organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N′-(2-hydr­­oxy-1-naphthyl­­idene)benzohydrazide

aDepartment of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721007, People's Republic of China
*Correspondence e-mail: desuoyang@yahoo.com.cn

(Received 10 August 2008; accepted 11 August 2008; online 16 August 2008)

The mol­ecule of the title compound, C18H13ClN2O2, displays a trans configuration with respect to the C=N double bond. The dihedral angle between the benzene and naphthyl ring systems is 6.0 (2)°. An O—H⋯N hydrogen bond is observed in the mol­ecular structure. In the crystal structure, mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds and ππ stacking inter­actions [centroid–centroid distance = 3.603 (2) Å], forming chains running along the b axis.

Related literature

For related structures, see: Yang (2006a[Yang, D.-S. (2006a). Acta Cryst. E62, o1395-o1396.],b[Yang, D.-S. (2006b). Acta Cryst. E62, o1591-o1592.],c[Yang, D.-S. (2006c). Acta Cryst. E62, o2365-o2366.],d[Yang, D.-S. (2006d). Acta Cryst. E62, o3755-o3756.],e[Yang, D.-S. (2006e). Acta Cryst. E62, o3792-o3793.], 2007a[Yang, D.-S. (2007a). J. Chem. Crystallogr. 37, 343-348.],b[Yang, D.-S. (2007b). Acta Cryst. E63, o3738.],c[Yang, D.-S. (2007c). Acta Cryst. E63, o3739.]); Yang & Guo (2006[Yang, D.-S. & Guo, J.-B. (2006). Acta Cryst. E62, o4414-o4415.]). For related literature, see: Bernardo et al. (1996[Bernardo, K., Leppard, S., Robert, A., Commenges, G., Dahan, F. & Meunier, B. (1996). Inorg. Chem. 35, 387-396.]); Musie et al. (2001[Musie, G. T., Wei, M., Subramaniam, B. & Busch, D. H. (2001). Inorg. Chem. 40, 3336-3341.]); Paul et al. (2002[Paul, S., Barik, A. K., Peng, S. M. & Kar, S. K. (2002). Inorg. Chem. 41, 5803-5809.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13ClN2O2

  • Mr = 324.75

  • Monoclinic, P c

  • a = 6.200 (3) Å

  • b = 4.788 (2) Å

  • c = 25.320 (11) Å

  • β = 95.844 (7)°

  • V = 747.8 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 298 (2) K

  • 0.23 × 0.21 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.941, Tmax = 0.949

  • 4001 measured reflections

  • 2197 independent reflections

  • 2039 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.080

  • S = 1.05

  • 2197 reflections

  • 212 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 596 Friedel pairs

  • Flack parameter: 0.03 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.87 2.584 (2) 145
N2—H2⋯O2i 0.90 (1) 1.98 (1) 2.858 (3) 165 (4)
Symmetry code: (i) x, y-1, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff base compounds have been of great interest for a long time. These compounds play an important role in the development of coordination chemistry (Musie et al., 2001; Bernardo et al., 1996; Paul et al., 2002). Recently, we have reported crystal structures of a few Schiff base compounds (Yang, 2006a,b,c,d,e, 2007a,b,c; Yang & Guo, 2006). As a further investigation of this work, the crystal structure of the title compound is reported here.

The molecule of the title compound displays a trans configuration with respect to the CN double bond (Fig. 1). The dihedral angle between the benzene and naphthyl rings is 6.0 (2)°. All the bond lengths are within normal ranges (Allen et al., 1987). The C11N1 bond length of 1.275 (3) Å conforms to the value for a double bond. The bond length of 1.353 (3) Å between atoms C12 and N2 is intermediate between an N—N single bond and an NN double bond, because of conjugation effects in the molecule. An intramolecular O—H···N hydrogen bond is observed.

In the crystal structure, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming chains running along the b axis (Fig. 2). The chain is strengthened by ππ interactions between C1–C5/C10 and C5–C10 benzene rings (centroid–centroid distance is 3.603 (2) Å).

Related literature top

For related structures, see: Yang (2006a,b,c,d,e, 2007a,b,c); Yang & Guo (2006). For related literature, see: Bernardo et al. (1996); Musie et al. (2001); Paul et al. (2002). For bond-length data, see: Allen et al. (1987).

Experimental top

2-Hydroxy-1-naphthylaldehyde (0.1 mmol, 17.2 mg) and 4-chlorobenzohydrazide (0.1 mmol, 17.0 mg) were dissolved in methanol (10 ml). The mixture was stirred at room temperature to give a clear colourless solution. Single crystals of the title compound were obtained by gradual evaporation of the solvent over a period of 8 d at room temperature.

Refinement top

Atom H2 was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å. Other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with O—H = 0.82 Å, C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing packing of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
4-Chloro-N'-(2-hydroxy-1-naphthylidene)benzohydrazide top
Crystal data top
C18H13ClN2O2F(000) = 336
Mr = 324.75Dx = 1.442 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 2145 reflections
a = 6.200 (3) Åθ = 2.8–29.3°
b = 4.788 (2) ŵ = 0.27 mm1
c = 25.320 (11) ÅT = 298 K
β = 95.844 (7)°Block, colourless
V = 747.8 (6) Å30.23 × 0.21 × 0.20 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2197 independent reflections
Radiation source: fine-focus sealed tube2039 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 27.0°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 57
Tmin = 0.941, Tmax = 0.949k = 66
4001 measured reflectionsl = 3126
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.1026P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2197 reflectionsΔρmax = 0.12 e Å3
212 parametersΔρmin = 0.19 e Å3
3 restraintsAbsolute structure: Flack (1983), with 596 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (7)
Crystal data top
C18H13ClN2O2V = 747.8 (6) Å3
Mr = 324.75Z = 2
Monoclinic, PcMo Kα radiation
a = 6.200 (3) ŵ = 0.27 mm1
b = 4.788 (2) ÅT = 298 K
c = 25.320 (11) Å0.23 × 0.21 × 0.20 mm
β = 95.844 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2197 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2039 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.949Rint = 0.017
4001 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080Δρmax = 0.12 e Å3
S = 1.05Δρmin = 0.19 e Å3
2197 reflectionsAbsolute structure: Flack (1983), with 596 Friedel pairs
212 parametersAbsolute structure parameter: 0.03 (7)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.44733 (12)0.28331 (19)0.25960 (4)0.0780 (3)
N10.3640 (3)0.4990 (4)0.05683 (7)0.0395 (4)
N20.5480 (3)0.4210 (4)0.08892 (8)0.0390 (4)
O10.0022 (3)0.7705 (3)0.04417 (7)0.0512 (4)
H10.12200.72930.05890.077*
O20.5730 (3)0.8546 (3)0.12464 (7)0.0504 (4)
C10.0931 (3)0.3955 (4)0.01348 (9)0.0378 (5)
C20.0450 (3)0.6040 (4)0.00131 (9)0.0404 (5)
C30.2478 (4)0.6510 (5)0.02775 (11)0.0515 (6)
H30.34130.78470.01630.062*
C40.3071 (4)0.5020 (5)0.07244 (11)0.0529 (6)
H40.44220.53410.09090.063*
C50.1684 (4)0.2987 (5)0.09167 (10)0.0458 (5)
C60.2251 (4)0.1535 (5)0.13960 (10)0.0544 (6)
H60.35800.18950.15890.065*
C70.0893 (5)0.0380 (6)0.15817 (10)0.0587 (7)
H70.12890.13180.18980.070*
C80.1105 (5)0.0923 (6)0.12918 (10)0.0549 (6)
H80.20350.22330.14180.066*
C90.1709 (4)0.0441 (5)0.08267 (9)0.0478 (6)
H90.30510.00490.06430.057*
C100.0348 (3)0.2428 (5)0.06184 (9)0.0384 (5)
C110.2922 (3)0.3316 (5)0.01999 (9)0.0393 (5)
H110.36730.16780.01450.047*
C120.6429 (3)0.6152 (4)0.12246 (8)0.0371 (5)
C130.8398 (3)0.5189 (4)0.15662 (8)0.0357 (4)
C140.8939 (4)0.6535 (5)0.20461 (10)0.0468 (6)
H140.80450.79410.21530.056*
C151.0795 (4)0.5809 (6)0.23675 (10)0.0532 (6)
H151.11550.67010.26910.064*
C161.2100 (4)0.3728 (5)0.21960 (9)0.0483 (6)
C171.1626 (4)0.2370 (5)0.17207 (10)0.0449 (5)
H171.25430.09910.16130.054*
C180.9751 (3)0.3101 (4)0.14053 (9)0.0407 (5)
H180.93930.21890.10840.049*
H20.576 (6)0.240 (3)0.0963 (14)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0468 (3)0.1144 (6)0.0692 (4)0.0089 (4)0.0112 (3)0.0192 (4)
N10.0344 (9)0.0357 (9)0.0476 (10)0.0038 (7)0.0003 (8)0.0045 (7)
N20.0373 (9)0.0305 (8)0.0475 (10)0.0053 (8)0.0031 (8)0.0022 (7)
O10.0545 (10)0.0446 (9)0.0552 (10)0.0141 (8)0.0086 (8)0.0030 (8)
O20.0490 (9)0.0290 (7)0.0715 (11)0.0077 (7)0.0016 (8)0.0015 (7)
C10.0326 (11)0.0347 (10)0.0460 (12)0.0008 (9)0.0040 (9)0.0108 (9)
C20.0382 (12)0.0373 (12)0.0465 (12)0.0038 (9)0.0086 (9)0.0103 (9)
C30.0400 (12)0.0496 (14)0.0662 (16)0.0121 (11)0.0114 (11)0.0140 (12)
C40.0336 (12)0.0531 (14)0.0700 (17)0.0073 (10)0.0036 (11)0.0165 (12)
C50.0367 (12)0.0431 (12)0.0561 (14)0.0036 (10)0.0017 (10)0.0164 (10)
C60.0490 (14)0.0546 (15)0.0558 (15)0.0049 (12)0.0129 (11)0.0132 (12)
C70.0672 (17)0.0599 (16)0.0468 (15)0.0122 (14)0.0056 (12)0.0016 (12)
C80.0576 (14)0.0563 (15)0.0507 (15)0.0031 (12)0.0050 (11)0.0020 (12)
C90.0427 (13)0.0486 (13)0.0512 (14)0.0048 (10)0.0008 (10)0.0022 (10)
C100.0330 (10)0.0350 (12)0.0466 (12)0.0017 (8)0.0014 (8)0.0102 (8)
C110.0345 (11)0.0343 (10)0.0491 (12)0.0053 (8)0.0038 (9)0.0047 (9)
C120.0367 (11)0.0311 (10)0.0439 (12)0.0030 (9)0.0059 (9)0.0046 (8)
C130.0371 (11)0.0283 (10)0.0416 (11)0.0005 (8)0.0030 (8)0.0041 (8)
C140.0503 (14)0.0391 (12)0.0510 (14)0.0056 (10)0.0053 (11)0.0025 (10)
C150.0540 (15)0.0598 (16)0.0443 (14)0.0019 (12)0.0028 (11)0.0037 (11)
C160.0352 (11)0.0594 (15)0.0489 (14)0.0019 (11)0.0020 (10)0.0163 (11)
C170.0371 (12)0.0464 (13)0.0518 (14)0.0093 (10)0.0074 (10)0.0080 (10)
C180.0398 (12)0.0373 (11)0.0453 (12)0.0029 (9)0.0051 (9)0.0022 (9)
Geometric parameters (Å, º) top
Cl1—C161.752 (2)C6—H60.93
N1—C111.275 (3)C7—C81.398 (4)
N1—N21.383 (2)C7—H70.93
N2—C121.353 (3)C8—C91.365 (3)
N2—H20.899 (10)C8—H80.93
O1—C21.354 (3)C9—C101.410 (3)
O1—H10.82C9—H90.93
O2—C121.228 (2)C11—H110.93
C1—C21.392 (3)C12—C131.495 (3)
C1—C101.440 (3)C13—C141.386 (3)
C1—C111.457 (3)C13—C181.392 (3)
C2—C31.409 (3)C14—C151.385 (3)
C3—C41.356 (4)C14—H140.93
C3—H30.93C15—C161.381 (4)
C4—C51.418 (4)C15—H150.93
C4—H40.93C16—C171.373 (3)
C5—C61.412 (4)C17—C181.387 (3)
C5—C101.427 (3)C17—H170.93
C6—C71.361 (4)C18—H180.93
C11—N1—N2117.76 (18)C8—C9—H9119.2
C12—N2—N1117.57 (16)C10—C9—H9119.2
C12—N2—H2118 (2)C9—C10—C5117.3 (2)
N1—N2—H2121 (2)C9—C10—C1123.55 (19)
C2—O1—H1109.5C5—C10—C1119.1 (2)
C2—C1—C10119.01 (18)N1—C11—C1120.4 (2)
C2—C1—C11120.14 (19)N1—C11—H11119.8
C10—C1—C11120.85 (19)C1—C11—H11119.8
O1—C2—C1123.34 (19)O2—C12—N2122.48 (19)
O1—C2—C3115.7 (2)O2—C12—C13122.18 (19)
C1—C2—C3121.0 (2)N2—C12—C13115.34 (16)
C4—C3—C2120.2 (2)C14—C13—C18119.4 (2)
C4—C3—H3119.9C14—C13—C12118.30 (19)
C2—C3—H3119.9C18—C13—C12122.20 (19)
C3—C4—C5121.7 (2)C15—C14—C13120.7 (2)
C3—C4—H4119.2C15—C14—H14119.6
C5—C4—H4119.2C13—C14—H14119.6
C6—C5—C4121.8 (2)C16—C15—C14118.3 (2)
C6—C5—C10119.5 (2)C16—C15—H15120.8
C4—C5—C10118.7 (2)C14—C15—H15120.8
C7—C6—C5121.3 (2)C17—C16—C15122.5 (2)
C7—C6—H6119.3C17—C16—Cl1118.9 (2)
C5—C6—H6119.3C15—C16—Cl1118.62 (19)
C6—C7—C8119.4 (2)C16—C17—C18118.5 (2)
C6—C7—H7120.3C16—C17—H17120.7
C8—C7—H7120.3C18—C17—H17120.7
C9—C8—C7121.0 (3)C17—C18—C13120.5 (2)
C9—C8—H8119.5C17—C18—H18119.8
C7—C8—H8119.5C13—C18—H18119.8
C8—C9—C10121.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.584 (2)145
N2—H2···O2i0.90 (1)1.98 (1)2.858 (3)165 (4)
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC18H13ClN2O2
Mr324.75
Crystal system, space groupMonoclinic, Pc
Temperature (K)298
a, b, c (Å)6.200 (3), 4.788 (2), 25.320 (11)
β (°) 95.844 (7)
V3)747.8 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.23 × 0.21 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.941, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
4001, 2197, 2039
Rint0.017
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.080, 1.05
No. of reflections2197
No. of parameters212
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.19
Absolute structureFlack (1983), with 596 Friedel pairs
Absolute structure parameter0.03 (7)

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.584 (2)145
N2—H2···O2i0.90 (1)1.98 (1)2.858 (3)165 (4)
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The author acknowledges Key Laboratory Construction Support from the Education Office of Shanxi Province (Project No. 05JS43).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernardo, K., Leppard, S., Robert, A., Commenges, G., Dahan, F. & Meunier, B. (1996). Inorg. Chem. 35, 387–396.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMusie, G. T., Wei, M., Subramaniam, B. & Busch, D. H. (2001). Inorg. Chem. 40, 3336–3341.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPaul, S., Barik, A. K., Peng, S. M. & Kar, S. K. (2002). Inorg. Chem. 41, 5803–5809.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, D.-S. (2006a). Acta Cryst. E62, o1395–o1396.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, D.-S. (2006b). Acta Cryst. E62, o1591–o1592.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, D.-S. (2006c). Acta Cryst. E62, o2365–o2366.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, D.-S. (2006d). Acta Cryst. E62, o3755–o3756.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, D.-S. (2006e). Acta Cryst. E62, o3792–o3793.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, D.-S. (2007a). J. Chem. Crystallogr. 37, 343–348.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, D.-S. (2007b). Acta Cryst. E63, o3738.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, D.-S. (2007c). Acta Cryst. E63, o3739.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, D.-S. & Guo, J.-B. (2006). Acta Cryst. E62, o4414–o4415.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds