organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Chloro­phen­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287, Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 16 August 2008; accepted 20 August 2008; online 23 August 2008)

In the crystal structure of the title compound, C12H10ClNO2S, the N—H bond is trans to one of the S=O bonds. The two aromatic rings form a dihedral angle of 65.4 (1)°, compared with a value of 49.1 (1)° in N-(2-chloro­phen­yl)-benzene­sulfonamide. The mol­ecules are connected by inter­molecular N—H⋯O hydrogen bonds into chains running along the b axis.

Related literature

For related literature, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Gowda et al. (2005[Gowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106-112.], 2008a[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008a). Acta Cryst. E64, o1691.],b[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008b). Acta Cryst. E64, o1692.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10ClNO2S

  • Mr = 267.72

  • Tetragonal, P 43 21 2

  • a = 8.8357 (7) Å

  • c = 32.081 (5) Å

  • V = 2504.6 (5) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 4.18 mm−1

  • T = 299 (2) K

  • 0.38 × 0.35 × 0.33 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.222, Tmax = 0.251

  • 5004 measured reflections

  • 2232 independent reflections

  • 2054 reflections with I > 2σ(I)

  • Rint = 0.071

  • 3 standard reflections frequency: 120 min intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.094

  • S = 1.10

  • 2232 reflections

  • 158 parameters

  • 19 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 840 Friedel pairs

  • Flack parameter: −0.01 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.88 (1) 2.029 (13) 2.875 (2) 162 (2)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+{\script{1\over 4}}].

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the substituent effects on the crystal structures of N-(aryl)-benzenesulfonamides, in the present work, the structure of N-(3-chlorophenyl)-benzenesulfonamide (N3CPBSA) has been determined (Gowda et al., 2008a,b). The N—H bond is trans to one of the SO bonds (Fig. 1). Further, the conformation of the N—H bond is anti to the meta-chloro group in the aniline benzene ring, in contrast to the syn conformation observed with respect to the ortho-chloro group in N-(2-chlorophenyl)-benzenesulfonamide (N2CPBSA) (Perlovich et al., 2006). The two benzene rings form a dihedral angle of 65.4 (1)° compared with the value of 49.1 (1)° in N2CPBSA. The other bond parameters in N3CPBSA are similar to those observed in N2CPBSA (Perlovich et al., 2006) and other N-(aryl)-benzenesulfonamides (Gelbrich et al., 2007; Gowda et al., 2008a,b).

The packing diagram of N3CPBSA showing the N—H···O hydrogen bonds (Table 1) is shown in Fig. 2.

Related literature top

For related literature, see: Gelbrich et al. (2007); Gowda et al. (2005, 2008a,b); Perlovich et al. (2006).

Experimental top

The solution of benzene (10 cc) in chloroform (40 cc) was treated dropwise with chlorosulfonic acid (25 cc) at 273 K. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual benzenesulfonylchloride was treated with m-chloroaniline in the stoichiometric ratio and boiled for 10 min. The reaction mixture was then cooled to room temperature and added to ice cold water (100 cc). The resultant solid N-(3-chlorophenyl)-benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Gowda et al., 2005). Single crystals used in X-ray diffraction studies were grown in an ethanolic solution by evaporating it at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and was refined with a N-H distance restraint of 0.90 (1) Å. The other H atoms were positioned with idealized geometry (C-H = 0.93 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C). The Uij components of C4, C5 and C6 were restrained to approximate isotropic behaviour.

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound, showing hydrogen-bonded (dashed lines) chains.
N-(3-Chlorophenyl)benzenesulfonamide top
Crystal data top
C12H10ClNO2SDx = 1.420 Mg m3
Mr = 267.72Cu Kα radiation, λ = 1.54180 Å
Tetragonal, P43212Cell parameters from 25 reflections
Hall symbol: P 4nw 2abwθ = 6.5–18.9°
a = 8.8357 (7) ŵ = 4.18 mm1
c = 32.081 (5) ÅT = 299 K
V = 2504.6 (5) Å3Prism, colourless
Z = 80.38 × 0.35 × 0.33 mm
F(000) = 1104
Data collection top
Enraf–Nonius CAD-4
diffractometer
2054 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.072
Graphite monochromatorθmax = 66.8°, θmin = 5.2°
ω/2θ scansh = 100
Absorption correction: ψ scan
(North et al., 1968)
k = 100
Tmin = 0.222, Tmax = 0.251l = 3837
5004 measured reflections3 standard reflections every 120 min
2232 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0371P)2 + 0.1574P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094(Δ/σ)max = 0.004
S = 1.10Δρmax = 0.19 e Å3
2232 reflectionsΔρmin = 0.21 e Å3
158 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
19 restraintsExtinction coefficient: 0.0031 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 840 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (2)
Crystal data top
C12H10ClNO2SZ = 8
Mr = 267.72Cu Kα radiation
Tetragonal, P43212µ = 4.18 mm1
a = 8.8357 (7) ÅT = 299 K
c = 32.081 (5) Å0.38 × 0.35 × 0.33 mm
V = 2504.6 (5) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
2054 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.072
Tmin = 0.222, Tmax = 0.2513 standard reflections every 120 min
5004 measured reflections intensity decay: 1.0%
2232 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094Δρmax = 0.19 e Å3
S = 1.10Δρmin = 0.21 e Å3
2232 reflectionsAbsolute structure: Flack (1983), 840 Friedel pairs
158 parametersAbsolute structure parameter: 0.01 (2)
19 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0696 (3)0.0170 (3)0.09615 (8)0.0566 (6)
C20.2118 (3)0.0569 (4)0.10996 (9)0.0763 (8)
H20.26030.00010.13040.092*
C30.2814 (4)0.1829 (4)0.09306 (12)0.1005 (11)
H30.37710.21120.10230.121*
C40.2119 (5)0.2644 (4)0.06353 (16)0.1213 (15)
H40.26010.34860.05230.146*
C50.0724 (5)0.2253 (5)0.04988 (17)0.1362 (17)
H50.02470.28400.02970.163*
C60.0006 (4)0.0978 (4)0.06576 (12)0.0987 (12)
H60.09510.06880.05580.118*
C70.0413 (3)0.3249 (2)0.05535 (7)0.0518 (5)
C80.1736 (3)0.3333 (3)0.03316 (7)0.0571 (5)
H80.26590.31230.04580.069*
C90.1672 (3)0.3736 (3)0.00854 (8)0.0633 (6)
C100.0304 (3)0.4020 (3)0.02766 (8)0.0685 (7)
H100.02690.42760.05580.082*
C110.1000 (3)0.3923 (3)0.00488 (8)0.0687 (7)
H110.19250.41140.01760.082*
C120.0959 (3)0.3547 (3)0.03655 (8)0.0633 (6)
H120.18500.34940.05190.076*
Cl10.33446 (9)0.38734 (11)0.03637 (3)0.1003 (3)
N10.0492 (2)0.2925 (2)0.09923 (6)0.0542 (5)
H1N0.1414 (15)0.300 (3)0.1090 (7)0.065*
O10.0183 (2)0.1447 (2)0.16226 (5)0.0712 (5)
O20.17669 (17)0.1309 (2)0.10738 (6)0.0678 (5)
S10.02122 (6)0.13880 (7)0.119048 (18)0.05501 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0552 (12)0.0546 (11)0.0599 (13)0.0022 (9)0.0124 (11)0.0011 (11)
C20.0731 (16)0.0876 (19)0.0681 (16)0.0161 (14)0.0063 (14)0.0007 (15)
C30.092 (2)0.093 (2)0.117 (3)0.0326 (19)0.020 (2)0.009 (2)
C40.109 (3)0.075 (2)0.181 (4)0.0087 (19)0.027 (3)0.033 (2)
C50.118 (3)0.107 (3)0.184 (4)0.008 (2)0.001 (3)0.087 (3)
C60.0725 (19)0.098 (2)0.126 (3)0.0044 (15)0.0010 (19)0.050 (2)
C70.0577 (12)0.0460 (11)0.0518 (12)0.0002 (9)0.0055 (11)0.0063 (10)
C80.0565 (12)0.0552 (12)0.0595 (12)0.0069 (10)0.0015 (11)0.0013 (11)
C90.0750 (15)0.0592 (13)0.0556 (13)0.0098 (12)0.0075 (12)0.0017 (12)
C100.0926 (18)0.0598 (13)0.0532 (13)0.0039 (13)0.0102 (14)0.0022 (12)
C110.0671 (14)0.0712 (15)0.0679 (15)0.0016 (12)0.0192 (13)0.0048 (13)
C120.0578 (12)0.0658 (14)0.0663 (14)0.0007 (11)0.0094 (12)0.0008 (13)
Cl10.0939 (5)0.1250 (7)0.0821 (5)0.0306 (5)0.0317 (4)0.0267 (5)
N10.0536 (10)0.0611 (10)0.0481 (10)0.0027 (8)0.0041 (9)0.0041 (9)
O10.0762 (11)0.0904 (12)0.0470 (8)0.0010 (10)0.0033 (8)0.0001 (9)
O20.0467 (8)0.0850 (11)0.0717 (11)0.0016 (8)0.0091 (8)0.0047 (10)
S10.0492 (3)0.0659 (3)0.0499 (3)0.0007 (2)0.0058 (2)0.0026 (3)
Geometric parameters (Å, º) top
C1—C61.358 (4)C7—N11.438 (3)
C1—C21.378 (4)C8—C91.386 (3)
C1—S11.755 (2)C8—H80.93
C2—C31.382 (4)C9—C101.378 (4)
C2—H20.93C9—Cl11.731 (3)
C3—C41.339 (5)C10—C111.367 (4)
C3—H30.93C10—H100.93
C4—C51.353 (6)C11—C121.371 (4)
C4—H40.93C11—H110.93
C5—C61.394 (5)C12—H120.93
C5—H50.93N1—S11.623 (2)
C6—H60.93N1—H1N0.876 (10)
C7—C81.371 (3)O1—S11.4305 (17)
C7—C121.379 (3)O2—S11.4256 (17)
C6—C1—C2120.8 (3)C9—C8—H8120.7
C6—C1—S1120.3 (2)C10—C9—C8120.9 (2)
C2—C1—S1118.9 (2)C10—C9—Cl1120.41 (19)
C1—C2—C3119.0 (3)C8—C9—Cl1118.73 (19)
C1—C2—H2120.5C11—C10—C9119.3 (2)
C3—C2—H2120.5C11—C10—H10120.3
C4—C3—C2120.5 (3)C9—C10—H10120.3
C4—C3—H3119.8C10—C11—C12120.8 (2)
C2—C3—H3119.8C10—C11—H11119.6
C3—C4—C5120.6 (4)C12—C11—H11119.6
C3—C4—H4119.7C11—C12—C7119.6 (2)
C5—C4—H4119.7C11—C12—H12120.2
C4—C5—C6120.6 (4)C7—C12—H12120.2
C4—C5—H5119.7C7—N1—S1122.09 (15)
C6—C5—H5119.7C7—N1—H1N112.2 (16)
C1—C6—C5118.4 (3)S1—N1—H1N106.4 (17)
C1—C6—H6120.8O2—S1—O1119.45 (11)
C5—C6—H6120.8O2—S1—N1107.89 (11)
C8—C7—C12120.81 (19)O1—S1—N1104.81 (11)
C8—C7—N1118.6 (2)O2—S1—C1107.00 (12)
C12—C7—N1120.5 (2)O1—S1—C1108.81 (12)
C7—C8—C9118.7 (2)N1—S1—C1108.50 (10)
C7—C8—H8120.7
C6—C1—C2—C31.4 (4)C10—C11—C12—C70.7 (4)
S1—C1—C2—C3177.7 (2)C8—C7—C12—C110.4 (4)
C1—C2—C3—C40.4 (5)N1—C7—C12—C11176.9 (2)
C2—C3—C4—C50.3 (7)C8—C7—N1—S1115.6 (2)
C3—C4—C5—C61.2 (8)C12—C7—N1—S167.8 (3)
C2—C1—C6—C52.2 (5)C7—N1—S1—O255.5 (2)
S1—C1—C6—C5176.8 (3)C7—N1—S1—O1176.22 (17)
C4—C5—C6—C12.1 (8)C7—N1—S1—C160.1 (2)
C12—C7—C8—C90.5 (3)C6—C1—S1—O213.9 (3)
N1—C7—C8—C9176.1 (2)C2—C1—S1—O2165.1 (2)
C7—C8—C9—C101.2 (3)C6—C1—S1—O1144.3 (3)
C7—C8—C9—Cl1178.94 (17)C2—C1—S1—O134.8 (2)
C8—C9—C10—C111.0 (4)C6—C1—S1—N1102.2 (3)
Cl1—C9—C10—C11179.2 (2)C2—C1—S1—N178.7 (2)
C9—C10—C11—C120.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.88 (1)2.03 (1)2.875 (2)162 (2)
Symmetry code: (i) x1/2, y+1/2, z+1/4.

Experimental details

Crystal data
Chemical formulaC12H10ClNO2S
Mr267.72
Crystal system, space groupTetragonal, P43212
Temperature (K)299
a, c (Å)8.8357 (7), 32.081 (5)
V3)2504.6 (5)
Z8
Radiation typeCu Kα
µ (mm1)4.18
Crystal size (mm)0.38 × 0.35 × 0.33
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.222, 0.251
No. of measured, independent and
observed [I > 2σ(I)] reflections
5004, 2232, 2054
Rint0.072
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.094, 1.10
No. of reflections2232
No. of parameters158
No. of restraints19
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.21
Absolute structureFlack (1983), 840 Friedel pairs
Absolute structure parameter0.01 (2)

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.88 (1)2.029 (13)2.875 (2)162 (2)
Symmetry code: (i) x1/2, y+1/2, z+1/4.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008a). Acta Cryst. E64, o1691.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008b). Acta Cryst. E64, o1692.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106–112.  CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds