organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Chloro-N′-(4-hy­droxy­benzyl­­idene)­benzohydrazide

aDepartment of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721007, People's Republic of China
*Correspondence e-mail: desuoyang@yahoo.com.cn

(Received 16 August 2008; accepted 21 August 2008; online 30 August 2008)

The mol­ecule of the title compound, C14H11ClN2O2, displays a trans configuration with respect to the C=N double bond. The dihedral angle between the two benzene rings is 12.8 (3)°. In the crystal structure, mol­ecules are linked through inter­molecular O—H⋯O and N—H⋯O hydrogen bonds and C—H⋯π inter­actions, forming a three-dimensional network.

Related literature

For related structures, see: Yang (2007[Yang, D.-S. (2007). J. Chem. Crystallogr. 37, 343-348.], 2008a[Yang, D.-S. (2008a). Acta Cryst. E64, o1758.],b[Yang, D.-S. (2008b). Acta Cryst. E64, o1759.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For related literature, see: Bernardo et al. (1996[Bernardo, K., Leppard, S., Robert, A., Commenges, G., Dahan, F. & Meunier, B. (1996). Inorg. Chem. 35, 387-396.]); Musie et al. (2001[Musie, G. T., Wei, M., Subramaniam, B. & Busch, D. H. (2001). Inorg. Chem. 40, 3336-3341.]); Paul et al. (2002[Paul, S., Barik, A. K., Peng, S. M. & Kar, S. K. (2002). Inorg. Chem. 41, 5803-5809.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11ClN2O2

  • Mr = 274.70

  • Orthorhombic, P b c a

  • a = 26.251 (3) Å

  • b = 12.376 (3) Å

  • c = 7.786 (2) Å

  • V = 2529.5 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 298 (2) K

  • 0.13 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.963, Tmax = 0.971

  • 11323 measured reflections

  • 2164 independent reflections

  • 1462 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.116

  • S = 1.02

  • 2164 reflections

  • 176 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.90 (1) 2.078 (11) 2.970 (3) 171 (3)
O1—H1⋯O2ii 0.82 1.91 2.725 (3) 170
C6—H6⋯Cg1iii 0.93 2.88 3.726 (3) 152
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [-x+{\script{1\over 2}}, -y+2, z-{\script{1\over 2}}]. Cg1 is the C1–C6 ring centroid.

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff base compounds have been of great interest for a long time. These compounds play an important role in the development of coordination chemistry (Musie et al., 2001; Bernardo et al., 1996; Paul et al., 2002). Recently, we have reported a few Schiff base compounds (Yang, 2007, 2008a,b). As a further investigation of this work, the crystal structure of the title compound is reported here.

The molecule of the title compound displays a trans configuration with respect to the CN double bond (Fig. 1). The dihedral angle between the two benzene rings is 12.8 (3)°. All the bonds are within normal ranges (Allen et al., 1987). The C7?N1 bond length of 1.268 (3) Å conforms to the value for a double bond. The bond length of 1.339 (3) Å between atoms C8 and N2 is intermediate between a C—N single bond and a C?N double bond, because of conjugation effects in the molecule.

In the crystal structure, molecules are linked through intermolecular O—H···O and N—H···O hydrogen bonds, and C—H···π interactions (Table 1), forming a three-dimensional network (Fig. 2).

Related literature top

For related structures, see: Yang (2007, 2008a,b). For bond-length data, see: Allen et al. (1987). For related literature, see: Bernardo et al. (1996); Musie et al. (2001); Paul et al. (2002). Cg1 is the C1–C6 ring centroid.

Experimental top

4-Hydroxybenzaldehyde (0.1 mmol, 12.2 mg) and 4-chlorobenzohydrazide (0.1 mmol, 17.0 mg) were dissolved in MeOH (10 ml). The mixture was stirred at room temperature to give a clear colourless solution. Crystals of the title compound were formed by gradual evaporation of the solvent over a period of 5 days at room temperature.

Refinement top

Atom H2A was located in a difference Fourier map and refined isotropically, with N—H distance restrained to 0.90 (1) Å and with a Uiso of 0.08 Å2. Other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with O—H distance of 0.82 Å, C—H distances of 0.93 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Molecular packing as viewed along the b axis. H atoms not involved hydrogen bonding (dashed lines) have been omitted for clarity.
(E)-4-Chloro-N'-(4-hydroxybenzylidene)benzohydrazide top
Crystal data top
C14H11ClN2O2F(000) = 1136
Mr = 274.70Dx = 1.443 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1916 reflections
a = 26.251 (3) Åθ = 2.3–24.5°
b = 12.376 (3) ŵ = 0.30 mm1
c = 7.786 (2) ÅT = 298 K
V = 2529.5 (9) Å3Block, colourless
Z = 80.13 × 0.12 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2164 independent reflections
Radiation source: fine-focus sealed tube1462 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
ω scansθmax = 24.9°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3031
Tmin = 0.963, Tmax = 0.971k = 1411
11323 measured reflectionsl = 89
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0433P)2 + 1.3235P]
where P = (Fo2 + 2Fc2)/3
2164 reflections(Δ/σ)max = 0.001
176 parametersΔρmax = 0.27 e Å3
1 restraintΔρmin = 0.36 e Å3
Crystal data top
C14H11ClN2O2V = 2529.5 (9) Å3
Mr = 274.70Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 26.251 (3) ŵ = 0.30 mm1
b = 12.376 (3) ÅT = 298 K
c = 7.786 (2) Å0.13 × 0.12 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2164 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1462 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.971Rint = 0.078
11323 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.27 e Å3
2164 reflectionsΔρmin = 0.36 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.11993 (3)0.56136 (8)0.02967 (12)0.0721 (3)
N10.15097 (8)0.76262 (18)0.3530 (3)0.0421 (6)
N20.10461 (9)0.74598 (18)0.2709 (3)0.0401 (6)
O10.37436 (7)0.92023 (16)0.5358 (3)0.0554 (6)
H10.38530.97860.50220.083*
O20.08473 (7)0.61751 (14)0.4644 (2)0.0412 (5)
C10.22762 (10)0.8643 (2)0.3633 (3)0.0378 (7)
C20.25323 (10)0.7913 (2)0.4685 (4)0.0450 (7)
H20.23720.72730.50040.054*
C30.30150 (10)0.8119 (2)0.5258 (4)0.0463 (8)
H30.31780.76300.59790.056*
C40.32601 (10)0.9058 (2)0.4761 (3)0.0394 (7)
C50.30142 (10)0.9795 (2)0.3730 (4)0.0427 (7)
H50.31761.04350.34180.051*
C60.25282 (10)0.9580 (2)0.3163 (4)0.0440 (7)
H60.23661.00750.24490.053*
C70.17709 (10)0.8413 (2)0.2970 (4)0.0430 (7)
H70.16360.88530.21160.052*
C80.07391 (10)0.6686 (2)0.3321 (3)0.0351 (6)
C90.02586 (9)0.6472 (2)0.2385 (3)0.0335 (6)
C100.00001 (10)0.7240 (2)0.1430 (4)0.0409 (7)
H100.01340.79330.13310.049*
C110.04545 (10)0.6992 (2)0.0619 (4)0.0441 (7)
H110.06280.75120.00130.053*
C120.06436 (10)0.5965 (2)0.0767 (3)0.0435 (7)
C130.03996 (10)0.5193 (2)0.1731 (4)0.0476 (8)
H130.05360.45020.18270.057*
C140.00479 (10)0.5449 (2)0.2554 (3)0.0425 (7)
H140.02100.49340.32290.051*
H2A0.1010 (12)0.783 (2)0.172 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0490 (5)0.0779 (6)0.0895 (7)0.0117 (4)0.0259 (5)0.0004 (5)
N10.0359 (13)0.0460 (15)0.0443 (14)0.0041 (11)0.0089 (11)0.0015 (12)
N20.0355 (13)0.0423 (14)0.0424 (13)0.0048 (11)0.0094 (11)0.0047 (11)
O10.0404 (13)0.0531 (14)0.0726 (15)0.0084 (9)0.0133 (11)0.0061 (12)
O20.0436 (11)0.0403 (11)0.0398 (10)0.0025 (9)0.0063 (9)0.0053 (9)
C10.0356 (16)0.0400 (16)0.0379 (15)0.0022 (13)0.0013 (13)0.0006 (13)
C20.0419 (17)0.0391 (16)0.0539 (18)0.0091 (13)0.0022 (15)0.0060 (14)
C30.0428 (18)0.0409 (17)0.0552 (19)0.0001 (13)0.0092 (15)0.0096 (15)
C40.0321 (16)0.0425 (17)0.0437 (16)0.0009 (12)0.0019 (13)0.0058 (14)
C50.0437 (17)0.0371 (16)0.0472 (17)0.0063 (13)0.0020 (14)0.0023 (14)
C60.0423 (17)0.0450 (18)0.0447 (17)0.0012 (14)0.0075 (14)0.0094 (13)
C70.0400 (17)0.0448 (18)0.0442 (17)0.0007 (14)0.0071 (13)0.0045 (14)
C80.0365 (16)0.0323 (15)0.0365 (15)0.0047 (13)0.0008 (12)0.0052 (13)
C90.0318 (15)0.0361 (16)0.0325 (14)0.0037 (12)0.0025 (12)0.0007 (12)
C100.0392 (16)0.0353 (16)0.0480 (16)0.0046 (13)0.0025 (14)0.0027 (13)
C110.0391 (16)0.0483 (18)0.0449 (17)0.0014 (14)0.0064 (14)0.0077 (14)
C120.0333 (16)0.0520 (19)0.0451 (17)0.0032 (14)0.0032 (13)0.0031 (15)
C130.0441 (18)0.0426 (18)0.0560 (19)0.0116 (14)0.0027 (15)0.0030 (15)
C140.0431 (17)0.0408 (17)0.0438 (16)0.0003 (14)0.0046 (14)0.0064 (14)
Geometric parameters (Å, º) top
Cl1—C121.733 (3)C5—C61.376 (4)
N1—C71.268 (3)C5—H50.93
N1—N21.390 (3)C6—H60.93
N2—C81.339 (3)C7—H70.93
N2—H2A0.899 (10)C8—C91.481 (3)
O1—C41.363 (3)C9—C101.385 (3)
O1—H10.82C9—C141.387 (4)
O2—C81.242 (3)C10—C111.384 (4)
C1—C61.385 (4)C10—H100.93
C1—C21.392 (4)C11—C121.369 (4)
C1—C71.451 (4)C11—H110.93
C2—C31.367 (4)C12—C131.373 (4)
C2—H20.93C13—C141.375 (4)
C3—C41.383 (4)C13—H130.93
C3—H30.93C14—H140.93
C4—C51.377 (4)
C7—N1—N2115.4 (2)N1—C7—H7119.3
C8—N2—N1118.0 (2)C1—C7—H7119.3
C8—N2—H2A127 (2)O2—C8—N2121.5 (2)
N1—N2—H2A114 (2)O2—C8—C9120.8 (2)
C4—O1—H1109.5N2—C8—C9117.8 (2)
C6—C1—C2117.9 (2)C10—C9—C14118.8 (2)
C6—C1—C7120.4 (2)C10—C9—C8124.0 (2)
C2—C1—C7121.6 (2)C14—C9—C8117.2 (2)
C3—C2—C1121.2 (3)C11—C10—C9121.0 (2)
C3—C2—H2119.4C11—C10—H10119.5
C1—C2—H2119.4C9—C10—H10119.5
C2—C3—C4119.8 (3)C12—C11—C10118.7 (3)
C2—C3—H3120.1C12—C11—H11120.6
C4—C3—H3120.1C10—C11—H11120.6
O1—C4—C5123.3 (2)C11—C12—C13121.5 (3)
O1—C4—C3116.6 (2)C11—C12—Cl1119.8 (2)
C5—C4—C3120.1 (3)C13—C12—Cl1118.7 (2)
C6—C5—C4119.6 (3)C12—C13—C14119.5 (3)
C6—C5—H5120.2C12—C13—H13120.2
C4—C5—H5120.2C14—C13—H13120.2
C5—C6—C1121.3 (3)C13—C14—C9120.4 (3)
C5—C6—H6119.3C13—C14—H14119.8
C1—C6—H6119.3C9—C14—H14119.8
N1—C7—C1121.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.90 (1)2.08 (1)2.970 (3)171 (3)
O1—H1···O2ii0.821.912.725 (3)170
C6—H6···Cg1iii0.932.883.726 (3)152
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H11ClN2O2
Mr274.70
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)26.251 (3), 12.376 (3), 7.786 (2)
V3)2529.5 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.13 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.963, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
11323, 2164, 1462
Rint0.078
(sin θ/λ)max1)0.592
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.116, 1.02
No. of reflections2164
No. of parameters176
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.36

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.90 (1)2.078 (11)2.970 (3)171 (3)
O1—H1···O2ii0.821.912.725 (3)170
C6—H6···Cg1iii0.932.883.726 (3)152
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+2, z1/2.
 

Acknowledgements

The author acknowledges Key Laboratory Construction Support from the Education Office of Shanxi Province (project No. 05JS43).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernardo, K., Leppard, S., Robert, A., Commenges, G., Dahan, F. & Meunier, B. (1996). Inorg. Chem. 35, 387–396.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMusie, G. T., Wei, M., Subramaniam, B. & Busch, D. H. (2001). Inorg. Chem. 40, 3336–3341.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPaul, S., Barik, A. K., Peng, S. M. & Kar, S. K. (2002). Inorg. Chem. 41, 5803–5809.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, D.-S. (2007). J. Chem. Crystallogr. 37, 343–348.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, D.-S. (2008a). Acta Cryst. E64, o1758.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, D.-S. (2008b). Acta Cryst. E64, o1759.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds