organic compounds
1-(o-Tolyl)thiourea
aGrupo de Cristalografía, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil, and bDepartment of Structure Analysis, Institute of Materials, Zapata & G, University of Havana, Cuba
*Correspondence e-mail: duque@imre.co.uh.cu
In the title compound, C8H10N2S, the o-tolyl group and the thiourea core are planar. The mean planes of the two groups are almost perpendicular [82.19 (8)°]. The thiourea group is in the thioamide form, in which resonance is present. In the molecules are linked by intermolecular N—H⋯S hydrogen bonds, forming two infinite chains parallel to the (110) and (10) planes.
Related literature
For general background, see: Koketsu & Ishihara (2006); Struga et al. (2007). For related structures, see: Corrêa et al. (2006); Corrêa et al. (2008); Estévez-Hernández et al. (2008); Duque et al. (2008). For the synthesis, see: Otazo-Sánches et al. (2001). For related literature, see: Otazo et al. (2001); Ramadas et al. (1998).
Experimental
Crystal data
|
Refinement
|
|
Data collection: COLLECT (Nonius, 2000); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808024161/fb2105sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808024161/fb2105Isup2.hkl
The title compound was obtained as a secondary product during the synthesis of 1-(2-furoyl)-3-(o-tolyl) thiourea according to procedure described by Otazo-Sánchez et al. (2001) by converting furoyl chloride into furoyl isothiocyanate and then condensing with the appropriate 0-toluidine. The colourless prism-shaped single crystals were formed by slow evaporation from a methanol/acetonitrile (1:1) solution.
All the hydrogen atoms were located in the difference Fourier maps. Nevertheless, they were situated in the idealized positions and refined using the riding-hydrogen model. N—H = 0.86 Å, Caryl—H = 0.93 Å, Cmethyl= 0.96 Å. Uiso(H) = 1.2Ueq(N,Caryl) or Uiso(H) = 1.5Ueq(Cmethyl).
Data collection: COLLECT (Nonius, 2000); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).C8H10N2S | F(000) = 704 |
Mr = 166.25 | Dx = 1.222 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 15611 reflections |
a = 15.1323 (3) Å | θ = 2.9–26.7° |
b = 7.7965 (2) Å | µ = 0.30 mm−1 |
c = 15.3222 (4) Å | T = 294 K |
β = 90.828 (2)° | Prism, colourless |
V = 1807.61 (8) Å3 | 0.31 × 0.22 × 0.10 mm |
Z = 8 |
Nonius KappaCCD diffractometer | 1914 independent reflections |
Radiation source: fine-focus sealed tube Enraf Nonius FR590 | 1438 reflections with I > 2σ(I) |
Horizontally mounted graphite crystal monochromator | Rint = 0.031 |
ϕ scans and ω scans winth κ offsets | θmax = 26.8°, θmin = 3.8° |
Absorption correction: gaussian (Coppens et al., 1965) | h = −19→18 |
Tmin = 0.973, Tmax = 0.991 | k = −9→9 |
6748 measured reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.140 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0896P)2 + 0.2205P] where P = (Fo2 + 2Fc2)/3 |
1914 reflections | (Δ/σ)max < 0.001 |
101 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
40 constraints |
C8H10N2S | V = 1807.61 (8) Å3 |
Mr = 166.25 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 15.1323 (3) Å | µ = 0.30 mm−1 |
b = 7.7965 (2) Å | T = 294 K |
c = 15.3222 (4) Å | 0.31 × 0.22 × 0.10 mm |
β = 90.828 (2)° |
Nonius KappaCCD diffractometer | 1914 independent reflections |
Absorption correction: gaussian (Coppens et al., 1965) | 1438 reflections with I > 2σ(I) |
Tmin = 0.973, Tmax = 0.991 | Rint = 0.031 |
6748 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 0 restraints |
wR(F2) = 0.140 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.19 e Å−3 |
1914 reflections | Δρmin = −0.21 e Å−3 |
101 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.11314 (11) | 0.8287 (2) | 0.06714 (12) | 0.0577 (5) | |
C2 | 0.15409 (11) | 0.6359 (3) | 0.18736 (12) | 0.0611 (5) | |
C3 | 0.12742 (14) | 0.4692 (3) | 0.18788 (14) | 0.0740 (6) | |
C4 | 0.11722 (18) | 0.3923 (3) | 0.27051 (17) | 0.0886 (7) | |
H4 | 0.0995 | 0.2783 | 0.2737 | 0.106* | |
C5 | 0.13277 (17) | 0.4810 (4) | 0.34545 (15) | 0.0887 (7) | |
H5 | 0.1256 | 0.4269 | 0.399 | 0.106* | |
C6 | 0.15879 (16) | 0.6486 (4) | 0.34321 (15) | 0.0884 (7) | |
H6 | 0.1691 | 0.7089 | 0.3947 | 0.106* | |
C7 | 0.16938 (15) | 0.7262 (3) | 0.26419 (14) | 0.0769 (6) | |
H7 | 0.187 | 0.8404 | 0.2618 | 0.092* | |
C8 | 0.1108 (2) | 0.3713 (4) | 0.10584 (18) | 0.1082 (9) | |
H8A | 0.0882 | 0.2598 | 0.1197 | 0.162* | |
H8B | 0.1651 | 0.3594 | 0.0748 | 0.162* | |
H8C | 0.0685 | 0.4317 | 0.0701 | 0.162* | |
N1 | 0.16917 (10) | 0.7203 (2) | 0.10564 (10) | 0.0665 (5) | |
H1 | 0.218 | 0.6992 | 0.0797 | 0.08* | |
N2 | 0.03568 (11) | 0.8514 (3) | 0.10408 (12) | 0.0897 (7) | |
H2A | 0.0232 | 0.797 | 0.1512 | 0.108* | |
H2B | −0.0023 | 0.9205 | 0.081 | 0.108* | |
S1 | 0.14045 (3) | 0.93276 (6) | −0.02514 (3) | 0.0663 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0496 (9) | 0.0631 (10) | 0.0607 (10) | 0.0091 (8) | 0.0069 (8) | 0.0058 (8) |
C2 | 0.0486 (9) | 0.0738 (12) | 0.0610 (11) | 0.0136 (8) | 0.0074 (8) | 0.0143 (9) |
C3 | 0.0718 (13) | 0.0793 (14) | 0.0711 (13) | 0.0099 (11) | 0.0082 (10) | 0.0043 (10) |
C4 | 0.0938 (16) | 0.0817 (14) | 0.0906 (17) | 0.0062 (12) | 0.0181 (14) | 0.0225 (13) |
C5 | 0.0963 (16) | 0.1078 (18) | 0.0624 (13) | 0.0242 (15) | 0.0148 (11) | 0.0210 (13) |
C6 | 0.0920 (16) | 0.1113 (19) | 0.0619 (13) | 0.0199 (14) | 0.0023 (11) | 0.0010 (13) |
C7 | 0.0741 (13) | 0.0871 (14) | 0.0696 (13) | 0.0052 (11) | 0.0053 (10) | 0.0012 (11) |
C8 | 0.130 (2) | 0.1022 (18) | 0.0930 (18) | −0.0140 (18) | 0.0182 (17) | −0.0160 (16) |
N1 | 0.0539 (8) | 0.0834 (11) | 0.0626 (9) | 0.0202 (7) | 0.0146 (7) | 0.0205 (8) |
N2 | 0.0616 (10) | 0.1243 (16) | 0.0838 (12) | 0.0374 (10) | 0.0250 (9) | 0.0451 (12) |
S1 | 0.0622 (4) | 0.0697 (4) | 0.0673 (4) | 0.0189 (2) | 0.0158 (2) | 0.0183 (2) |
C1—N2 | 1.321 (2) | C5—H5 | 0.93 |
C1—N1 | 1.329 (2) | C6—C7 | 1.365 (3) |
C1—S1 | 1.6868 (18) | C6—H6 | 0.93 |
C2—C3 | 1.361 (3) | C7—H7 | 0.93 |
C2—C7 | 1.388 (3) | C8—H8A | 0.96 |
C2—N1 | 1.435 (2) | C8—H8B | 0.96 |
C3—C4 | 1.411 (3) | C8—H8C | 0.96 |
C3—C8 | 1.489 (3) | N1—H1 | 0.86 |
C4—C5 | 1.358 (4) | N2—H2A | 0.86 |
C4—H4 | 0.93 | N2—H2B | 0.86 |
C5—C6 | 1.365 (4) | ||
N2—C1—N1 | 117.34 (16) | C5—C6—H6 | 120.5 |
N2—C1—S1 | 121.63 (14) | C6—C7—C2 | 120.5 (2) |
N1—C1—S1 | 121.03 (13) | C6—C7—H7 | 119.8 |
C3—C2—C7 | 121.68 (19) | C2—C7—H7 | 119.8 |
C3—C2—N1 | 119.57 (19) | C3—C8—H8A | 109.5 |
C7—C2—N1 | 118.73 (19) | C3—C8—H8B | 109.5 |
C2—C3—C4 | 116.6 (2) | H8A—C8—H8B | 109.5 |
C2—C3—C8 | 122.1 (2) | C3—C8—H8C | 109.5 |
C4—C3—C8 | 121.4 (2) | H8A—C8—H8C | 109.5 |
C5—C4—C3 | 121.5 (2) | H8B—C8—H8C | 109.5 |
C5—C4—H4 | 119.3 | C1—N1—C2 | 124.75 (15) |
C3—C4—H4 | 119.3 | C1—N1—H1 | 117.6 |
C4—C5—C6 | 120.9 (2) | C2—N1—H1 | 117.6 |
C4—C5—H5 | 119.6 | C1—N2—H2A | 120 |
C6—C5—H5 | 119.6 | C1—N2—H2B | 120 |
C7—C6—C5 | 119.0 (2) | H2A—N2—H2B | 120 |
C7—C6—H6 | 120.5 | ||
C7—C2—C3—C4 | −0.8 (3) | C5—C6—C7—C2 | −0.1 (3) |
N1—C2—C3—C4 | 177.56 (18) | C3—C2—C7—C6 | 0.7 (3) |
C7—C2—C3—C8 | 180.0 (2) | N1—C2—C7—C6 | −177.68 (18) |
N1—C2—C3—C8 | −1.7 (3) | N2—C1—N1—C2 | −4.6 (3) |
C2—C3—C4—C5 | 0.4 (3) | S1—C1—N1—C2 | 175.28 (16) |
C8—C3—C4—C5 | 179.6 (3) | C3—C2—N1—C1 | 101.4 (2) |
C3—C4—C5—C6 | 0.1 (4) | C7—C2—N1—C1 | −80.2 (3) |
C4—C5—C6—C7 | −0.2 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···S1i | 0.86 | 2.53 | 3.368 (2) | 165 |
N2—H2B···S1ii | 0.86 | 2.52 | 3.362 (2) | 166 |
Symmetry codes: (i) −x+1/2, −y+3/2, −z; (ii) −x, −y+2, −z. |
Experimental details
Crystal data | |
Chemical formula | C8H10N2S |
Mr | 166.25 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 294 |
a, b, c (Å) | 15.1323 (3), 7.7965 (2), 15.3222 (4) |
β (°) | 90.828 (2) |
V (Å3) | 1807.61 (8) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.30 |
Crystal size (mm) | 0.31 × 0.22 × 0.10 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Gaussian (Coppens et al., 1965) |
Tmin, Tmax | 0.973, 0.991 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6748, 1914, 1438 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.634 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.140, 1.03 |
No. of reflections | 1914 |
No. of parameters | 101 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.19, −0.21 |
Computer programs: COLLECT (Nonius, 2000), SCALEPACK (Otwinowski & Minor, 1997), DENZO (Otwinowski & Minor, 1997) and SCALEPACK, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).
C1—N2 | 1.321 (2) | C1—S1 | 1.6868 (18) |
C1—N1 | 1.329 (2) | C2—N1 | 1.435 (2) |
N2—C1—N1 | 117.34 (16) | N1—C1—S1 | 121.03 (13) |
N2—C1—S1 | 121.63 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···S1i | 0.86 | 2.53 | 3.368 (2) | 165 |
N2—H2B···S1ii | 0.86 | 2.52 | 3.362 (2) | 166 |
Symmetry codes: (i) −x+1/2, −y+3/2, −z; (ii) −x, −y+2, −z. |
Acknowledgements
The authors are grateful for financial support from the Brazilian agencies CNPq, FAPESP and CAPES. RSC acknowledges the CNPq for a fellowship (Project 134576/2007–1).
References
Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038. CrossRef CAS IUCr Journals Web of Science Google Scholar
Corrêa, R. S., Estévez-Hernández, O., Ellena, J. & Duque, J. (2008). Acta Cryst. E64, o1414. Web of Science CSD CrossRef IUCr Journals Google Scholar
Corrêa, R. S., Santana, S. A., Salloum, R., Silva, R. M. & Doriguetto, A. C. (2006). Acta Cryst. C62, o115–o117. Web of Science CSD CrossRef IUCr Journals Google Scholar
Duque, J., Estevez-Hernandez, O., Reguera, E., Corrêa, R. S. & Gutierrez Maria, P. Acta Cryst. E64, o1068. Google Scholar
Estévez-Hernández, O., Duque, J., Ellena, J. & Corrêa, R. S. (2008). Acta Cryst. E64, o1157. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Koketsu, M. & Ishihara, H. (2006). Curr. Org. Synth. 3, 439–455. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otazo, E., Pérez, L., Estévez, O., Rojas, S. & Alonso, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218. Google Scholar
Otazo-Sánchez, E., Pérez-Marín, L., Estévez-Hernández, O., Rojas-Lima, S. & Alonso-Chamorro, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Ramadas, K., Suresh, G., Janarthanan, N. & Masilamani, S. (1998). Pestic. Sci. 52, 145–151. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Struga, M., Kossakowski, J., Kedzierska, E., Fidecka, S. & Stefanska, J. (2007). Chem. Pharm. Bull. 55, 796–799. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thiourea itself as well as its derivatives are known to be biologically active (Koketsu & Ishihara, 2006). Their antimicrobial, cytotoxic and anti-HIV activities have been recently tested (Struga et al., 2007). Also, ortho-substituted aromatic thiourea derivatives have received special attention because of their fungicidal activity (Ramadas et al., 1998). The reaction of the furoyl isothiocyanate with o-toluidine in dry acetone yielded the title compound, N-(o-tolyl) thiourea, as a secondary product (Fig. 1).
The title molecule is present in the thioamide form and it is a typical N-monosubstituted thiourea derivative with usual geometric parameters. The C—S bond [1.687 (2) Å] shows the expected double-bond character. The short bond-lengths of the C1—N1 [1.329 (2) Å] and C1—N2 [1.321 (2) Å] indicate partial double bond character, similarly to other thiourea derivatives where electron delocalization in the N—C—S moiety is present (Corrêa et al., 2008; Estévez-Hernández et al., 2008, Duque et al., 2008). In addition, the values of the bond angles that are close to 120° also suggest the resonance effect.
As might be expected both the central thiourea fragment as well as the o-tolyl group are planar. The largest deviation from the least square plane through the seven atoms of the o-tolyl group occurs for the atom C2 [displacement = 0.0038 (15) Å], with a r.m.s. deviation of 0.0022 Å for all the carbons in the o-tolyl group. In the thiourea fragment, the largest displacement is for the atom C1 [0.001 (1) Å], with a r.m.s. deviation of 0.003 Å. The o-tolyl group is almost perpendicular to the plane formed by the thiourea molecule (82.19 (8)°).
Fig. 2 shows the arrangement of the molecules in the unit cell. In the crystal structure, the molecules are linked by N—H···S hydrogen bonds that stabilize the packing (Table 1). In the previous studies (Corrêa et al., 2006; Corrêa et al., 2008) have been reported the N—H···S interactions with the formation of the centrosymmetric dimers. In contrast to these structures, in the present structure these intermolecular interactions form two independent chains parallel to the (110) and (1–10) planes (Figure 3).