organic compounds
N-(3-Chlorophenyl)benzenesulfonamide
aDepartment of Chemistry, Mangalore University, Mangalagangotri 574199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287, Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com
In the 12H10ClNO2S, the N—H bond is trans to one of the S=O bonds. The two aromatic rings form a dihedral angle of 65.4 (1)°, compared with a value of 49.1 (1)° in N-(2-chlorophenyl)-benzenesulfonamide. The molecules are connected by intermolecular N—H⋯O hydrogen bonds into chains running along the b axis.
of the title compound, CRelated literature
For related literature, see: Gelbrich et al. (2007); Gowda et al. (2005, 2008a,b); Perlovich et al. (2006).
Experimental
Crystal data
|
Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808026895/ci2659sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808026895/ci2659Isup2.hkl
The solution of benzene (10 cc) in chloroform (40 cc) was treated dropwise with chlorosulfonic acid (25 cc) at 273 K. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual benzenesulfonylchloride was treated with m-chloroaniline in the stoichiometric ratio and boiled for 10 min. The reaction mixture was then cooled to room temperature and added to ice cold water (100 cc). The resultant solid N-(3-chlorophenyl)-benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Gowda et al., 2005). Single crystals used in X-ray diffraction studies were grown in an ethanolic solution by evaporating it at room temperature.
The H atom of the NH group was located in a difference map and was refined with a N-H distance restraint of 0.90 (1) Å. The other H atoms were positioned with idealized geometry (C-H = 0.93 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C). The Uij components of C4, C5 and C6 were restrained to approximate isotropic behaviour.
Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell
CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C12H10ClNO2S | Dx = 1.420 Mg m−3 |
Mr = 267.72 | Cu Kα radiation, λ = 1.54180 Å |
Tetragonal, P43212 | Cell parameters from 25 reflections |
Hall symbol: P 4nw 2abw | θ = 6.5–18.9° |
a = 8.8357 (7) Å | µ = 4.18 mm−1 |
c = 32.081 (5) Å | T = 299 K |
V = 2504.6 (5) Å3 | Prism, colourless |
Z = 8 | 0.38 × 0.35 × 0.33 mm |
F(000) = 1104 |
Enraf–Nonius CAD-4 diffractometer | 2054 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.072 |
Graphite monochromator | θmax = 66.8°, θmin = 5.2° |
ω/2θ scans | h = −10→0 |
Absorption correction: ψ scan (North et al., 1968) | k = −10→0 |
Tmin = 0.222, Tmax = 0.251 | l = −38→37 |
5004 measured reflections | 3 standard reflections every 120 min |
2232 independent reflections | intensity decay: 1.0% |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.035 | w = 1/[σ2(Fo2) + (0.0371P)2 + 0.1574P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.094 | (Δ/σ)max = 0.004 |
S = 1.10 | Δρmax = 0.19 e Å−3 |
2232 reflections | Δρmin = −0.21 e Å−3 |
158 parameters | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
19 restraints | Extinction coefficient: 0.0031 (3) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 840 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: −0.01 (2) |
C12H10ClNO2S | Z = 8 |
Mr = 267.72 | Cu Kα radiation |
Tetragonal, P43212 | µ = 4.18 mm−1 |
a = 8.8357 (7) Å | T = 299 K |
c = 32.081 (5) Å | 0.38 × 0.35 × 0.33 mm |
V = 2504.6 (5) Å3 |
Enraf–Nonius CAD-4 diffractometer | 2054 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.072 |
Tmin = 0.222, Tmax = 0.251 | 3 standard reflections every 120 min |
5004 measured reflections | intensity decay: 1.0% |
2232 independent reflections |
R[F2 > 2σ(F2)] = 0.035 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.094 | Δρmax = 0.19 e Å−3 |
S = 1.10 | Δρmin = −0.21 e Å−3 |
2232 reflections | Absolute structure: Flack (1983), 840 Friedel pairs |
158 parameters | Absolute structure parameter: −0.01 (2) |
19 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | −0.0696 (3) | −0.0170 (3) | 0.09615 (8) | 0.0566 (6) | |
C2 | −0.2118 (3) | −0.0569 (4) | 0.10996 (9) | 0.0763 (8) | |
H2 | −0.2603 | 0.0001 | 0.1304 | 0.092* | |
C3 | −0.2814 (4) | −0.1829 (4) | 0.09306 (12) | 0.1005 (11) | |
H3 | −0.3771 | −0.2112 | 0.1023 | 0.121* | |
C4 | −0.2119 (5) | −0.2644 (4) | 0.06353 (16) | 0.1213 (15) | |
H4 | −0.2601 | −0.3486 | 0.0523 | 0.146* | |
C5 | −0.0724 (5) | −0.2253 (5) | 0.04988 (17) | 0.1362 (17) | |
H5 | −0.0247 | −0.2840 | 0.0297 | 0.163* | |
C6 | 0.0006 (4) | −0.0978 (4) | 0.06576 (12) | 0.0987 (12) | |
H6 | 0.0951 | −0.0688 | 0.0558 | 0.118* | |
C7 | −0.0413 (3) | 0.3249 (2) | 0.05535 (7) | 0.0518 (5) | |
C8 | −0.1736 (3) | 0.3333 (3) | 0.03316 (7) | 0.0571 (5) | |
H8 | −0.2659 | 0.3123 | 0.0458 | 0.069* | |
C9 | −0.1672 (3) | 0.3736 (3) | −0.00854 (8) | 0.0633 (6) | |
C10 | −0.0304 (3) | 0.4020 (3) | −0.02766 (8) | 0.0685 (7) | |
H10 | −0.0269 | 0.4276 | −0.0558 | 0.082* | |
C11 | 0.1000 (3) | 0.3923 (3) | −0.00488 (8) | 0.0687 (7) | |
H11 | 0.1925 | 0.4114 | −0.0176 | 0.082* | |
C12 | 0.0959 (3) | 0.3547 (3) | 0.03655 (8) | 0.0633 (6) | |
H12 | 0.1850 | 0.3494 | 0.0519 | 0.076* | |
Cl1 | −0.33446 (9) | 0.38734 (11) | −0.03637 (3) | 0.1003 (3) | |
N1 | −0.0492 (2) | 0.2925 (2) | 0.09923 (6) | 0.0542 (5) | |
H1N | −0.1414 (15) | 0.300 (3) | 0.1090 (7) | 0.065* | |
O1 | −0.0183 (2) | 0.1447 (2) | 0.16226 (5) | 0.0712 (5) | |
O2 | 0.17669 (17) | 0.1309 (2) | 0.10738 (6) | 0.0678 (5) | |
S1 | 0.02122 (6) | 0.13880 (7) | 0.119048 (18) | 0.05501 (19) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0552 (12) | 0.0546 (11) | 0.0599 (13) | 0.0022 (9) | −0.0124 (11) | 0.0011 (11) |
C2 | 0.0731 (16) | 0.0876 (19) | 0.0681 (16) | −0.0161 (14) | −0.0063 (14) | 0.0007 (15) |
C3 | 0.092 (2) | 0.093 (2) | 0.117 (3) | −0.0326 (19) | −0.020 (2) | 0.009 (2) |
C4 | 0.109 (3) | 0.075 (2) | 0.181 (4) | −0.0087 (19) | −0.027 (3) | −0.033 (2) |
C5 | 0.118 (3) | 0.107 (3) | 0.184 (4) | 0.008 (2) | 0.001 (3) | −0.087 (3) |
C6 | 0.0725 (19) | 0.098 (2) | 0.126 (3) | 0.0044 (15) | 0.0010 (19) | −0.050 (2) |
C7 | 0.0577 (12) | 0.0460 (11) | 0.0518 (12) | −0.0002 (9) | 0.0055 (11) | −0.0063 (10) |
C8 | 0.0565 (12) | 0.0552 (12) | 0.0595 (12) | −0.0069 (10) | 0.0015 (11) | −0.0013 (11) |
C9 | 0.0750 (15) | 0.0592 (13) | 0.0556 (13) | −0.0098 (12) | −0.0075 (12) | 0.0017 (12) |
C10 | 0.0926 (18) | 0.0598 (13) | 0.0532 (13) | −0.0039 (13) | 0.0102 (14) | 0.0022 (12) |
C11 | 0.0671 (14) | 0.0712 (15) | 0.0679 (15) | 0.0016 (12) | 0.0192 (13) | 0.0048 (13) |
C12 | 0.0578 (12) | 0.0658 (14) | 0.0663 (14) | 0.0007 (11) | 0.0094 (12) | −0.0008 (13) |
Cl1 | 0.0939 (5) | 0.1250 (7) | 0.0821 (5) | −0.0306 (5) | −0.0317 (4) | 0.0267 (5) |
N1 | 0.0536 (10) | 0.0611 (10) | 0.0481 (10) | 0.0027 (8) | 0.0041 (9) | −0.0041 (9) |
O1 | 0.0762 (11) | 0.0904 (12) | 0.0470 (8) | 0.0010 (10) | −0.0033 (8) | −0.0001 (9) |
O2 | 0.0467 (8) | 0.0850 (11) | 0.0717 (11) | 0.0016 (8) | −0.0091 (8) | −0.0047 (10) |
S1 | 0.0492 (3) | 0.0659 (3) | 0.0499 (3) | −0.0007 (2) | −0.0058 (2) | −0.0026 (3) |
C1—C6 | 1.358 (4) | C7—N1 | 1.438 (3) |
C1—C2 | 1.378 (4) | C8—C9 | 1.386 (3) |
C1—S1 | 1.755 (2) | C8—H8 | 0.93 |
C2—C3 | 1.382 (4) | C9—C10 | 1.378 (4) |
C2—H2 | 0.93 | C9—Cl1 | 1.731 (3) |
C3—C4 | 1.339 (5) | C10—C11 | 1.367 (4) |
C3—H3 | 0.93 | C10—H10 | 0.93 |
C4—C5 | 1.353 (6) | C11—C12 | 1.371 (4) |
C4—H4 | 0.93 | C11—H11 | 0.93 |
C5—C6 | 1.394 (5) | C12—H12 | 0.93 |
C5—H5 | 0.93 | N1—S1 | 1.623 (2) |
C6—H6 | 0.93 | N1—H1N | 0.876 (10) |
C7—C8 | 1.371 (3) | O1—S1 | 1.4305 (17) |
C7—C12 | 1.379 (3) | O2—S1 | 1.4256 (17) |
C6—C1—C2 | 120.8 (3) | C9—C8—H8 | 120.7 |
C6—C1—S1 | 120.3 (2) | C10—C9—C8 | 120.9 (2) |
C2—C1—S1 | 118.9 (2) | C10—C9—Cl1 | 120.41 (19) |
C1—C2—C3 | 119.0 (3) | C8—C9—Cl1 | 118.73 (19) |
C1—C2—H2 | 120.5 | C11—C10—C9 | 119.3 (2) |
C3—C2—H2 | 120.5 | C11—C10—H10 | 120.3 |
C4—C3—C2 | 120.5 (3) | C9—C10—H10 | 120.3 |
C4—C3—H3 | 119.8 | C10—C11—C12 | 120.8 (2) |
C2—C3—H3 | 119.8 | C10—C11—H11 | 119.6 |
C3—C4—C5 | 120.6 (4) | C12—C11—H11 | 119.6 |
C3—C4—H4 | 119.7 | C11—C12—C7 | 119.6 (2) |
C5—C4—H4 | 119.7 | C11—C12—H12 | 120.2 |
C4—C5—C6 | 120.6 (4) | C7—C12—H12 | 120.2 |
C4—C5—H5 | 119.7 | C7—N1—S1 | 122.09 (15) |
C6—C5—H5 | 119.7 | C7—N1—H1N | 112.2 (16) |
C1—C6—C5 | 118.4 (3) | S1—N1—H1N | 106.4 (17) |
C1—C6—H6 | 120.8 | O2—S1—O1 | 119.45 (11) |
C5—C6—H6 | 120.8 | O2—S1—N1 | 107.89 (11) |
C8—C7—C12 | 120.81 (19) | O1—S1—N1 | 104.81 (11) |
C8—C7—N1 | 118.6 (2) | O2—S1—C1 | 107.00 (12) |
C12—C7—N1 | 120.5 (2) | O1—S1—C1 | 108.81 (12) |
C7—C8—C9 | 118.7 (2) | N1—S1—C1 | 108.50 (10) |
C7—C8—H8 | 120.7 | ||
C6—C1—C2—C3 | 1.4 (4) | C10—C11—C12—C7 | 0.7 (4) |
S1—C1—C2—C3 | −177.7 (2) | C8—C7—C12—C11 | −0.4 (4) |
C1—C2—C3—C4 | −0.4 (5) | N1—C7—C12—C11 | −176.9 (2) |
C2—C3—C4—C5 | 0.3 (7) | C8—C7—N1—S1 | 115.6 (2) |
C3—C4—C5—C6 | −1.2 (8) | C12—C7—N1—S1 | −67.8 (3) |
C2—C1—C6—C5 | −2.2 (5) | C7—N1—S1—O2 | 55.5 (2) |
S1—C1—C6—C5 | 176.8 (3) | C7—N1—S1—O1 | −176.22 (17) |
C4—C5—C6—C1 | 2.1 (8) | C7—N1—S1—C1 | −60.1 (2) |
C12—C7—C8—C9 | −0.5 (3) | C6—C1—S1—O2 | −13.9 (3) |
N1—C7—C8—C9 | 176.1 (2) | C2—C1—S1—O2 | 165.1 (2) |
C7—C8—C9—C10 | 1.2 (3) | C6—C1—S1—O1 | −144.3 (3) |
C7—C8—C9—Cl1 | −178.94 (17) | C2—C1—S1—O1 | 34.8 (2) |
C8—C9—C10—C11 | −1.0 (4) | C6—C1—S1—N1 | 102.2 (3) |
Cl1—C9—C10—C11 | 179.2 (2) | C2—C1—S1—N1 | −78.7 (2) |
C9—C10—C11—C12 | 0.0 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O2i | 0.88 (1) | 2.03 (1) | 2.875 (2) | 162 (2) |
Symmetry code: (i) x−1/2, −y+1/2, −z+1/4. |
Experimental details
Crystal data | |
Chemical formula | C12H10ClNO2S |
Mr | 267.72 |
Crystal system, space group | Tetragonal, P43212 |
Temperature (K) | 299 |
a, c (Å) | 8.8357 (7), 32.081 (5) |
V (Å3) | 2504.6 (5) |
Z | 8 |
Radiation type | Cu Kα |
µ (mm−1) | 4.18 |
Crystal size (mm) | 0.38 × 0.35 × 0.33 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.222, 0.251 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5004, 2232, 2054 |
Rint | 0.072 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.094, 1.10 |
No. of reflections | 2232 |
No. of parameters | 158 |
No. of restraints | 19 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.19, −0.21 |
Absolute structure | Flack (1983), 840 Friedel pairs |
Absolute structure parameter | −0.01 (2) |
Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O2i | 0.88 (1) | 2.029 (13) | 2.875 (2) | 162 (2) |
Symmetry code: (i) x−1/2, −y+1/2, −z+1/4. |
Acknowledgements
BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.
References
Enraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008a). Acta Cryst. E64, o1691. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008b). Acta Cryst. E64, o1692. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106–112. CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As part of a study of the substituent effects on the crystal structures of N-(aryl)-benzenesulfonamides, in the present work, the structure of N-(3-chlorophenyl)-benzenesulfonamide (N3CPBSA) has been determined (Gowda et al., 2008a,b). The N—H bond is trans to one of the S═O bonds (Fig. 1). Further, the conformation of the N—H bond is anti to the meta-chloro group in the aniline benzene ring, in contrast to the syn conformation observed with respect to the ortho-chloro group in N-(2-chlorophenyl)-benzenesulfonamide (N2CPBSA) (Perlovich et al., 2006). The two benzene rings form a dihedral angle of 65.4 (1)° compared with the value of 49.1 (1)° in N2CPBSA. The other bond parameters in N3CPBSA are similar to those observed in N2CPBSA (Perlovich et al., 2006) and other N-(aryl)-benzenesulfonamides (Gelbrich et al., 2007; Gowda et al., 2008a,b).
The packing diagram of N3CPBSA showing the N—H···O hydrogen bonds (Table 1) is shown in Fig. 2.