 (18)
C30.054 (2)0.051 (3)0.045 (2)0.011 (2)0.0020 (18)0.0176 (19)
C40.069 (3)0.035 (2)0.058 (3)0.000 (2)0.016 (2)0.018 (2)
C50.061 (3)0.043 (2)0.056 (3)0.0023 (19)0.001 (2)0.001 (2)
C60.049 (2)0.042 (2)0.045 (2)0.0021 (19)0.0002 (18)0.0085 (18)
C70.0336 (18)0.043 (2)0.0357 (19)0.0002 (16)0.0008 (16)0.0078 (16)
C80.0279 (17)0.0279 (18)0.0332 (16)0.0013 (15)0.0026 (13)0.0029 (15)
C90.0317 (17)0.0346 (19)0.0377 (18)0.0046 (15)0.0098 (14)0.0017 (16)
C100.0368 (19)0.0353 (19)0.0357 (19)0.0037 (16)0.0051 (15)0.0015 (17)
C110.055 (2)0.056 (3)0.044 (2)0.008 (2)0.001 (2)0.013 (2)
C120.065 (3)0.046 (3)0.071 (3)0.007 (2)0.009 (2)0.027 (2)
C130.072 (3)0.039 (2)0.076 (3)0.010 (2)0.014 (3)0.008 (2)
C140.048 (2)0.037 (2)0.058 (2)0.0087 (19)0.0060 (19)0.003 (2)
C150.060 (3)0.083 (3)0.054 (3)0.002 (3)0.012 (2)0.009 (2)
C160.077 (3)0.078 (3)0.055 (2)0.014 (3)0.023 (2)0.009 (3)
Geometric parameters (Å, º) top
O1—C21.367 (4)C6—H60.93
O1—C151.407 (4)C7—H70.93
O2—C81.220 (3)C8—C91.488 (4)
O3—C101.364 (4)C9—C141.387 (5)
O3—C161.419 (4)C9—C101.391 (4)
N1—C71.270 (4)C10—C111.378 (5)
N1—N21.387 (3)C11—C121.368 (5)
N2—C81.341 (4)C11—H110.93
N2—H20.901 (10)C12—C131.360 (5)
C1—C61.370 (5)C12—H120.93
C1—C21.405 (5)C13—C141.375 (5)
C1—C71.456 (4)C13—H130.93
C2—C31.380 (5)C14—H140.93
C3—C41.365 (5)C15—H15A0.96
C3—H30.93C15—H15B0.96
C4—C51.383 (5)C15—H15C0.96
C4—H40.93C16—H16A0.96
C5—C61.381 (5)C16—H16B0.96
C5—H50.93C16—H16C0.96
C2—O1—C15118.0 (3)C14—C9—C10118.1 (3)
C10—O3—C16118.0 (3)C14—C9—C8117.5 (3)
C7—N1—N2115.9 (3)C10—C9—C8124.3 (3)
C8—N2—N1120.5 (2)O3—C10—C11123.8 (3)
C8—N2—H2120 (3)O3—C10—C9115.9 (3)
N1—N2—H2120 (3)C11—C10—C9120.3 (3)
C6—C1—C2118.8 (3)C12—C11—C10120.0 (4)
C6—C1—C7121.6 (3)C12—C11—H11120.0
C2—C1—C7119.6 (3)C10—C11—H11120.0
O1—C2—C3125.0 (3)C13—C12—C11120.8 (4)
O1—C2—C1115.3 (3)C13—C12—H12119.6
C3—C2—C1119.7 (4)C11—C12—H12119.6
C4—C3—C2120.1 (4)C12—C13—C14119.6 (4)
C4—C3—H3120.0C12—C13—H13120.2
C2—C3—H3119.9C14—C13—H13120.2
C3—C4—C5121.1 (3)C13—C14—C9121.2 (4)
C3—C4—H4119.5C13—C14—H14119.4
C5—C4—H4119.5C9—C14—H14119.4
C6—C5—C4118.6 (4)O1—C15—H15A109.5
C6—C5—H5120.7O1—C15—H15B109.5
C4—C5—H5120.7H15A—C15—H15B109.5
C1—C6—C5121.6 (4)O1—C15—H15C109.5
C1—C6—H6119.2H15A—C15—H15C109.5
C5—C6—H6119.2H15B—C15—H15C109.5
N1—C7—C1120.3 (3)O3—C16—H16A109.5
N1—C7—H7119.9O3—C16—H16B109.5
C1—C7—H7119.9H16A—C16—H16B109.5
O2—C8—N2122.8 (3)O3—C16—H16C109.5
O2—C8—C9122.0 (3)H16A—C16—H16C109.5
N2—C8—C9115.1 (3)H16B—C16—H16C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.90 (1)1.99 (1)2.873 (3)167 (4)
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H16N2O3
Mr284.31
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)4.9998 (13), 13.475 (4), 10.824 (3)
β (°) 93.674 (4)
V3)727.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.30 × 0.28
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.973, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
6081, 1647, 1229
Rint0.055
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.095, 1.11
No. of reflections1647
No. of parameters195
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.14

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.90 (1)1.99 (1)2.873 (3)167 (4)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors acknowledge Shaanxi University of Technology for the research fund.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHe, L. (2008). Acta Cryst. E64, o82.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008a). Acta Cryst. E64, o1693.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008b). Acta Cryst. E64, o1694.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNie, Y. (2008). Acta Cryst. E64, o471.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, X.-F., Liu, C.-Y., Liu, B. & Yuan, C.-C. (2007). Acta Cryst. E63, o1295–o1296.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds