organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(3-Phenyl­allyl­­idene)isonicotino­hydrazide

aDepartment of Applied Chemistry, College of Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: bfyu2008@yahoo.com.cn

(Received 3 July 2008; accepted 14 August 2008; online 20 August 2008)

The asymmetric unit of the title compound, C15H13N3O, contains two similar mol­ecules. Each mol­ecule is non-planar, as indicated by the dihedral angles between the pyridine and benzene rings of 45.2 (2) and 56.6 (2)°. The crystal structure is consolidated by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Kahwa et al. (1986[Kahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.]); Qian et al. (2006[Qian, H.-Y., Yin, Z.-G., Jia, J., Liu, S.-M. & Feng, L.-Q. (2006). Acta Cryst. E62, o3623-o3624.]); Santos et al. (2001[Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3O

  • Mr = 251.28

  • Monoclinic, P c

  • a = 12.608 (8) Å

  • b = 11.023 (7) Å

  • c = 10.044 (7) Å

  • β = 105.94 (3)°

  • V = 1342.2 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 291 (2) K

  • 0.30 × 0.26 × 0.24 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.98, Tmax = 0.98

  • 11645 measured reflections

  • 3110 independent reflections

  • 2784 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.134

  • S = 1.01

  • 3110 reflections

  • 349 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.86 (5) 2.19 (5) 3.050 (6) 174 (3)
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Interest in the chemistry of Schiff bases has increased considerably in recent years, mainly due to their novel properties and their application in the development of various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). Structural information of Schiff base derivatives is useful in studying their coordination chemisty. As part of our research, we have synthesized the title compound (I) and report its crystal structure here.

The molecular structure is shown in Fig. 1. Each molecule is non-planar, with dihedral angles of 45.2 (2) and 56.6 (2)° between the pyridine ring and the benzene ring for the two molecules. Bond lengths and angles agree with those found for isonicotinohydrazide derivatives (Qian et al., 2006).

Intermolecular N—H···O hydrogen bonds link pairs of molecules.

Related literature top

For related literature, see: Kahwa et al. (1986); Qian et al. (2006); Santos et al. (2001).

Experimental top

Pyridine-4-carboxylic acid hydrazide (1 mmol, 0.137 g) was dissolved in anhydrous methanol, whereafter H2SO4 (98%, 0.5 ml) was added and the mixture was stirred for several minutes at 351 K. A solution of cinnamaldehyde (1 mmol, 0.132 g) in methanol (8 ml) was then added dropwise and the mixture was stirred under reflux for 2 h. The product was isolated and recrystallized from dichloromethane, brown single crystals of (I) were obtained after 2 d.

Refinement top

H atoms on N2 and N5 were identified by difference Fourier map and refined isotropically. All other H atoms were placed in calculated positions, with C-H=0.93Å (aromatic), N-H = 0.96Å, and with Uiso(H)=1.2Ueq(C,N). In the absence of significant anomalous scattering effects, 2686 Friedel pairs have been merged.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP plot of (I) showing the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
N'-(3-Phenylallylidene)isonicotinohydrazide top
Crystal data top
C15H13N3OF(000) = 528
Mr = 251.28Dx = 1.244 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 940 reflections
a = 12.608 (8) Åθ = 2.5–20.5°
b = 11.023 (7) ŵ = 0.08 mm1
c = 10.044 (7) ÅT = 291 K
β = 105.94 (3)°Block, brown
V = 1342.2 (15) Å30.30 × 0.26 × 0.24 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3110 independent reflections
Radiation source: sealed tube2784 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 27.7°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1616
Tmin = 0.98, Tmax = 0.98k = 1314
11645 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.05P)2 + 0.88P]
where P = (Fo2 + 2Fc2)/3
3110 reflections(Δ/σ)max < 0.001
349 parametersΔρmax = 0.20 e Å3
2 restraintsΔρmin = 0.29 e Å3
Crystal data top
C15H13N3OV = 1342.2 (15) Å3
Mr = 251.28Z = 4
Monoclinic, PcMo Kα radiation
a = 12.608 (8) ŵ = 0.08 mm1
b = 11.023 (7) ÅT = 291 K
c = 10.044 (7) Å0.30 × 0.26 × 0.24 mm
β = 105.94 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3110 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2784 reflections with I > 2σ(I)
Tmin = 0.98, Tmax = 0.98Rint = 0.044
11645 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0592 restraints
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.20 e Å3
3110 reflectionsΔρmin = 0.29 e Å3
349 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.2011 (4)0.4816 (5)0.8674 (5)0.0472 (10)
H11.22380.55620.84200.057*
C21.2551 (4)0.4303 (4)0.9917 (5)0.0457 (10)
H21.31390.47161.05050.055*
C31.2239 (4)0.3174 (4)1.0323 (5)0.0417 (9)
H31.26090.28381.11730.050*
C41.1362 (4)0.2566 (4)0.9422 (4)0.0418 (10)
H41.11480.18090.96660.050*
C51.0805 (4)0.3081 (5)0.8167 (4)0.0469 (11)
H51.02190.26720.75710.056*
C61.1126 (3)0.4217 (4)0.7798 (5)0.0421 (9)
C71.0508 (3)0.4875 (4)0.6585 (5)0.0426 (10)
H71.06940.56720.64460.051*
C80.9646 (4)0.4321 (4)0.5637 (5)0.0436 (10)
H80.94510.35210.57470.052*
C90.9049 (4)0.5050 (4)0.4446 (4)0.0435 (10)
H90.91750.58700.43330.052*
C100.6810 (4)0.4686 (4)0.1451 (4)0.0391 (9)
C110.5998 (4)0.5425 (4)0.0516 (4)0.0438 (10)
C120.5471 (3)0.5017 (4)0.0823 (4)0.0356 (8)
H120.55870.42330.10930.043*
C130.4793 (4)0.5778 (4)0.1716 (5)0.0413 (9)
H130.44380.54970.25990.050*
C140.5136 (4)0.7372 (4)0.0082 (4)0.0427 (9)
H140.50250.81650.01650.051*
C150.5845 (3)0.6620 (4)0.0872 (4)0.0432 (10)
H150.62160.69140.17430.052*
C160.4052 (4)0.0511 (4)0.2985 (4)0.0424 (9)
H160.44820.01810.27280.051*
C170.3238 (3)0.0544 (4)0.4232 (4)0.0400 (9)
H170.31270.01280.48140.048*
C180.2588 (4)0.1560 (4)0.4623 (5)0.0455 (10)
H180.20390.15690.54590.055*
C190.2761 (4)0.2580 (4)0.3752 (4)0.0417 (9)
H190.23280.32690.40150.050*
C200.3577 (3)0.2565 (4)0.2498 (4)0.0356 (8)
H200.36890.32420.19230.043*
C210.4226 (4)0.1536 (4)0.2104 (4)0.0462 (10)
C220.5026 (4)0.1586 (4)0.0775 (5)0.0462 (10)
H220.50190.22270.01750.055*
C230.5807 (4)0.0677 (4)0.0391 (4)0.0433 (10)
H230.59310.00670.09700.052*
C240.6411 (3)0.0828 (4)0.1081 (4)0.0398 (9)
H240.64230.15330.15940.048*
C250.8300 (4)0.1108 (5)0.3489 (5)0.0502 (11)
C260.8954 (4)0.0909 (4)0.4904 (5)0.0441 (10)
C270.9750 (4)0.0014 (4)0.5288 (5)0.0405 (9)
H270.98220.05700.46500.049*
C281.0442 (4)0.0012 (5)0.6632 (5)0.0505 (11)
H281.09650.06230.69040.061*
C290.9555 (3)0.1774 (4)0.7183 (4)0.0421 (9)
H290.94830.23600.78190.051*
C300.8865 (3)0.1796 (3)0.5848 (4)0.0337 (8)
H300.83410.24070.55820.040*
N10.8334 (3)0.4414 (3)0.3586 (4)0.0397 (8)
N20.7663 (3)0.5206 (4)0.2548 (4)0.0423 (9)
H2A0.777 (4)0.598 (5)0.259 (5)0.051*
N30.4603 (3)0.6964 (3)0.1372 (3)0.0392 (8)
N40.6918 (3)0.0162 (3)0.1548 (4)0.0424 (8)
N50.7800 (3)0.0023 (3)0.2797 (3)0.0368 (8)
H5A0.833 (4)0.042 (4)0.259 (5)0.044*
N61.0342 (3)0.0891 (4)0.7569 (4)0.0491 (9)
O10.6774 (2)0.3578 (3)0.1322 (3)0.0434 (7)
O20.8172 (2)0.2090 (3)0.2914 (3)0.0440 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.042 (2)0.052 (3)0.051 (3)0.006 (2)0.019 (2)0.004 (2)
C20.042 (2)0.048 (2)0.049 (3)0.0034 (19)0.017 (2)0.011 (2)
C30.043 (2)0.044 (2)0.043 (2)0.0020 (18)0.0214 (19)0.0022 (18)
C40.048 (2)0.042 (2)0.042 (2)0.0146 (18)0.0227 (19)0.0100 (17)
C50.037 (2)0.071 (3)0.035 (2)0.014 (2)0.0134 (17)0.010 (2)
C60.0332 (18)0.050 (2)0.046 (2)0.0070 (18)0.0149 (17)0.0088 (19)
C70.037 (2)0.043 (2)0.054 (3)0.0071 (18)0.0238 (19)0.014 (2)
C80.040 (2)0.041 (2)0.053 (3)0.0142 (18)0.0167 (19)0.0057 (19)
C90.051 (2)0.050 (2)0.0264 (19)0.003 (2)0.0053 (17)0.0123 (18)
C100.044 (2)0.036 (2)0.040 (2)0.0233 (18)0.0151 (17)0.0063 (17)
C110.054 (3)0.041 (2)0.038 (2)0.006 (2)0.0163 (19)0.0013 (18)
C120.0331 (19)0.038 (2)0.043 (2)0.0074 (16)0.0221 (16)0.0088 (16)
C130.042 (2)0.046 (2)0.040 (2)0.0041 (19)0.0172 (18)0.0042 (18)
C140.048 (2)0.042 (2)0.037 (2)0.0053 (19)0.0103 (18)0.0103 (18)
C150.041 (2)0.056 (3)0.032 (2)0.0076 (19)0.0092 (17)0.0133 (18)
C160.051 (2)0.045 (2)0.031 (2)0.005 (2)0.0121 (17)0.0038 (17)
C170.036 (2)0.046 (2)0.036 (2)0.0121 (17)0.0074 (17)0.0079 (17)
C180.047 (2)0.047 (2)0.043 (2)0.0120 (19)0.0108 (19)0.013 (2)
C190.049 (2)0.043 (2)0.034 (2)0.0036 (19)0.0128 (18)0.0051 (17)
C200.0386 (19)0.036 (2)0.037 (2)0.0144 (16)0.0175 (16)0.0037 (16)
C210.055 (3)0.051 (3)0.037 (2)0.004 (2)0.0198 (19)0.0099 (19)
C220.046 (2)0.044 (2)0.051 (3)0.0147 (19)0.018 (2)0.0061 (19)
C230.044 (2)0.045 (2)0.040 (2)0.0018 (19)0.0095 (18)0.0135 (18)
C240.0314 (18)0.052 (2)0.037 (2)0.0043 (17)0.0113 (16)0.0110 (18)
C250.050 (2)0.052 (3)0.054 (3)0.013 (2)0.022 (2)0.003 (2)
C260.047 (2)0.045 (2)0.049 (3)0.003 (2)0.028 (2)0.005 (2)
C270.038 (2)0.046 (2)0.044 (2)0.0001 (17)0.0225 (18)0.0012 (18)
C280.050 (2)0.063 (3)0.038 (2)0.011 (2)0.0126 (19)0.009 (2)
C290.040 (2)0.047 (2)0.044 (2)0.0067 (18)0.0202 (18)0.0077 (18)
C300.0285 (16)0.0339 (19)0.044 (2)0.0102 (14)0.0190 (15)0.0027 (16)
N10.0374 (17)0.0327 (17)0.0451 (19)0.0052 (14)0.0045 (14)0.0001 (14)
N20.0305 (17)0.045 (2)0.0435 (19)0.0151 (15)0.0034 (14)0.0138 (16)
N30.0488 (19)0.0410 (19)0.0321 (17)0.0031 (16)0.0182 (14)0.0002 (15)
N40.055 (2)0.0406 (19)0.0303 (17)0.0081 (17)0.0093 (16)0.0039 (15)
N50.0338 (17)0.0399 (18)0.0350 (18)0.0151 (14)0.0064 (14)0.0011 (14)
N60.043 (2)0.062 (2)0.049 (2)0.0020 (18)0.0230 (17)0.0041 (19)
O10.0396 (15)0.0449 (17)0.0474 (17)0.0096 (13)0.0152 (13)0.0059 (13)
O20.0434 (15)0.0455 (17)0.0413 (16)0.0001 (13)0.0084 (12)0.0034 (14)
Geometric parameters (Å, º) top
C1—C21.369 (7)C16—H160.9300
C1—C61.385 (7)C17—C181.379 (7)
C1—H10.9300C17—H170.9300
C2—C31.400 (6)C18—C191.405 (6)
C2—H20.9300C18—H180.9300
C3—C41.394 (6)C19—C201.391 (6)
C3—H30.9300C19—H190.9300
C4—C51.386 (6)C20—C211.391 (6)
C4—H40.9300C20—H200.9300
C5—C61.397 (7)C21—C221.437 (6)
C5—H50.9300C22—C231.383 (6)
C6—C71.447 (7)C22—H220.9300
C7—C81.375 (7)C23—C241.475 (6)
C7—H70.9300C23—H230.9300
C8—C91.467 (6)C24—N41.287 (6)
C8—H80.9300C24—H240.9300
C9—N11.273 (5)C25—O21.216 (6)
C9—H90.9300C25—N51.439 (6)
C10—O11.228 (5)C25—C261.451 (7)
C10—N21.432 (5)C26—C271.385 (6)
C10—C111.437 (6)C26—C301.388 (6)
C11—C151.393 (6)C27—C281.391 (7)
C11—C121.400 (6)C27—H270.9300
C12—C131.347 (6)C28—N61.399 (7)
C12—H120.9300C28—H280.9300
C13—N31.390 (6)C29—N61.368 (6)
C13—H130.9300C29—C301.384 (6)
C14—N31.362 (5)C29—H290.9300
C14—C151.390 (7)C30—H300.9300
C14—H140.9300N1—N21.442 (5)
C15—H150.9300N2—H2A0.86 (5)
C16—C171.385 (6)N4—N51.437 (5)
C16—C211.415 (7)N5—H5A0.90 (5)
C2—C1—C6119.7 (5)C16—C17—H17119.6
C2—C1—H1120.1C17—C18—C19119.6 (4)
C6—C1—H1120.1C17—C18—H18120.2
C1—C2—C3121.6 (4)C19—C18—H18120.2
C1—C2—H2119.2C20—C19—C18120.3 (4)
C3—C2—H2119.2C20—C19—H19119.9
C4—C3—C2118.4 (4)C18—C19—H19119.9
C4—C3—H3120.8C21—C20—C19119.9 (4)
C2—C3—H3120.8C21—C20—H20120.1
C5—C4—C3120.5 (4)C19—C20—H20120.1
C5—C4—H4119.8C20—C21—C16119.7 (4)
C3—C4—H4119.8C20—C21—C22116.2 (4)
C4—C5—C6119.9 (4)C16—C21—C22124.1 (4)
C4—C5—H5120.1C23—C22—C21119.7 (4)
C6—C5—H5120.1C23—C22—H22120.1
C1—C6—C5120.0 (4)C21—C22—H22120.1
C1—C6—C7116.7 (5)C22—C23—C24109.2 (4)
C5—C6—C7123.0 (4)C22—C23—H23125.4
C8—C7—C6120.0 (4)C24—C23—H23125.4
C8—C7—H7120.0N4—C24—C23109.7 (4)
C6—C7—H7120.0N4—C24—H24125.1
C7—C8—C9116.9 (4)C23—C24—H24125.1
C7—C8—H8121.5O2—C25—N5121.8 (5)
C9—C8—H8121.5O2—C25—C26124.4 (4)
N1—C9—C8111.1 (4)N5—C25—C26113.8 (4)
N1—C9—H9124.4C27—C26—C30120.0 (4)
C8—C9—H9124.4C27—C26—C25123.7 (4)
O1—C10—N2118.5 (4)C30—C26—C25115.6 (4)
O1—C10—C11119.7 (4)C26—C27—C28119.9 (4)
N2—C10—C11121.7 (4)C26—C27—H27120.1
C15—C11—C12119.1 (4)C28—C27—H27120.1
C15—C11—C10119.5 (4)C27—C28—N6119.3 (4)
C12—C11—C10120.7 (4)C27—C28—H28120.3
C13—C12—C11119.1 (4)N6—C28—H28120.3
C13—C12—H12120.4N6—C29—C30120.1 (4)
C11—C12—H12120.4N6—C29—H29120.0
C12—C13—N3122.8 (4)C30—C29—H29120.0
C12—C13—H13118.6C29—C30—C26120.2 (4)
N3—C13—H13118.6C29—C30—H30119.9
N3—C14—C15121.0 (4)C26—C30—H30119.9
N3—C14—H14119.5C9—N1—N2108.8 (4)
C15—C14—H14119.5C10—N2—N1118.8 (3)
C14—C15—C11119.7 (4)C10—N2—H2A121 (3)
C14—C15—H15120.1N1—N2—H2A121 (3)
C11—C15—H15120.1C14—N3—C13118.2 (4)
C17—C16—C21119.6 (4)C24—N4—N5114.5 (3)
C17—C16—H16120.2N4—N5—C25117.7 (4)
C21—C16—H16120.2N4—N5—H5A108 (3)
C18—C17—C16120.9 (4)C25—N5—H5A108 (3)
C18—C17—H17119.6C29—N6—C28120.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.86 (5)2.19 (5)3.050 (6)174 (3)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H13N3O
Mr251.28
Crystal system, space groupMonoclinic, Pc
Temperature (K)291
a, b, c (Å)12.608 (8), 11.023 (7), 10.044 (7)
β (°) 105.94 (3)
V3)1342.2 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.98, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
11645, 3110, 2784
Rint0.044
(sin θ/λ)max1)0.655
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.134, 1.01
No. of reflections3110
No. of parameters349
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.29

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.86 (5)2.19 (5)3.050 (6)174 (3)
Symmetry code: (i) x, y+1, z.
 

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.  CrossRef CAS Web of Science Google Scholar
First citationQian, H.-Y., Yin, Z.-G., Jia, J., Liu, S.-M. & Feng, L.-Q. (2006). Acta Cryst. E62, o3623–o3624.  CSD CrossRef IUCr Journals Google Scholar
First citationSantos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds