organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1838-o1839

3-Ethyl-6-{1-[4-(2-methyl­prop­yl)phen­yl]eth­yl}-1,2,4-triazolo[3,4-b][1,3,4]thia­diazole

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574199, India, and cDepartment of Physics, K.L.E. Society's K.L.E. Institute of Technology, Gokul Road, Hubli 590030, India
*Correspondence e-mail: hkfun@usm.my

(Received 22 August 2008; accepted 22 August 2008; online 30 August 2008)

In the mol­ecule of the title compound, C17H22N4S, the triazolothia­diazole ring system is essentially planar and forms a dihedral angle of 74.34 (6)° with the benzene ring. In the crystal structure, mol­ecules are linked into chains running along the b axis by C—H⋯π inter­actions; adjacent chains are cross-linked via C—H⋯N hydrogen bonds and short S⋯N contacts [3.2694 (14) and 3.2953 (14) Å].

Related literature

For a related structure, see: Fun et al. (2008[Fun, H.-K., Jebas, S. R., Razak, I. A., Sujith, K. V., Patil, P. S., Kalluraya, B. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1076-o1077.]). For biological activities of triazole and 1,3,4-thia­diazo­les, see: Al-Soud et al. (2004[Al-Soud, Y. A., Al-Dweri, M. N. & Al-Masoudi, N. A. (2004). Farmaco, 59, 775-783.]); Labanauskas et al. (2004[Labanauskas, L., Udrenaite, E., Gaidelis, P. & Bruktus, A. (2004). Farmaco, 59, 255-259.]); Mathew et al. (2006[Mathew, V., Keshavayya, J. & Vaidya, V. P. (2006). Eur. J. Med. Chem. 41, 1048-1058.]); Ragenovic et al. (2001[Ragenovic, K. C., Dimova, V., Kakurinov, V., Labor, D. & Molnar, A. B. (2001). Molecules, 6, 815-824.]). For pharmacological activities of thia­diazo­les, see: Karegoudar et al. (2008[Karegoudar, P., Prasad, D. J., Ashok, M., Mahalinga, M., Poojary, B. & Holla, B. S. (2008). Eur. J. Med. Chem. 43, 808-815.]); Swamy et al. (2006[Swamy, S. N., Basappa, B. S., Prabhuswamy, P. B., Doreswamy, B. H., Prasad, J. S. & Rangappa, K. S. (2006). Eur. J. Med. Chem. 41, 531-538.]); Wang et al. (1996[Wang, Z., You, T., Xu, Y., Haijian, S. & Haoxin, S. (1996). Molecules, 1, 68-71.]). For the preparation, see: Bhalerao et al. (1994[Bhalerao, U. T., Muralikrishna, C. & Rani, B. R. (1994). Tetrahedron, 50, 4019-4024.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H22N4S

  • Mr = 314.45

  • Orthorhombic, P b c a

  • a = 11.4341 (5) Å

  • b = 9.1939 (4) Å

  • c = 30.9870 (13) Å

  • V = 3257.5 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 100.0 (1) K

  • 0.44 × 0.09 × 0.05 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.917, Tmax = 0.990

  • 40117 measured reflections

  • 5793 independent reflections

  • 4079 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.135

  • S = 1.04

  • 5793 reflections

  • 203 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯N1i 0.93 2.51 3.440 (2) 177
C15—H15ACg1ii 0.96 2.67 3.5090 (17) 146
C16—H16BCg1iii 0.97 2.93 3.6772 (18) 135
C17—H17BCg2iii 0.96 2.92 3.614 (2) 130
C15—H15BCg3ii 0.96 2.74 3.6335 (17) 155
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+1, -y-{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [x+1, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]. Cg1, Cg2 and Cg3 are the centroids of the S1/C1/N3/N4/C3, N1/N2/C1/N3/C2 and C5–C10 rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

1,2,4-Triazole and 1,3,4-thiadiazoles represent one of the most biologically active classes of compounds, possessing a wide spectrum of activities (Ragenovic et al., 2001; Al-Soud et al., 2004; Labanauskas et al., 2004). Various substituted 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles and their analogues are associated with diverse pharmacological activities such as antimicrobial (Swamy et al., 2006), antibacterial (Wang et al., 1996), antitubercular, anti-inflammatory and antifungal (Karegoudar et al., 2008). A triazolo-thiadiazole system may be viewed as a cyclic analogue of two very important components viz. thiosemicarbazide and biguanide, which often display diverse biological activities (Mathew et al., 2006). The required 4-amino-3-mercapto-5-ethyl-1,2,4-triazole was prepared in good yield through multi step reaction by using the method of Reid and Heindel (Bhalerao et al., 1994). Phosphorous oxychloride was necessary for this condensation, which activate the carbonyl group of aromatic acids and increases its electrophilicity to enhance the addition of triazole to it. Previously, we have reported the crystal structure of a triazolo-thiadiazole system carrying ibuprofen moiety (Fun et al., 2008). In continuation of our work, we report here the crystal structure of the title compound.

Bond lengths in the title molecule have normal values (Allen et al., 1987). The triazolothiadiazole (S1/C1/N2/N1/C2/N3/N4/C3) ring system is essentially planar, with a maximium deviation of 0.013 (1) Å for atom S1. The dihedral angle between the triazolothiadiazole ring system and the benzene ring (C5–C10) is 74.34 (6)°.

The crystal packing is consolidated by weak C—H···π interactions (Table 1) involving the thiadiazole (S1/C1/N3/N4/C3, centroid Cg1), triazole (N1/N2/C1/N3/C2, centroid Cg2) and benzene (C5–C10, centroid Cg3) rings, and C—H···N hydrogen bonds. The C—H···π interactions link the molecules into chains running along the b axis. The adjacent chains are cross-linked via C—H···N hydrogen bonds (Table 1) and short S···N contacts [3.2694 (14) Å or 3.2953 (14) Å] (Fig. 2).

Related literature top

For a related structure, see: Fun et al. (2008). For biological activities of triazole and 1,3,4-thiadiazoles, see: Al-Soud et al. (2004); Labanauskas et al. (2004); Mathew et al. (2006); Ragenovic et al. (2001). For pharmacological activities of thiadiazoles, see: Karegoudar et al. (2008); Swamy et al. (2006); Wang et al. (1996). For the preparation, see: Bhalerao et al. (1994). For bond-length data, see: Allen et al. (1987). Cg1, Cg2 and Cg3 are the centroids of the S1/C1/N3/N4/C3, N1/N2/C1/N3/C2 and C5–C10 rings, respectively.

Experimental top

A mixture of 4-amino-3-mercapto-5-ethyl-1,2,4-triazole (0.01 mol), 2-(4-isobutylphenyl)propanoic acid (0.01 mol) and POCl3 (10 ml) was refluxed in a water bath for 16 h. Excess POCl3 was removed under reduced pressure. The reaction mixture was cooled, poured into crushed ice, and neutralized with sodium bicarbonate solution. The resulting solid product was filtered off, washed with water, dried, and recrystallized from ethanol-dimethylformamide (1/1, v/v) (yield 49%; m.p. 369–371 K). Analysis (%) for C17H22N4S found (calculated): C 64.89 (64.96), H 6.97 (7.006), N 17.78 (17.83) S 10.11 (10.19).

Refinement top

H atoms were positioned geometrically [C–H = 0.93-0.98 Å) and refined using a riding model, with Uiso(H) = 1.2-1.5Ueq (C). A rotating-group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. Short S···N contacts are shown as dashed lines.
(I) top
Crystal data top
C17H22N4SF(000) = 1344
Mr = 314.45Dx = 1.282 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 8453 reflections
a = 11.4341 (5) Åθ = 2.2–29.2°
b = 9.1939 (4) ŵ = 0.20 mm1
c = 30.9870 (13) ÅT = 100 K
V = 3257.5 (2) Å3Needle, colourless
Z = 80.44 × 0.09 × 0.05 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5793 independent reflections
Radiation source: fine-focus sealed tube4079 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 32.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1717
Tmin = 0.917, Tmax = 0.990k = 1313
40117 measured reflectionsl = 4046
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0517P)2 + 2.0837P]
where P = (Fo2 + 2Fc2)/3
5793 reflections(Δ/σ)max = 0.001
203 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C17H22N4SV = 3257.5 (2) Å3
Mr = 314.45Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.4341 (5) ŵ = 0.20 mm1
b = 9.1939 (4) ÅT = 100 K
c = 30.9870 (13) Å0.44 × 0.09 × 0.05 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5793 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4079 reflections with I > 2σ(I)
Tmin = 0.917, Tmax = 0.990Rint = 0.048
40117 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.04Δρmax = 0.60 e Å3
5793 reflectionsΔρmin = 0.49 e Å3
203 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.53939 (3)0.06763 (4)0.266708 (12)0.01935 (10)
N10.62584 (12)0.31200 (15)0.16919 (4)0.0209 (3)
N20.53144 (12)0.24935 (15)0.19196 (4)0.0213 (3)
N30.69861 (12)0.18920 (14)0.22283 (4)0.0175 (3)
N40.76251 (12)0.11936 (15)0.25470 (4)0.0193 (3)
C10.57968 (14)0.17716 (17)0.22372 (5)0.0186 (3)
C20.72430 (14)0.27501 (17)0.18787 (5)0.0186 (3)
C30.68928 (14)0.05296 (16)0.27988 (5)0.0179 (3)
C40.72469 (14)0.03276 (17)0.31922 (5)0.0178 (3)
H4A0.67950.12330.31920.021*
C50.69098 (14)0.05277 (16)0.35984 (5)0.0182 (3)
C60.76816 (15)0.14778 (18)0.38014 (5)0.0206 (3)
H6A0.84390.15790.36960.025*
C70.73313 (15)0.22797 (18)0.41606 (5)0.0208 (3)
H7A0.78610.29060.42920.025*
C80.62023 (15)0.21602 (17)0.43254 (5)0.0194 (3)
C90.54403 (15)0.12017 (18)0.41213 (5)0.0204 (3)
H9A0.46830.10990.42260.025*
C100.57850 (15)0.03957 (17)0.37645 (5)0.0201 (3)
H10A0.52580.02400.36350.024*
C110.58366 (16)0.29969 (18)0.47213 (5)0.0222 (3)
H11A0.50670.34080.46710.027*
H11B0.63770.37980.47630.027*
C120.57973 (16)0.20868 (18)0.51362 (5)0.0225 (3)
H12A0.51740.13630.51050.027*
C130.69373 (19)0.1279 (2)0.52134 (6)0.0376 (5)
H13A0.68880.07470.54790.056*
H13B0.75690.19640.52300.056*
H13C0.70750.06140.49800.056*
C140.54985 (18)0.3048 (2)0.55214 (5)0.0309 (4)
H14A0.54530.24620.57770.046*
H14B0.47590.35150.54730.046*
H14C0.60950.37730.55570.046*
C150.85352 (14)0.07336 (18)0.31744 (5)0.0214 (3)
H15A0.86900.12600.29130.032*
H15B0.87270.13310.34180.032*
H15C0.90020.01340.31810.032*
C160.84512 (15)0.31316 (19)0.17390 (5)0.0223 (3)
H16A0.88720.22470.16690.027*
H16B0.88560.36020.19760.027*
C170.84575 (17)0.4136 (2)0.13488 (6)0.0279 (4)
H17A0.92500.43640.12720.042*
H17B0.80460.50160.14170.042*
H17C0.80800.36620.11100.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01693 (19)0.02416 (19)0.01697 (18)0.00140 (16)0.00137 (14)0.00051 (14)
N10.0194 (7)0.0226 (6)0.0208 (6)0.0010 (6)0.0020 (5)0.0008 (5)
N20.0206 (7)0.0228 (6)0.0204 (6)0.0003 (6)0.0035 (5)0.0018 (5)
N30.0152 (6)0.0223 (6)0.0150 (6)0.0028 (5)0.0032 (5)0.0016 (5)
N40.0180 (7)0.0236 (6)0.0162 (6)0.0037 (5)0.0028 (5)0.0004 (5)
C10.0173 (7)0.0207 (7)0.0179 (7)0.0010 (6)0.0022 (6)0.0016 (5)
C20.0201 (8)0.0202 (7)0.0156 (7)0.0018 (6)0.0018 (6)0.0014 (5)
C30.0170 (7)0.0216 (7)0.0152 (6)0.0025 (6)0.0012 (5)0.0031 (6)
C40.0157 (7)0.0203 (7)0.0174 (7)0.0008 (6)0.0005 (6)0.0007 (5)
C50.0177 (8)0.0213 (7)0.0156 (7)0.0016 (6)0.0016 (6)0.0029 (6)
C60.0160 (8)0.0273 (8)0.0187 (7)0.0008 (6)0.0009 (6)0.0040 (6)
C70.0206 (8)0.0243 (7)0.0176 (7)0.0033 (6)0.0021 (6)0.0005 (6)
C80.0213 (8)0.0211 (7)0.0159 (7)0.0011 (6)0.0011 (6)0.0009 (6)
C90.0169 (8)0.0261 (7)0.0183 (7)0.0009 (6)0.0000 (6)0.0000 (6)
C100.0199 (8)0.0231 (7)0.0173 (7)0.0015 (6)0.0019 (6)0.0001 (6)
C110.0229 (8)0.0220 (7)0.0216 (7)0.0004 (7)0.0003 (6)0.0025 (6)
C120.0250 (8)0.0251 (7)0.0173 (7)0.0009 (7)0.0011 (6)0.0027 (6)
C130.0396 (12)0.0501 (12)0.0232 (9)0.0150 (10)0.0006 (8)0.0033 (8)
C140.0390 (11)0.0327 (9)0.0209 (8)0.0027 (8)0.0081 (7)0.0058 (7)
C150.0191 (8)0.0254 (7)0.0197 (7)0.0004 (7)0.0011 (6)0.0021 (6)
C160.0197 (8)0.0283 (8)0.0190 (7)0.0001 (7)0.0025 (6)0.0018 (6)
C170.0250 (9)0.0339 (9)0.0250 (8)0.0023 (8)0.0005 (7)0.0058 (7)
Geometric parameters (Å, º) top
S1—C11.7323 (16)C9—H9A0.93
S1—C31.7669 (16)C10—H10A0.93
N1—C21.311 (2)C11—C121.535 (2)
N1—N21.412 (2)C11—H11A0.97
N2—C11.309 (2)C11—H11B0.97
N3—C11.365 (2)C12—C131.519 (3)
N3—C21.372 (2)C12—C141.524 (2)
N3—N41.3861 (17)C12—H12A0.98
N4—C31.297 (2)C13—H13A0.96
C2—C161.490 (2)C13—H13B0.96
C3—C41.507 (2)C13—H13C0.96
C4—C151.521 (2)C14—H14A0.96
C4—C51.533 (2)C14—H14B0.96
C4—H4A0.98C14—H14C0.96
C5—C101.391 (2)C15—H15A0.96
C5—C61.392 (2)C15—H15B0.96
C6—C71.394 (2)C15—H15C0.96
C6—H6A0.93C16—C171.522 (2)
C7—C81.393 (2)C16—H16A0.97
C7—H7A0.93C16—H16B0.97
C8—C91.391 (2)C17—H17A0.96
C8—C111.507 (2)C17—H17B0.96
C9—C101.388 (2)C17—H17C0.96
C1—S1—C387.95 (8)C8—C11—H11A108.7
C2—N1—N2109.27 (13)C12—C11—H11A108.7
C1—N2—N1105.09 (13)C8—C11—H11B108.7
C1—N3—C2106.02 (13)C12—C11—H11B108.7
C1—N3—N4118.26 (13)H11A—C11—H11B107.6
C2—N3—N4135.73 (14)C13—C12—C14110.66 (15)
C3—N4—N3107.84 (13)C13—C12—C11111.92 (15)
N2—C1—N3111.33 (14)C14—C12—C11110.27 (14)
N2—C1—S1139.54 (14)C13—C12—H12A108.0
N3—C1—S1109.12 (11)C14—C12—H12A108.0
N1—C2—N3108.30 (14)C11—C12—H12A108.0
N1—C2—C16127.38 (14)C12—C13—H13A109.5
N3—C2—C16124.30 (14)C12—C13—H13B109.5
N4—C3—C4124.01 (14)H13A—C13—H13B109.5
N4—C3—S1116.82 (12)C12—C13—H13C109.5
C4—C3—S1119.17 (12)H13A—C13—H13C109.5
C3—C4—C15111.06 (13)H13B—C13—H13C109.5
C3—C4—C5109.16 (12)C12—C14—H14A109.5
C15—C4—C5113.52 (13)C12—C14—H14B109.5
C3—C4—H4A107.6H14A—C14—H14B109.5
C15—C4—H4A107.6C12—C14—H14C109.5
C5—C4—H4A107.6H14A—C14—H14C109.5
C10—C5—C6118.29 (14)H14B—C14—H14C109.5
C10—C5—C4119.44 (14)C4—C15—H15A109.5
C6—C5—C4122.23 (14)C4—C15—H15B109.5
C5—C6—C7120.70 (15)H15A—C15—H15B109.5
C5—C6—H6A119.6C4—C15—H15C109.5
C7—C6—H6A119.6H15A—C15—H15C109.5
C8—C7—C6121.16 (15)H15B—C15—H15C109.5
C8—C7—H7A119.4C2—C16—C17112.23 (14)
C6—C7—H7A119.4C2—C16—H16A109.2
C9—C8—C7117.63 (14)C17—C16—H16A109.2
C9—C8—C11121.30 (15)C2—C16—H16B109.2
C7—C8—C11121.02 (15)C17—C16—H16B109.2
C10—C9—C8121.49 (15)H16A—C16—H16B107.9
C10—C9—H9A119.3C16—C17—H17A109.5
C8—C9—H9A119.3C16—C17—H17B109.5
C9—C10—C5120.72 (15)H17A—C17—H17B109.5
C9—C10—H10A119.6C16—C17—H17C109.5
C5—C10—H10A119.6H17A—C17—H17C109.5
C8—C11—C12114.32 (13)H17B—C17—H17C109.5
C2—N1—N2—C10.16 (17)N4—C3—C4—C5107.16 (17)
C1—N3—N4—C30.31 (18)S1—C3—C4—C572.12 (15)
C2—N3—N4—C3179.77 (16)C3—C4—C5—C1085.48 (17)
N1—N2—C1—N30.05 (17)C15—C4—C5—C10150.03 (14)
N1—N2—C1—S1178.90 (15)C3—C4—C5—C692.33 (17)
C2—N3—C1—N20.07 (17)C15—C4—C5—C632.2 (2)
N4—N3—C1—N2179.54 (13)C10—C5—C6—C70.3 (2)
C2—N3—C1—S1179.14 (10)C4—C5—C6—C7177.54 (14)
N4—N3—C1—S11.25 (17)C5—C6—C7—C80.3 (2)
C3—S1—C1—N2179.82 (19)C6—C7—C8—C90.6 (2)
C3—S1—C1—N31.31 (11)C6—C7—C8—C11178.26 (15)
N2—N1—C2—N30.20 (17)C7—C8—C9—C100.4 (2)
N2—N1—C2—C16178.03 (15)C11—C8—C9—C10178.00 (15)
C1—N3—C2—N10.17 (17)C8—C9—C10—C50.2 (2)
N4—N3—C2—N1179.34 (15)C6—C5—C10—C90.6 (2)
C1—N3—C2—C16178.13 (15)C4—C5—C10—C9177.35 (14)
N4—N3—C2—C162.4 (3)C9—C8—C11—C1275.4 (2)
N3—N4—C3—C4178.48 (13)C7—C8—C11—C12102.21 (18)
N3—N4—C3—S10.82 (16)C8—C11—C12—C1352.6 (2)
C1—S1—C3—N41.30 (13)C8—C11—C12—C14176.26 (15)
C1—S1—C3—C4178.03 (12)N1—C2—C16—C173.7 (2)
N4—C3—C4—C1518.7 (2)N3—C2—C16—C17178.28 (14)
S1—C3—C4—C15161.97 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···N1i0.932.513.440 (2)177
C15—H15A···Cg1ii0.962.673.5090 (17)146
C16—H16B···Cg1iii0.972.933.6772 (18)135
C17—H17B···Cg2iii0.962.923.614 (2)130
C15—H15B···Cg3ii0.962.743.6335 (17)155
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y3/2, z1/2; (iii) x+1, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC17H22N4S
Mr314.45
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)11.4341 (5), 9.1939 (4), 30.9870 (13)
V3)3257.5 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.44 × 0.09 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.917, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
40117, 5793, 4079
Rint0.048
(sin θ/λ)max1)0.753
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.135, 1.04
No. of reflections5793
No. of parameters203
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.49

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···N1i0.932.513.440 (2)177
C15—H15A···Cg1ii0.962.673.5090 (17)146
C16—H16B···Cg1iii0.972.933.6772 (18)135
C17—H17B···Cg2iii0.962.923.614 (2)130
C15—H15B···Cg3ii0.962.743.6335 (17)155
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y3/2, z1/2; (iii) x+1, y1/2, z1/2.
 

Footnotes

Permanent address,: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641114, India.

§Department of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574199, India.

Acknowledgements

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post–doctoral research fellowship. SKV and BK are grateful to Kerala State Council for Science, Technology and the Environment, Thiruvananthapuram, for financial assistance.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationAl-Soud, Y. A., Al-Dweri, M. N. & Al-Masoudi, N. A. (2004). Farmaco, 59, 775–783.  CrossRef PubMed CAS Google Scholar
First citationBhalerao, U. T., Muralikrishna, C. & Rani, B. R. (1994). Tetrahedron, 50, 4019–4024.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Jebas, S. R., Razak, I. A., Sujith, K. V., Patil, P. S., Kalluraya, B. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1076–o1077.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKaregoudar, P., Prasad, D. J., Ashok, M., Mahalinga, M., Poojary, B. & Holla, B. S. (2008). Eur. J. Med. Chem. 43, 808–815.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLabanauskas, L., Udrenaite, E., Gaidelis, P. & Bruktus, A. (2004). Farmaco, 59, 255–259.  CrossRef PubMed CAS Google Scholar
First citationMathew, V., Keshavayya, J. & Vaidya, V. P. (2006). Eur. J. Med. Chem. 41, 1048–1058.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRagenovic, K. C., Dimova, V., Kakurinov, V., Labor, D. & Molnar, A. B. (2001). Molecules, 6, 815–824.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwamy, S. N., Basappa, B. S., Prabhuswamy, P. B., Doreswamy, B. H., Prasad, J. S. & Rangappa, K. S. (2006). Eur. J. Med. Chem. 41, 531–538.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWang, Z., You, T., Xu, Y., Haijian, S. & Haoxin, S. (1996). Molecules, 1, 68–71.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1838-o1839
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds