metal-organic compounds
catena-Poly[[[diaquacopper(II)]-{μ-4,4′-[1,4-phenylenebis(methyleneimino)]dibenzoato}] monohydrate]
aSchool of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300191, People's Republic of China
*Correspondence e-mail: ouyang2162_cn@sina.com
The 22H18N2O4)(H2O)2]·H2O}n, contains a Cu ion situated on an inversion center, half of a centrosymmetric 4,4′-[1,4-phenylenebis(methyleneimino)]dibenzoate ligand, a coordinated water molecule in a general position and an uncoordinated water molecule situated on a twofold rotation axis. The distorted octahedral coordination geometry of the CuII ion is formed by six O atoms. The –NH– groups of the ligand are involved in intramolecular N—H⋯O hydrogen bonds, while the water molecules participate in the formation of a three-dimensional supramolecular framework via intermolecular O—H⋯O hydrogen bonds.
of the title polymeric compound, {[Cu(CRelated literature
For properties of 4,4′-(1,4-phenylenebis(methylene))bis(azanediyl)dibenzoic acid and its ramifications, see: Yamaguchi et al. (1991); Imhof & Göbel (2000). For supramolecular networks in related structures, see: Jing et al. (2006).
Experimental
Crystal data
|
Refinement
|
|
Data collection: RAPID-AUTO (Rigaku, 1998); cell RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808024379/cv2427sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808024379/cv2427Isup2.hkl
The 10 ml aqueous solution of CuCl2.2H2O (0.855 g, 5 mmol) was droped into a 10 ml DMF soution of 4,4'-(1,4-phenylenebis(methylene))bis(azanediyl)dibenzoic acid (1.882 g, 5 mmol). The mixture was stirred for half an hour. The resultant solution was filtered, and the filtrate was allowed to stand at room temperature for one week, to generate blue block crystals.
C-bound H atoms were geometrically positioned (C-H 0.93-0.97 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2Ueq(C) Water H atoms were positioned geometrically with O—H = 0.85 Å and Uiso(H) = 1.2Ueq(O). The N-bound H atom was located on a difference Fourier map, but placed in idealized position (N-H 0.84 Å) and refined as ridinh with Uiso(H) = 1.5Ueq(N).
Data collection: RAPID-AUTO (Rigaku, 1998); cell
RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. A portion of the polymeric chain in (I) with the atom numbering and 30% probalility displacement ellipsoids [symmetry codes: (A) 2-x, 1-y, 2-z; (B) 1-x, -y, 2-z] |
[Cu(C22H18N2O4)(H2O)2]·H2O | F(000) = 510 |
Mr = 491.98 | Dx = 1.468 Mg m−3 |
Monoclinic, P2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yc | Cell parameters from 7833 reflections |
a = 16.127 (6) Å | θ = 3.1–27.5° |
b = 5.1535 (17) Å | µ = 1.03 mm−1 |
c = 13.405 (8) Å | T = 291 K |
β = 92.76 (2)° | Block, blue |
V = 1112.8 (8) Å3 | 0.09 × 0.08 × 0.07 mm |
Z = 2 |
Rigaku R-AXIS RAPID diffractometer | 2534 independent reflections |
Radiation source: fine-focus sealed tube | 2008 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
Detector resolution: 10.0 pixels mm-1 | θmax = 27.5°, θmin = 3.0° |
ω scans | h = −20→20 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −6→6 |
Tmin = 0.913, Tmax = 0.932 | l = −17→16 |
10220 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.140 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0854P)2 + 0.6974P] where P = (Fo2 + 2Fc2)/3 |
2534 reflections | (Δ/σ)max < 0.001 |
147 parameters | Δρmax = 0.49 e Å−3 |
0 restraints | Δρmin = −0.49 e Å−3 |
[Cu(C22H18N2O4)(H2O)2]·H2O | V = 1112.8 (8) Å3 |
Mr = 491.98 | Z = 2 |
Monoclinic, P2/c | Mo Kα radiation |
a = 16.127 (6) Å | µ = 1.03 mm−1 |
b = 5.1535 (17) Å | T = 291 K |
c = 13.405 (8) Å | 0.09 × 0.08 × 0.07 mm |
β = 92.76 (2)° |
Rigaku R-AXIS RAPID diffractometer | 2534 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2008 reflections with I > 2σ(I) |
Tmin = 0.913, Tmax = 0.932 | Rint = 0.040 |
10220 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.140 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.49 e Å−3 |
2534 reflections | Δρmin = −0.49 e Å−3 |
147 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.63113 (17) | 0.1232 (5) | 0.8986 (2) | 0.0276 (6) | |
C2 | 0.69938 (16) | 0.1294 (5) | 0.82720 (19) | 0.0253 (5) | |
C3 | 0.69767 (18) | −0.0493 (6) | 0.7480 (2) | 0.0312 (6) | |
H3 | 0.6542 | −0.1676 | 0.7419 | 0.037* | |
C4 | 0.7583 (2) | −0.0552 (7) | 0.6790 (2) | 0.0383 (7) | |
H4 | 0.7554 | −0.1729 | 0.6264 | 0.046* | |
C5 | 0.82372 (19) | 0.1176 (7) | 0.6898 (2) | 0.0374 (7) | |
H5 | 0.8653 | 0.1143 | 0.6441 | 0.045* | |
C6 | 0.82859 (18) | 0.2944 (6) | 0.7668 (2) | 0.0333 (6) | |
H6 | 0.8733 | 0.4083 | 0.7724 | 0.040* | |
C7 | 0.76652 (16) | 0.3050 (5) | 0.8376 (2) | 0.0264 (5) | |
C8 | 0.83674 (18) | 0.6789 (5) | 0.9238 (2) | 0.0328 (6) | |
H8A | 0.8186 | 0.8126 | 0.9687 | 0.039* | |
H8B | 0.8427 | 0.7584 | 0.8590 | 0.039* | |
C9 | 0.92123 (18) | 0.5803 (6) | 0.9623 (2) | 0.0287 (6) | |
C10 | 0.9299 (2) | 0.3842 (8) | 1.0310 (3) | 0.0506 (9) | |
H10 | 0.8826 | 0.3031 | 1.0530 | 0.061* | |
C11 | 0.9926 (2) | 0.6965 (7) | 0.9314 (3) | 0.0484 (9) | |
H11 | 0.9888 | 0.8303 | 0.8848 | 0.058* | |
Cu1 | 0.5000 | 0.0000 | 1.0000 | 0.02769 (18) | |
N1 | 0.77292 (15) | 0.4809 (5) | 0.91439 (19) | 0.0326 (5) | |
H1 | 0.7305 | 0.4913 | 0.9484 | 0.049* | |
O1 | 0.56996 (16) | −0.2511 (5) | 1.07956 (19) | 0.0517 (6) | |
H1A | 0.5868 | −0.3765 | 1.0447 | 0.062* | |
H1B | 0.5446 | −0.3136 | 1.1282 | 0.062* | |
O2 | 0.57429 (13) | −0.0498 (4) | 0.88572 (16) | 0.0337 (5) | |
O3 | 0.62970 (13) | 0.2785 (4) | 0.97072 (15) | 0.0371 (5) | |
O4 | 0.5000 | 0.5811 (7) | 0.7500 | 0.0450 (8) | |
H4A | 0.5284 | 0.6994 | 0.7798 | 0.054* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0219 (13) | 0.0338 (14) | 0.0275 (14) | 0.0043 (11) | 0.0040 (10) | 0.0018 (11) |
C2 | 0.0218 (13) | 0.0306 (14) | 0.0237 (13) | 0.0036 (10) | 0.0039 (10) | 0.0019 (10) |
C3 | 0.0263 (14) | 0.0380 (15) | 0.0293 (15) | 0.0004 (11) | 0.0023 (11) | −0.0025 (11) |
C4 | 0.0366 (17) | 0.0494 (18) | 0.0294 (15) | 0.0018 (14) | 0.0073 (12) | −0.0090 (12) |
C5 | 0.0325 (16) | 0.0504 (18) | 0.0303 (15) | 0.0016 (14) | 0.0114 (12) | 0.0013 (13) |
C6 | 0.0259 (14) | 0.0403 (16) | 0.0345 (15) | −0.0032 (12) | 0.0080 (11) | 0.0032 (12) |
C7 | 0.0222 (13) | 0.0308 (13) | 0.0264 (13) | 0.0051 (10) | 0.0016 (10) | 0.0035 (10) |
C8 | 0.0263 (14) | 0.0307 (14) | 0.0410 (16) | 0.0006 (11) | −0.0027 (11) | −0.0008 (12) |
C9 | 0.0269 (14) | 0.0273 (12) | 0.0318 (14) | −0.0003 (11) | 0.0005 (11) | −0.0023 (11) |
C10 | 0.0249 (16) | 0.057 (2) | 0.070 (2) | −0.0083 (15) | 0.0041 (15) | 0.0301 (18) |
C11 | 0.0311 (16) | 0.053 (2) | 0.061 (2) | −0.0044 (15) | 0.0001 (15) | 0.0326 (17) |
Cu1 | 0.0237 (3) | 0.0304 (3) | 0.0297 (3) | −0.00293 (19) | 0.00892 (18) | −0.00458 (18) |
N1 | 0.0225 (12) | 0.0392 (14) | 0.0365 (13) | −0.0030 (10) | 0.0055 (10) | −0.0070 (10) |
O1 | 0.0498 (15) | 0.0521 (14) | 0.0537 (15) | 0.0052 (12) | 0.0086 (12) | −0.0021 (11) |
O2 | 0.0267 (10) | 0.0391 (11) | 0.0361 (11) | −0.0065 (8) | 0.0102 (8) | −0.0065 (8) |
O3 | 0.0335 (11) | 0.0444 (12) | 0.0346 (11) | −0.0045 (9) | 0.0133 (8) | −0.0111 (9) |
O4 | 0.048 (2) | 0.0425 (16) | 0.0444 (19) | 0.000 | 0.0024 (15) | 0.000 |
C1—O3 | 1.257 (3) | C9—C10 | 1.370 (4) |
C1—O2 | 1.284 (4) | C9—C11 | 1.379 (4) |
C1—C2 | 1.493 (4) | C10—C11i | 1.389 (5) |
C2—C3 | 1.405 (4) | C10—H10 | 0.9300 |
C2—C7 | 1.413 (4) | C11—C10i | 1.389 (5) |
C3—C4 | 1.378 (4) | C11—H11 | 0.9300 |
C3—H3 | 0.9300 | Cu1—O1ii | 1.992 (3) |
C4—C5 | 1.383 (5) | Cu1—O1 | 1.992 (3) |
C4—H4 | 0.9300 | Cu1—O2 | 2.006 (2) |
C5—C6 | 1.376 (4) | Cu1—O2ii | 2.006 (2) |
C5—H5 | 0.9300 | Cu1—O3 | 2.582 (2) |
C6—C7 | 1.413 (4) | Cu1—O3ii | 2.582 (2) |
C6—H6 | 0.9300 | Cu1—C1ii | 2.646 (3) |
C7—N1 | 1.372 (4) | N1—H1 | 0.8420 |
C8—N1 | 1.450 (4) | O1—H1A | 0.8500 |
C8—C9 | 1.521 (4) | O1—H1B | 0.8500 |
C8—H8A | 0.9700 | O4—H4A | 0.8500 |
C8—H8B | 0.9700 | ||
O3—C1—O2 | 120.4 (3) | C9—C11—C10i | 120.7 (3) |
O3—C1—C2 | 121.4 (3) | C9—C11—H11 | 119.7 |
O2—C1—C2 | 118.2 (2) | C10i—C11—H11 | 119.7 |
C3—C2—C7 | 118.8 (2) | O1ii—Cu1—O1 | 180.00 (13) |
C3—C2—C1 | 118.8 (2) | O1ii—Cu1—O2 | 91.02 (10) |
C7—C2—C1 | 122.4 (2) | O1—Cu1—O2 | 88.98 (10) |
C4—C3—C2 | 122.2 (3) | O1ii—Cu1—O2ii | 88.98 (10) |
C4—C3—H3 | 118.9 | O1—Cu1—O2ii | 91.02 (10) |
C2—C3—H3 | 118.9 | O2—Cu1—O2ii | 180.000 (1) |
C3—C4—C5 | 118.5 (3) | O1ii—Cu1—O3 | 89.98 (10) |
C3—C4—H4 | 120.7 | O1—Cu1—O3 | 90.02 (10) |
C5—C4—H4 | 120.7 | O2—Cu1—O3 | 55.75 (7) |
C6—C5—C4 | 121.4 (3) | O2ii—Cu1—O3 | 124.25 (7) |
C6—C5—H5 | 119.3 | O1ii—Cu1—O3ii | 90.02 (10) |
C4—C5—H5 | 119.3 | O1—Cu1—O3ii | 89.98 (10) |
C5—C6—C7 | 120.8 (3) | O2—Cu1—O3ii | 124.25 (7) |
C5—C6—H6 | 119.6 | O2ii—Cu1—O3ii | 55.75 (7) |
C7—C6—H6 | 119.6 | O3—Cu1—O3ii | 180.0 |
N1—C7—C6 | 120.0 (3) | O1ii—Cu1—C1ii | 89.14 (10) |
N1—C7—C2 | 121.8 (2) | O1—Cu1—C1ii | 90.86 (10) |
C6—C7—C2 | 118.3 (2) | O2—Cu1—C1ii | 152.03 (9) |
N1—C8—C9 | 114.5 (2) | O2ii—Cu1—C1ii | 27.97 (9) |
N1—C8—H8A | 108.6 | O3—Cu1—C1ii | 152.22 (7) |
C9—C8—H8A | 108.6 | O3ii—Cu1—C1ii | 27.78 (7) |
N1—C8—H8B | 108.6 | C7—N1—C8 | 123.9 (2) |
C9—C8—H8B | 108.6 | C7—N1—H1 | 114.5 |
H8A—C8—H8B | 107.6 | C8—N1—H1 | 120.0 |
C10—C9—C11 | 117.6 (3) | Cu1—O1—H1A | 112.8 |
C10—C9—C8 | 122.3 (3) | Cu1—O1—H1B | 112.1 |
C11—C9—C8 | 120.0 (3) | H1A—O1—H1B | 108.2 |
C9—C10—C11i | 121.7 (3) | C1—O2—Cu1 | 104.92 (17) |
C9—C10—H10 | 119.1 | C1—O3—Cu1 | 78.92 (16) |
C11i—C10—H10 | 119.1 |
Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) −x+1, −y, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3 | 0.84 | 2.00 | 2.676 (3) | 137 |
O1—H1A···O3iii | 0.85 | 2.17 | 3.011 (3) | 174 |
O1—H1B···O4ii | 0.85 | 2.28 | 3.104 (3) | 164 |
O4—H4A···O2iv | 0.85 | 2.03 | 2.855 (3) | 163 |
Symmetry codes: (ii) −x+1, −y, −z+2; (iii) x, y−1, z; (iv) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C22H18N2O4)(H2O)2]·H2O |
Mr | 491.98 |
Crystal system, space group | Monoclinic, P2/c |
Temperature (K) | 291 |
a, b, c (Å) | 16.127 (6), 5.1535 (17), 13.405 (8) |
β (°) | 92.76 (2) |
V (Å3) | 1112.8 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.03 |
Crystal size (mm) | 0.09 × 0.08 × 0.07 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.913, 0.932 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10220, 2534, 2008 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.140, 1.03 |
No. of reflections | 2534 |
No. of parameters | 147 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.49, −0.49 |
Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3 | 0.84 | 2.00 | 2.676 (3) | 137.3 |
O1—H1A···O3i | 0.85 | 2.17 | 3.011 (3) | 173.7 |
O1—H1B···O4ii | 0.85 | 2.28 | 3.104 (3) | 163.6 |
O4—H4A···O2iii | 0.85 | 2.03 | 2.855 (3) | 162.5 |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y, −z+2; (iii) x, y+1, z. |
Acknowledgements
The authors acknowledge the financial support from the National Natural Science Foundation of China (grant 20771082).
References
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Imhof, W. & Göbel, A. (2000). J. Organomet. Chem. 610, 102–111. Web of Science CrossRef CAS Google Scholar
Jing, L.-H., Zhang, H.-X. & Gu, S.-J. (2006). Acta Cryst. E62, o4583–o4584. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yamaguchi, K., Matsumura, G., Kagechika, H., Azumaya, I., Ito, Y., Itai, A. & Shudo, K. (1991). J. Am. Chem. Soc. 113, 5474–5475. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, 4,4'-(1,4-phenylenebis(methylene))bis(azanediyl)dibenzoic acid and its ramifications have become an area of interest owing to their various properties (Yamaguchi et al., 1991; Imhof & Göbel, 2000). They are also used for building up supramolecular networks through hydrogen bonds (Jing et al., 2006). Of special interest are the low-dimensional structural motifs related with highly anisotropic physical properties. Here we report the crystal structure of the title compound, (I).
For the title polymeric compound, (I), structure determination revealed a presence in the asymmetric unit of a half of centrosymmetric 4,4'-(1,4-phenylenebis(methylene))bis(azanediyl)dibenzoic ligand, one Cu ion lies on the inversion ctnter, one coordinated water molecule locates on the twofold axis and one lattice water molecule locates in the general positon. The Cu ion is coordinated by six oxygen atoms with four of which from 4,4'-(1,4-phenylenebis(methylene))bis(azanediyl)dibenzoic ligand and the other two from water moleculers into a distorted octahedral geometry (Table 1). The neighbouring Cu ions are linked by 4,4'-(1,4-phenylenebis(methylene))bis(azanediyl)dibenzoic ligand to form an infinite plolymeric zigzag chain (Fig. 1). The amino groups of the ligand are involved in intramolecular N—H···O hydrogen bonds, wihle water molecules participate in formation of three-dimensional supramolecular framework via intermolecular O—H···O hydrogen bonds (Table 2).