organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1670-o1671

1-(o-Tol­yl)thio­urea

aGrupo de Cristalografía, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil, and bDepartment of Structure Analysis, Institute of Materials, Zapata & G, University of Havana, Cuba
*Correspondence e-mail: duque@imre.co.uh.cu

(Received 10 July 2008; accepted 29 July 2008; online 6 August 2008)

In the title compound, C8H10N2S, the o-tolyl group and the thio­urea core are planar. The mean planes of the two groups are almost perpendicular [82.19 (8)°]. The thio­urea group is in the thio­amide form, in which resonance is present. In the crystal structure, mol­ecules are linked by inter­molecular N—H⋯S hydrogen bonds, forming two infinite chains parallel to the (110) and (1[\overline{1}]0) planes.

Related literature

For general background, see: Koketsu & Ishihara (2006[Koketsu, M. & Ishihara, H. (2006). Curr. Org. Synth. 3, 439-455.]); Struga et al. (2007[Struga, M., Kossakowski, J., Kedzierska, E., Fidecka, S. & Stefanska, J. (2007). Chem. Pharm. Bull. 55, 796-799.]). For related structures, see: Corrêa et al. (2006[Corrêa, R. S., Santana, S. A., Salloum, R., Silva, R. M. & Doriguetto, A. C. (2006). Acta Cryst. C62, o115-o117.]); Corrêa et al. (2008[Corrêa, R. S., Estévez-Hernández, O., Ellena, J. & Duque, J. (2008). Acta Cryst. E64, o1414.]); Estévez-Hernández et al. (2008[Estévez-Hernández, O., Duque, J., Ellena, J. & Corrêa, R. S. (2008). Acta Cryst. E64, o1157.]); Duque et al. (2008[Duque, J., Estevez-Hernandez, O., Reguera, E., Corrêa, R. S. & Gutierrez Maria, P. Acta Cryst. E64, o1068.]). For the synthesis, see: Otazo-Sánches et al. (2001[Otazo-Sánchez, E., Pérez-Marín, L., Estévez-Hernández, O., Rojas-Lima, S. & Alonso-Chamorro, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211-2218.]). For related literature, see: Otazo et al. (2001[Otazo, E., Pérez, L., Estévez, O., Rojas, S. & Alonso, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211-2218.]); Ramadas et al. (1998[Ramadas, K., Suresh, G., Janarthanan, N. & Masilamani, S. (1998). Pestic. Sci. 52, 145-151.]).

[Scheme 1]

Experimental

Crystal data
  • C8H10N2S

  • Mr = 166.25

  • Monoclinic, C 2/c

  • a = 15.1323 (3) Å

  • b = 7.7965 (2) Å

  • c = 15.3222 (4) Å

  • β = 90.828 (2)°

  • V = 1807.61 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 294 K

  • 0.31 × 0.22 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: gaussian (Coppens et al., 1965[Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.]) Tmin = 0.973, Tmax = 0.991

  • 6748 measured reflections

  • 1914 independent reflections

  • 1438 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.140

  • S = 1.03

  • 1914 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Selected geometric parameters (Å, °)

C1—N2 1.321 (2)
C1—N1 1.329 (2)
C1—S1 1.6868 (18)
C2—N1 1.435 (2)
N2—C1—N1 117.34 (16)
N2—C1—S1 121.63 (14)
N1—C1—S1 121.03 (13)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.86 2.53 3.368 (2) 165
N2—H2B⋯S1ii 0.86 2.52 3.362 (2) 166
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) -x, -y+2, -z.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Thiourea itself as well as its derivatives are known to be biologically active (Koketsu & Ishihara, 2006). Their antimicrobial, cytotoxic and anti-HIV activities have been recently tested (Struga et al., 2007). Also, ortho-substituted aromatic thiourea derivatives have received special attention because of their fungicidal activity (Ramadas et al., 1998). The reaction of the furoyl isothiocyanate with o-toluidine in dry acetone yielded the title compound, N-(o-tolyl) thiourea, as a secondary product (Fig. 1).

The title molecule is present in the thioamide form and it is a typical N-monosubstituted thiourea derivative with usual geometric parameters. The C—S bond [1.687 (2) Å] shows the expected double-bond character. The short bond-lengths of the C1—N1 [1.329 (2) Å] and C1—N2 [1.321 (2) Å] indicate partial double bond character, similarly to other thiourea derivatives where electron delocalization in the N—C—S moiety is present (Corrêa et al., 2008; Estévez-Hernández et al., 2008, Duque et al., 2008). In addition, the values of the bond angles that are close to 120° also suggest the resonance effect.

As might be expected both the central thiourea fragment as well as the o-tolyl group are planar. The largest deviation from the least square plane through the seven atoms of the o-tolyl group occurs for the atom C2 [displacement = 0.0038 (15) Å], with a r.m.s. deviation of 0.0022 Å for all the carbons in the o-tolyl group. In the thiourea fragment, the largest displacement is for the atom C1 [0.001 (1) Å], with a r.m.s. deviation of 0.003 Å. The o-tolyl group is almost perpendicular to the plane formed by the thiourea molecule (82.19 (8)°).

Fig. 2 shows the arrangement of the molecules in the unit cell. In the crystal structure, the molecules are linked by N—H···S hydrogen bonds that stabilize the packing (Table 1). In the previous studies (Corrêa et al., 2006; Corrêa et al., 2008) have been reported the N—H···S interactions with the formation of the centrosymmetric dimers. In contrast to these structures, in the present structure these intermolecular interactions form two independent chains parallel to the (110) and (1–10) planes (Figure 3).

Related literature top

For general background, see: Koketsu & Ishihara (2006); Struga et al. (2007). For related structures, see: Corrêa et al. (2006); Corrêa et al. (2008); Estévez-Hernández et al. (2008); Duque et al. (2008). For the synthesis, see: Otazo-Sánches et al. (2001).

For related literature, see: Otazo et al. (2001); Ramadas et al. (1998).

Experimental top

The title compound was obtained as a secondary product during the synthesis of 1-(2-furoyl)-3-(o-tolyl) thiourea according to procedure described by Otazo-Sánchez et al. (2001) by converting furoyl chloride into furoyl isothiocyanate and then condensing with the appropriate 0-toluidine. The colourless prism-shaped single crystals were formed by slow evaporation from a methanol/acetonitrile (1:1) solution.

Refinement top

All the hydrogen atoms were located in the difference Fourier maps. Nevertheless, they were situated in the idealized positions and refined using the riding-hydrogen model. N—H = 0.86 Å, Caryl—H = 0.93 Å, Cmethyl= 0.96 Å. Uiso(H) = 1.2Ueq(N,Caryl) or Uiso(H) = 1.5Ueq(Cmethyl).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level and the H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Representation of the chains linked by N—H···S hydrogen bonds.
[Figure 3] Fig. 3. Crystal packing view along c axis showing the two independent chains.
1-(o-Tolyl)thiourea top
Crystal data top
C8H10N2SF(000) = 704
Mr = 166.25Dx = 1.222 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 15611 reflections
a = 15.1323 (3) Åθ = 2.9–26.7°
b = 7.7965 (2) ŵ = 0.30 mm1
c = 15.3222 (4) ÅT = 294 K
β = 90.828 (2)°Prism, colourless
V = 1807.61 (8) Å30.31 × 0.22 × 0.10 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
1914 independent reflections
Radiation source: fine-focus sealed tube Enraf Nonius FR5901438 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.031
ϕ scans and ω scans winth κ offsetsθmax = 26.8°, θmin = 3.8°
Absorption correction: gaussian
(Coppens et al., 1965)
h = 1918
Tmin = 0.973, Tmax = 0.991k = 99
6748 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: difference Fourier map
wR(F2) = 0.140H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0896P)2 + 0.2205P]
where P = (Fo2 + 2Fc2)/3
1914 reflections(Δ/σ)max < 0.001
101 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.21 e Å3
40 constraints
Crystal data top
C8H10N2SV = 1807.61 (8) Å3
Mr = 166.25Z = 8
Monoclinic, C2/cMo Kα radiation
a = 15.1323 (3) ŵ = 0.30 mm1
b = 7.7965 (2) ÅT = 294 K
c = 15.3222 (4) Å0.31 × 0.22 × 0.10 mm
β = 90.828 (2)°
Data collection top
Nonius KappaCCD
diffractometer
1914 independent reflections
Absorption correction: gaussian
(Coppens et al., 1965)
1438 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.991Rint = 0.031
6748 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.03Δρmax = 0.19 e Å3
1914 reflectionsΔρmin = 0.21 e Å3
101 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.11314 (11)0.8287 (2)0.06714 (12)0.0577 (5)
C20.15409 (11)0.6359 (3)0.18736 (12)0.0611 (5)
C30.12742 (14)0.4692 (3)0.18788 (14)0.0740 (6)
C40.11722 (18)0.3923 (3)0.27051 (17)0.0886 (7)
H40.09950.27830.27370.106*
C50.13277 (17)0.4810 (4)0.34545 (15)0.0887 (7)
H50.12560.42690.3990.106*
C60.15879 (16)0.6486 (4)0.34321 (15)0.0884 (7)
H60.16910.70890.39470.106*
C70.16938 (15)0.7262 (3)0.26419 (14)0.0769 (6)
H70.1870.84040.26180.092*
C80.1108 (2)0.3713 (4)0.10584 (18)0.1082 (9)
H8A0.08820.25980.11970.162*
H8B0.16510.35940.07480.162*
H8C0.06850.43170.07010.162*
N10.16917 (10)0.7203 (2)0.10564 (10)0.0665 (5)
H10.2180.69920.07970.08*
N20.03568 (11)0.8514 (3)0.10408 (12)0.0897 (7)
H2A0.02320.7970.15120.108*
H2B0.00230.92050.0810.108*
S10.14045 (3)0.93276 (6)0.02514 (3)0.0663 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0496 (9)0.0631 (10)0.0607 (10)0.0091 (8)0.0069 (8)0.0058 (8)
C20.0486 (9)0.0738 (12)0.0610 (11)0.0136 (8)0.0074 (8)0.0143 (9)
C30.0718 (13)0.0793 (14)0.0711 (13)0.0099 (11)0.0082 (10)0.0043 (10)
C40.0938 (16)0.0817 (14)0.0906 (17)0.0062 (12)0.0181 (14)0.0225 (13)
C50.0963 (16)0.1078 (18)0.0624 (13)0.0242 (15)0.0148 (11)0.0210 (13)
C60.0920 (16)0.1113 (19)0.0619 (13)0.0199 (14)0.0023 (11)0.0010 (13)
C70.0741 (13)0.0871 (14)0.0696 (13)0.0052 (11)0.0053 (10)0.0012 (11)
C80.130 (2)0.1022 (18)0.0930 (18)0.0140 (18)0.0182 (17)0.0160 (16)
N10.0539 (8)0.0834 (11)0.0626 (9)0.0202 (7)0.0146 (7)0.0205 (8)
N20.0616 (10)0.1243 (16)0.0838 (12)0.0374 (10)0.0250 (9)0.0451 (12)
S10.0622 (4)0.0697 (4)0.0673 (4)0.0189 (2)0.0158 (2)0.0183 (2)
Geometric parameters (Å, º) top
C1—N21.321 (2)C5—H50.93
C1—N11.329 (2)C6—C71.365 (3)
C1—S11.6868 (18)C6—H60.93
C2—C31.361 (3)C7—H70.93
C2—C71.388 (3)C8—H8A0.96
C2—N11.435 (2)C8—H8B0.96
C3—C41.411 (3)C8—H8C0.96
C3—C81.489 (3)N1—H10.86
C4—C51.358 (4)N2—H2A0.86
C4—H40.93N2—H2B0.86
C5—C61.365 (4)
N2—C1—N1117.34 (16)C5—C6—H6120.5
N2—C1—S1121.63 (14)C6—C7—C2120.5 (2)
N1—C1—S1121.03 (13)C6—C7—H7119.8
C3—C2—C7121.68 (19)C2—C7—H7119.8
C3—C2—N1119.57 (19)C3—C8—H8A109.5
C7—C2—N1118.73 (19)C3—C8—H8B109.5
C2—C3—C4116.6 (2)H8A—C8—H8B109.5
C2—C3—C8122.1 (2)C3—C8—H8C109.5
C4—C3—C8121.4 (2)H8A—C8—H8C109.5
C5—C4—C3121.5 (2)H8B—C8—H8C109.5
C5—C4—H4119.3C1—N1—C2124.75 (15)
C3—C4—H4119.3C1—N1—H1117.6
C4—C5—C6120.9 (2)C2—N1—H1117.6
C4—C5—H5119.6C1—N2—H2A120
C6—C5—H5119.6C1—N2—H2B120
C7—C6—C5119.0 (2)H2A—N2—H2B120
C7—C6—H6120.5
C7—C2—C3—C40.8 (3)C5—C6—C7—C20.1 (3)
N1—C2—C3—C4177.56 (18)C3—C2—C7—C60.7 (3)
C7—C2—C3—C8180.0 (2)N1—C2—C7—C6177.68 (18)
N1—C2—C3—C81.7 (3)N2—C1—N1—C24.6 (3)
C2—C3—C4—C50.4 (3)S1—C1—N1—C2175.28 (16)
C8—C3—C4—C5179.6 (3)C3—C2—N1—C1101.4 (2)
C3—C4—C5—C60.1 (4)C7—C2—N1—C180.2 (3)
C4—C5—C6—C70.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.862.533.368 (2)165
N2—H2B···S1ii0.862.523.362 (2)166
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC8H10N2S
Mr166.25
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)15.1323 (3), 7.7965 (2), 15.3222 (4)
β (°) 90.828 (2)
V3)1807.61 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.31 × 0.22 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionGaussian
(Coppens et al., 1965)
Tmin, Tmax0.973, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
6748, 1914, 1438
Rint0.031
(sin θ/λ)max1)0.634
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.140, 1.03
No. of reflections1914
No. of parameters101
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.21

Computer programs: COLLECT (Nonius, 2000), SCALEPACK (Otwinowski & Minor, 1997), DENZO (Otwinowski & Minor, 1997) and SCALEPACK, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
C1—N21.321 (2)C1—S11.6868 (18)
C1—N11.329 (2)C2—N11.435 (2)
N2—C1—N1117.34 (16)N1—C1—S1121.03 (13)
N2—C1—S1121.63 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.862.533.368 (2)165
N2—H2B···S1ii0.862.523.362 (2)166
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x, y+2, z.
 

Acknowledgements

The authors are grateful for financial support from the Brazilian agencies CNPq, FAPESP and CAPES. RSC acknowledges the CNPq for a fellowship (Project 134576/2007–1).

References

First citationCoppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCorrêa, R. S., Estévez-Hernández, O., Ellena, J. & Duque, J. (2008). Acta Cryst. E64, o1414.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCorrêa, R. S., Santana, S. A., Salloum, R., Silva, R. M. & Doriguetto, A. C. (2006). Acta Cryst. C62, o115–o117.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDuque, J., Estevez-Hernandez, O., Reguera, E., Corrêa, R. S. & Gutierrez Maria, P. Acta Cryst. E64, o1068.  Google Scholar
First citationEstévez-Hernández, O., Duque, J., Ellena, J. & Corrêa, R. S. (2008). Acta Cryst. E64, o1157.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKoketsu, M. & Ishihara, H. (2006). Curr. Org. Synth. 3, 439–455.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtazo, E., Pérez, L., Estévez, O., Rojas, S. & Alonso, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218.  Google Scholar
First citationOtazo-Sánchez, E., Pérez-Marín, L., Estévez-Hernández, O., Rojas-Lima, S. & Alonso-Chamorro, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRamadas, K., Suresh, G., Janarthanan, N. & Masilamani, S. (1998). Pestic. Sci. 52, 145–151.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStruga, M., Kossakowski, J., Kedzierska, E., Fidecka, S. & Stefanska, J. (2007). Chem. Pharm. Bull. 55, 796–799.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1670-o1671
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds