metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-3-Ferrocenyl-2-(3-pyrid­yl)­acrylo­nitrile

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: hyye@seu.edu.cn

(Received 4 June 2008; accepted 8 August 2008; online 16 August 2008)

The mol­ecular structure of the title compound, [Fe(C5H5)(C13H9N2)], (I)[link], is analogous to that of the compound (Z)-3-ferrocenyl-2-phenyl­acrylonitrile [Cao & Ye (2008). Acta Cryst. E64, m822], (II), with the pyridine ring in (I)[link] replacing the benzene ring in (II). While the corresponding bond distances and angles in the two compounds show no significant differences, the two dihedral angles between the planes through the acrylonitrile group and the two rings attached to it (substituted Cp and pyridine) of 16.8 (4) and 20.1 (4)° in (I)[link] are different from the corresponding dihedral angles [19.6 (3) and 6.5 (4)°] in (II). The unsubstituted ring is disordered over two positions, with site-occupancy factors of 0.70 (1) and 0.30 (1). The major and minor components of the disordered ring are almost coplanar and are also parallel to the substituted cyclo­penta­diene ring plane, with a dihedral angle of 0.3 (6)°.

Related literature

For background to the chemistry of ferrocene, see: Long (1995[Long, N. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 21-37.]); Roberto et al. (2000[Roberto, D., Ugo, R., Bruni, S., Cariati, E., Cariati, F., Fantucci, P., Invernizzi, I., Quici, S., Ledoux, I. & Zyss, J. (2000). Organometallics, 19, 1775-1788.]); Togni & Hayashi (1995[Togni, A. & Hayashi, T. (1995). Editors. Ferrocenes. Weinheim: VCH.]). For the structure of an analogous compound, see: Cao & Ye (2008[Cao, L.-Y. & Ye, H.-Y. (2008). Acta Cryst. E64, m822.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C13H9N2)]

  • Mr = 314.16

  • Monoclinic, P 21 /c

  • a = 11.552 (3) Å

  • b = 9.2557 (15) Å

  • c = 14.458 (5) Å

  • β = 111.679 (15)°

  • V = 1436.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 293 (2) K

  • 0.25 × 0.2 × 0.1 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.896, Tmax = 1.000 (expected range = 0.808–0.901)

  • 14447 measured reflections

  • 3290 independent reflections

  • 2008 reflections with I > 2σ(I)

  • Rint = 0.084

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.107

  • S = 0.99

  • 3290 reflections

  • 206 parameters

  • 22 restraints

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The chemistry of ferrocene has received much attention because of its applications in many fields, such as in catalysis, organic or organometallic synthesis and materials design (Togni & Hayashi, 1995). The use of ferrocene and its derivatives as non-linear optical (NLO) materials has also been reported (Long, 1995; Roberto et al., 2000). As part of our on-going studies into the chemistry of ferrocene, we report the crystal structure of the title compound (I), Fig. 1.

I is analogous to the compound (Z)-2-Phenyl-3-(ferrocenyl)acrylonitrile (II) (Cao & Ye, 2008), except for the replacement of the benzene ring in II by the pyridine ring in I. The two molecular structures show no significant differences between the corresponding bond distances and angles. Although the two compounds have the same spacegroup (P 21/c) their crystal structures are obviously different, since the unit cell parameters differ. This is because the two dihedral angles between the planes through the acrylonitrile group and the two attached rings (the substituted Cp ring, C1–C5, and the pyridine ring, C13–C18) [16.8 (4)°, 20.1 (4)°] in I are different from the corresponding dihedral angles [6(2)°, 6.5 (4)°] in II. The unsubstituted Cp ring is disordered over two positions, with site occupancy factors 0.70 (1) and 0.30 (1). The major (C6–C10) and the minor (C6'–C10') components of the disordered ring are almost coplanar with mean deviations of 0.0239 Å from the planes. Both disordered rings are parallel to the C1–C5 ring plane with dihedral angles of 0.3 (6)°. The major component is in an eclipsed configuration relative to the substituted Cp ring with a C1-Cg1-Cg2-C10 torsion angle of -0.2 (4)°; while the minor component is staggered, with a C1-Cg1-Cg2-C10' torsion angle of 24 (2)° [Cg(1) denotes the centroid of the substituted Cp ligand; Cg(2) denotes the centroid of the unsubstituted Cp ligand]. The iron-ring centroid distances are Fe—Cg(1), 1.638 (2) Å; Fe—Cg(2), 1.6282 (5) Å. Within the acrylonitrile unit, bond distances and angles are normal (Allen et al., 1987).

Related literature top

For background to the chemistry of ferrocene, see: Long (1995); Roberto et al. (2000); Togni & Hayashi (1995). For the structure of an analogous compound, see: Cao & Ye (2008). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by an analogous procedure to that for (Z)-2-Phenyl-3-(ferrocenyl)acrylonitrile (Cao & Ye, 2008). Red crystals suitable for X-ray analysis were obtained by slow evaporation of a saturated ethyl ether solution.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93Å, Uiso=1.2Ueq (C). The unsubstituted Cp ring is disordered over two positions with site occupancy factors 0.70 (1) and 0.30 (1) respectively; corresponding C atoms were restrained to have the same anisotropic displacement parameters.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of I showing the atom numbering scheme with displacement ellipsoids drawn at the 30% probability level. For clarity only atoms of the major disorder component of the unsubstituted cyclopentadiene ring are included.
(Z)-3-Ferrocenyl-2-(3-pyridyl)acrylonitrile top
Crystal data top
[Fe(C5H5)(C13H9N2)]F(000) = 648
Mr = 314.16Dx = 1.453 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2602 reflections
a = 11.552 (3) Åθ = 2.7–27.5°
b = 9.2557 (15) ŵ = 1.04 mm1
c = 14.458 (5) ÅT = 293 K
β = 111.679 (15)°Block, red
V = 1436.6 (7) Å30.25 × 0.2 × 0.1 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
3290 independent reflections
Radiation source: fine-focus sealed tube2008 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.7°
ω scansh = 1414
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1212
Tmin = 0.896, Tmax = 1.000l = 1818
14447 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0415P)2]
where P = (Fo2 + 2Fc2)/3
3290 reflections(Δ/σ)max = 0.006
206 parametersΔρmax = 0.24 e Å3
22 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Fe(C5H5)(C13H9N2)]V = 1436.6 (7) Å3
Mr = 314.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.552 (3) ŵ = 1.04 mm1
b = 9.2557 (15) ÅT = 293 K
c = 14.458 (5) Å0.25 × 0.2 × 0.1 mm
β = 111.679 (15)°
Data collection top
Rigaku SCXmini
diffractometer
3290 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2008 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 1.000Rint = 0.084
14447 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05322 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 0.99Δρmax = 0.24 e Å3
3290 reflectionsΔρmin = 0.27 e Å3
206 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.23682 (4)0.84541 (5)0.05742 (3)0.04190 (16)
C10.2053 (3)0.6292 (3)0.0517 (2)0.0394 (8)
C20.3166 (3)0.6649 (4)0.1352 (2)0.0467 (8)
H20.39630.63060.14630.056*
C30.2840 (3)0.7601 (4)0.1970 (3)0.0546 (9)
H30.33910.79940.25600.065*
C40.1550 (4)0.7868 (4)0.1557 (3)0.0541 (9)
H40.11030.84590.18260.065*
C50.1059 (3)0.7077 (3)0.0662 (3)0.0470 (8)
H50.02270.70640.02360.056*
C60.3482 (8)0.9264 (10)0.0106 (9)0.071 (2)0.699 (7)
H60.42000.88290.01200.085*0.699 (7)
C70.3419 (10)1.0228 (12)0.0626 (9)0.077 (2)0.699 (7)
H70.40921.05450.11740.092*0.699 (7)
C80.2160 (10)1.0636 (7)0.0390 (7)0.0603 (19)0.699 (7)
H80.18571.12520.07560.072*0.699 (7)
C90.1453 (6)0.9930 (9)0.0507 (6)0.0509 (16)0.699 (7)
H90.05971.00140.08400.061*0.699 (7)
C100.2262 (10)0.9071 (8)0.0817 (5)0.0542 (18)0.699 (7)
H100.20330.84900.13810.065*0.699 (7)
C10'0.303 (3)0.904 (2)0.0488 (16)0.0542 (18)0.301 (7)
H10'0.33100.84120.08600.065*0.301 (7)
C9'0.1810 (19)0.950 (2)0.0742 (13)0.0509 (16)0.301 (7)
H9'0.11350.92270.13040.061*0.301 (7)
C8'0.178 (2)1.039 (2)0.0049 (18)0.0603 (19)0.301 (7)
H8'0.10621.08630.00650.072*0.301 (7)
C7'0.298 (3)1.056 (3)0.075 (2)0.077 (2)0.301 (7)
H7'0.31941.11080.13260.092*0.301 (7)
C6'0.377 (2)0.967 (3)0.041 (2)0.071 (2)0.301 (7)
H6'0.46200.95430.07300.085*0.301 (7)
C110.1881 (3)0.5403 (3)0.0341 (2)0.0403 (8)
H11A0.11450.55580.08820.048*
C120.2634 (3)0.4379 (3)0.0470 (2)0.0381 (7)
C130.2356 (3)0.3444 (3)0.1358 (2)0.0396 (7)
C140.3280 (3)0.2680 (4)0.1533 (3)0.0576 (10)
H14A0.41080.27900.11120.069*
C150.2968 (4)0.1755 (4)0.2333 (3)0.0660 (11)
H15A0.35810.12370.24630.079*
C160.1742 (4)0.1610 (4)0.2935 (3)0.0642 (11)
H16A0.15390.09780.34710.077*
C180.1149 (3)0.3232 (4)0.2021 (3)0.0547 (9)
H18A0.05170.37560.19220.066*
C190.3819 (3)0.4094 (4)0.0320 (3)0.0484 (9)
N10.4752 (3)0.3827 (4)0.0921 (2)0.0740 (10)
N170.0830 (3)0.2324 (4)0.2791 (2)0.0676 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0474 (3)0.0360 (3)0.0422 (3)0.0029 (2)0.0163 (2)0.0004 (2)
C10.0403 (18)0.0351 (19)0.0415 (18)0.0043 (14)0.0137 (16)0.0013 (14)
C20.0431 (19)0.045 (2)0.0422 (18)0.0018 (16)0.0043 (16)0.0055 (16)
C30.069 (3)0.053 (2)0.0353 (18)0.010 (2)0.0118 (19)0.0001 (17)
C40.066 (3)0.056 (2)0.048 (2)0.0045 (19)0.029 (2)0.0031 (17)
C50.045 (2)0.049 (2)0.048 (2)0.0048 (16)0.0181 (17)0.0001 (16)
C60.060 (4)0.069 (6)0.089 (7)0.006 (4)0.033 (4)0.026 (5)
C70.082 (7)0.056 (7)0.079 (5)0.027 (5)0.015 (5)0.003 (3)
C80.096 (6)0.028 (3)0.052 (5)0.002 (3)0.021 (4)0.007 (3)
C90.065 (4)0.041 (4)0.050 (4)0.014 (3)0.024 (3)0.004 (3)
C100.074 (5)0.049 (3)0.053 (4)0.017 (4)0.039 (4)0.016 (3)
C10'0.074 (5)0.049 (3)0.053 (4)0.017 (4)0.039 (4)0.016 (3)
C9'0.065 (4)0.041 (4)0.050 (4)0.014 (3)0.024 (3)0.004 (3)
C8'0.096 (6)0.028 (3)0.052 (5)0.002 (3)0.021 (4)0.007 (3)
C7'0.082 (7)0.056 (7)0.079 (5)0.027 (5)0.015 (5)0.003 (3)
C6'0.060 (4)0.069 (6)0.089 (7)0.006 (4)0.033 (4)0.026 (5)
C110.0376 (18)0.0352 (18)0.0442 (19)0.0051 (14)0.0104 (16)0.0011 (14)
C120.0364 (17)0.0347 (18)0.0397 (18)0.0016 (15)0.0100 (15)0.0035 (14)
C130.0426 (18)0.0365 (18)0.0412 (17)0.0005 (15)0.0174 (16)0.0062 (15)
C140.050 (2)0.063 (3)0.060 (2)0.0082 (19)0.019 (2)0.002 (2)
C150.081 (3)0.065 (3)0.059 (2)0.022 (2)0.034 (2)0.000 (2)
C160.089 (3)0.056 (2)0.048 (2)0.006 (2)0.025 (2)0.0055 (19)
C180.052 (2)0.062 (3)0.049 (2)0.0017 (18)0.0176 (19)0.0116 (18)
C190.053 (2)0.040 (2)0.051 (2)0.0033 (17)0.018 (2)0.0017 (16)
N10.057 (2)0.080 (3)0.064 (2)0.0226 (18)0.0024 (18)0.0045 (18)
N170.068 (2)0.072 (2)0.056 (2)0.0028 (18)0.0149 (18)0.0192 (17)
Geometric parameters (Å, º) top
Fe1—C8'2.009 (18)C9—C101.420 (8)
Fe1—C9'2.018 (15)C9—H90.9300
Fe1—C52.018 (3)C10—H100.9300
Fe1—C72.026 (10)C10'—C9'1.38 (2)
Fe1—C10'2.026 (18)C10'—C6'1.39 (3)
Fe1—C62.029 (8)C10'—H10'0.9300
Fe1—C12.030 (3)C9'—C8'1.31 (2)
Fe1—C22.035 (3)C9'—H9'0.9300
Fe1—C82.040 (6)C8'—C7'1.45 (3)
Fe1—C32.045 (3)C8'—H8'0.9300
Fe1—C42.049 (3)C7'—C6'1.44 (3)
Fe1—C102.050 (6)C7'—H7'0.9300
C1—C51.439 (4)C6'—H6'0.9300
C1—C111.440 (4)C11—C121.345 (4)
C1—C21.440 (4)C11—H11A0.9300
C2—C31.401 (5)C12—C191.446 (5)
C2—H20.9300C12—C131.482 (4)
C3—C41.408 (5)C13—C141.379 (4)
C3—H30.9300C13—C181.384 (4)
C4—C51.411 (4)C14—C151.377 (5)
C4—H40.9300C14—H14A0.9300
C5—H50.9300C15—C161.368 (5)
C6—C71.405 (12)C15—H15A0.9300
C6—C101.416 (10)C16—N171.323 (4)
C6—H60.9300C16—H16A0.9300
C7—C81.417 (11)C18—N171.334 (4)
C7—H70.9300C18—H18A0.9300
C8—C91.411 (8)C19—N11.134 (4)
C8—H80.9300
C8'—Fe1—C9'37.9 (6)C4—C5—C1108.9 (3)
C8'—Fe1—C5117.0 (7)C4—C5—Fe170.89 (19)
C9'—Fe1—C5112.2 (5)C1—C5—Fe169.61 (18)
C8'—Fe1—C752.6 (7)C4—C5—H5125.6
C9'—Fe1—C767.9 (6)C1—C5—H5125.6
C5—Fe1—C7164.2 (4)Fe1—C5—H5125.5
C8'—Fe1—C10'65.1 (8)C7—C6—C10108.2 (8)
C9'—Fe1—C10'40.0 (7)C7—C6—Fe169.6 (5)
C5—Fe1—C10'136.0 (7)C10—C6—Fe170.5 (4)
C7—Fe1—C10'54.7 (6)C7—C6—H6125.9
C8'—Fe1—C667.8 (7)C10—C6—H6125.9
C9'—Fe1—C653.4 (6)Fe1—C6—H6125.6
C5—Fe1—C6152.7 (4)C6—C7—C8108.8 (8)
C7—Fe1—C640.5 (3)C6—C7—Fe169.8 (5)
C10'—Fe1—C618.1 (6)C8—C7—Fe170.1 (5)
C8'—Fe1—C1146.7 (7)C6—C7—H7125.6
C9'—Fe1—C1116.4 (5)C8—C7—H7125.6
C5—Fe1—C141.65 (12)Fe1—C7—H7126.0
C7—Fe1—C1153.6 (3)C9—C8—C7107.0 (7)
C10'—Fe1—C1110.3 (6)C9—C8—Fe170.2 (3)
C6—Fe1—C1118.7 (3)C7—C8—Fe169.1 (5)
C8'—Fe1—C2171.8 (7)C9—C8—H8126.5
C9'—Fe1—C2146.9 (7)C7—C8—H8126.5
C5—Fe1—C269.11 (13)Fe1—C8—H8125.7
C7—Fe1—C2120.1 (3)C8—C9—C10109.0 (6)
C10'—Fe1—C2114.8 (7)C8—C9—Fe169.4 (3)
C6—Fe1—C2109.4 (3)C10—C9—Fe169.7 (3)
C1—Fe1—C241.49 (12)C8—C9—H9125.5
C8'—Fe1—C818.9 (5)C10—C9—H9125.5
C9'—Fe1—C854.5 (5)Fe1—C9—H9126.9
C5—Fe1—C8125.4 (3)C6—C10—C9107.1 (6)
C7—Fe1—C840.8 (3)C6—C10—Fe168.9 (4)
C10'—Fe1—C872.1 (6)C9—C10—Fe169.8 (3)
C6—Fe1—C868.6 (4)C6—C10—H10126.5
C1—Fe1—C8163.7 (3)C9—C10—H10126.5
C2—Fe1—C8153.2 (3)Fe1—C10—H10126.5
C8'—Fe1—C3135.2 (7)C9'—C10'—C6'109.4 (18)
C9'—Fe1—C3172.9 (7)C9'—C10'—Fe169.7 (10)
C5—Fe1—C368.07 (14)C6'—C10'—Fe171.3 (13)
C7—Fe1—C3109.8 (3)C9'—C10'—H10'125.3
C10'—Fe1—C3144.5 (8)C6'—C10'—H10'125.3
C6—Fe1—C3129.4 (3)Fe1—C10'—H10'125.3
C1—Fe1—C368.78 (13)C8'—C9'—C10'107.6 (17)
C2—Fe1—C340.17 (13)C8'—C9'—Fe170.7 (10)
C8—Fe1—C3119.2 (3)C10'—C9'—Fe170.3 (9)
C8'—Fe1—C4112.4 (6)C8'—C9'—H9'126.2
C9'—Fe1—C4135.5 (7)C10'—C9'—H9'126.2
C5—Fe1—C440.59 (13)Fe1—C9'—H9'124.4
C7—Fe1—C4127.7 (4)C9'—C8'—C7'112.8 (19)
C10'—Fe1—C4175.1 (8)C9'—C8'—Fe171.4 (10)
C6—Fe1—C4166.2 (4)C7'—C8'—Fe171.1 (14)
C1—Fe1—C469.28 (13)C9'—C8'—H8'123.6
C2—Fe1—C468.28 (14)C7'—C8'—H8'123.6
C8—Fe1—C4106.9 (2)Fe1—C8'—H8'125.5
C3—Fe1—C440.22 (13)C6'—C7'—C8'102 (2)
C8'—Fe1—C1054.8 (6)C6'—C7'—Fe169.4 (16)
C9'—Fe1—C1019.7 (5)C8'—C7'—Fe167.2 (13)
C5—Fe1—C10117.6 (3)C6'—C7'—H7'129.1
C7—Fe1—C1068.2 (4)C8'—C7'—H7'129.1
C10'—Fe1—C1023.7 (6)Fe1—C7'—H7'125.9
C6—Fe1—C1040.6 (3)C10'—C6'—C7'108 (2)
C1—Fe1—C10106.8 (2)C10'—C6'—Fe168.9 (13)
C2—Fe1—C10128.4 (3)C7'—C6'—Fe169.7 (17)
C8—Fe1—C1068.6 (3)C10'—C6'—H6'125.9
C3—Fe1—C10166.7 (3)C7'—C6'—H6'125.9
C4—Fe1—C10151.4 (3)Fe1—C6'—H6'127.0
C5—C1—C11123.4 (3)C12—C11—C1129.1 (3)
C5—C1—C2106.0 (3)C12—C11—H11A115.4
C11—C1—C2130.6 (3)C1—C11—H11A115.4
C5—C1—Fe168.74 (18)C11—C12—C19119.4 (3)
C11—C1—Fe1124.4 (2)C11—C12—C13125.9 (3)
C2—C1—Fe169.45 (18)C19—C12—C13114.6 (3)
C3—C2—C1108.2 (3)C14—C13—C18116.8 (3)
C3—C2—Fe170.3 (2)C14—C13—C12121.6 (3)
C1—C2—Fe169.06 (17)C18—C13—C12121.6 (3)
C3—C2—H2125.9C15—C14—C13119.6 (3)
C1—C2—H2125.9C15—C14—H14A120.2
Fe1—C2—H2126.3C13—C14—H14A120.2
C2—C3—C4109.4 (3)C16—C15—C14118.9 (4)
C2—C3—Fe169.54 (19)C16—C15—H15A120.5
C4—C3—Fe170.06 (19)C14—C15—H15A120.5
C2—C3—H3125.3N17—C16—C15123.3 (4)
C4—C3—H3125.3N17—C16—H16A118.3
Fe1—C3—H3126.7C15—C16—H16A118.3
C3—C4—C5107.6 (3)N17—C18—C13124.4 (3)
C3—C4—Fe169.7 (2)N17—C18—H18A117.8
C5—C4—Fe168.52 (19)C13—C18—H18A117.8
C3—C4—H4126.2N1—C19—C12177.5 (4)
C5—C4—H4126.2C16—N17—C18117.1 (3)
Fe1—C4—H4127.1

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C13H9N2)]
Mr314.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.552 (3), 9.2557 (15), 14.458 (5)
β (°) 111.679 (15)
V3)1436.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.25 × 0.2 × 0.1
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.896, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14447, 3290, 2008
Rint0.084
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.107, 0.99
No. of reflections3290
No. of parameters206
No. of restraints22
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.27

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by a Start-up Grant awarded to H-YY by Southeast University.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationCao, L.-Y. & Ye, H.-Y. (2008). Acta Cryst. E64, m822.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLong, N. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 21–37.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRoberto, D., Ugo, R., Bruni, S., Cariati, E., Cariati, F., Fantucci, P., Invernizzi, I., Quici, S., Ledoux, I. & Zyss, J. (2000). Organometallics, 19, 1775–1788.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTogni, A. & Hayashi, T. (1995). Editors. Ferrocenes. Weinheim: VCH.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds