organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(2-Fluoro­phen­yl)amino]-4-oxo­butanoic acid

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 15 July 2008; accepted 29 July 2008; online 6 August 2008)

The crystal structure of the title compound, C10H10FNO3, contains dimers of the asymmetric unit, with R22(8) rings arising from inter­molecular O—H⋯O hydrogen bonding through the carboxyl­ate groups. Adjacent dimeric units are connected to each other through one N—H⋯O and two C—H⋯O inter­molecular hydrogen bonds. C—H⋯O hydrogen bonds involving the aromatic ring and the O atoms of two carboxyl­ate groups form an R33(7) ring. The crystal structure is further stabilized by C—H⋯F inter­actions, giving rise to a three-dimensional network.

Related literature

For related literature, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Shah et al. (2008[Shah, F. A., Tahir, M. N., Ali, S. & Kashmiri, M. A. (2008). Acta Cryst. E64, o787.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10FNO3

  • Mr = 211.19

  • Monoclinic, P 21 /c

  • a = 4.8054 (3) Å

  • b = 19.0399 (13) Å

  • c = 11.0429 (8) Å

  • β = 101.821 (3)°

  • V = 988.94 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 (2) K

  • 0.25 × 0.15 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.989

  • 11668 measured reflections

  • 2550 independent reflections

  • 1366 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.144

  • S = 1.01

  • 2550 reflections

  • 142 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.86 (2) 1.81 (2) 2.664 (2) 178 (2)
N1—H1A⋯O3ii 0.88 (2) 2.04 (2) 2.908 (2) 169.7 (18)
C8—H8⋯O2iii 0.93 2.54 3.435 (3) 160
C9—H9⋯O1iv 0.93 2.58 3.402 (3) 147
C2—H2B⋯F1v 0.97 2.61 3.357 (2) 134
C2—H2A⋯F1vi 0.97 2.82 3.602 (2) 138
Symmetry codes: (i) -x, -y+1, -z; (ii) x+1, y, z; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x+2, -y+1, -z+1; (vi) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (I) results from our continuing studies into the synthesis of carboxylic acids having the possibility of coordination with more donor atoms (Shah, et al., 2008). The purpose of synthesizing (I) was to make complexes with various metals and to study the biological activity at large.

The structures of (II) 3-(3,5-dichloroanilinocarbonyl)propionic acid (Shah, et al., 2008) is the best example for comparison of geometry. In (I) the C=O bond distances for carboxylate and carbonyl group have values of (C1=O2: 1.215 (2) Å) and (C4=O3: 1.223 (2) Å) in comparison to 1.219 (3) Å and 1.225 (2) Å, respectively. The C—N bond distances are compareable within experimental errors. The crystal structure of (I) consists of cetro-symmetric dimers forming R22(8) ring (Bernstein, et al., 1995), through intermolecular H-bonding (Table 1). The adjacent dimers are connected to each other through two C—H···O intermolecular H-bonds forming R33(7) ring [O—H···O···H—C—C—H···O] as shown in Fig 2. In (I) and (II), there is similarity of H-bonding between the amino and carbonyl group. There are C—H···F interaction also (Table 1) which stabilize the title molecule. The dihedral angle between the aromatic ring (C5—C10) and (C1,C2,C3,O1,O2) have a value of 58.87 (6)°, whereas with (N1,C3,C4,O3) its value is 51.09 (16)°. The value of dihedral angle between (C1,C2,C3,O1,O2) and (N1,C3,C4,O3) is 74.17 (13)°.

Related literature top

For related literature, see: Bernstein et al. (1995); Shah et al. (2008).

Experimental top

2-Fluoroaniline (0.1 mole, 9.56 ml) was dissolved in 30 ml of glacial acetic acid. A solution of succinic anhydride (10 g, 0.1 mole) in 50 ml glacial acetic acid was added and the mixture was stirred overnight. The precipitate which appeared was filtered, washed with distilled water and dried at 313–315 K. The acid was recrystallized from acetone. (Yield: 85%, m.p: 435 K)

Refinement top

The coordinates of H-atom attached with O1 and N1 were refined. The H-atoms attached with C-atoms were positioned geometrically, C—H = 0.93, and 0.97 Å for aromatic and methylene H, and constrained to ride on their parent atoms. The H-atoms were treated as isotropic with Uiso(H) = xUeq(C, N, O), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. ORTEP-3 for Windows (Farrugia, 1997) drawing of the title compound, C10H10FNO3 with the atom numbering scheme. The thermal ellipsoids are drawn at the 30% probability level. H-atoms are shown by small circles of arbitrary radii.
[Figure 2] Fig. 2. The partial unit cell packing of (I) (Spek, 2003) with only H-atoms which are involved in H-bonding, showing the dimeric nature formig R22(8) ring, forming R33(7) ring through intermolecular H-bonds and the linkage of dimers through H-bonds of N—H···O type.
4-[(2-Fluorophenyl)amino]-4-oxobutanoic acid top
Crystal data top
C10H10FNO3F(000) = 440
Mr = 211.19Dx = 1.418 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2550 reflections
a = 4.8054 (3) Åθ = 2.1–28.7°
b = 19.0399 (13) ŵ = 0.12 mm1
c = 11.0429 (8) ÅT = 296 K
β = 101.821 (3)°Needle, colorless
V = 988.94 (12) Å30.25 × 0.15 × 0.10 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2550 independent reflections
Radiation source: fine-focus sealed tube1366 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 7.4 pixels mm-1θmax = 28.7°, θmin = 2.1°
ω scansh = 65
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 2525
Tmin = 0.975, Tmax = 0.989l = 1414
11668 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0685P)2 + 0.1019P]
where P = (Fo2 + 2Fc2)/3
2550 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C10H10FNO3V = 988.94 (12) Å3
Mr = 211.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.8054 (3) ŵ = 0.12 mm1
b = 19.0399 (13) ÅT = 296 K
c = 11.0429 (8) Å0.25 × 0.15 × 0.10 mm
β = 101.821 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2550 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1366 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.989Rint = 0.038
11668 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.26 e Å3
2550 reflectionsΔρmin = 0.20 e Å3
142 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F11.0488 (3)0.33085 (7)0.62407 (12)0.0777 (5)
O10.0318 (3)0.56812 (8)0.11407 (14)0.0633 (6)
O20.2963 (3)0.47537 (8)0.09700 (14)0.0675 (6)
O30.2983 (3)0.42965 (8)0.37996 (15)0.0638 (6)
N10.7391 (3)0.38295 (8)0.40847 (14)0.0419 (5)
C10.2503 (4)0.52781 (10)0.15251 (18)0.0422 (6)
C20.4378 (4)0.55192 (10)0.26901 (19)0.0484 (6)
C30.6657 (4)0.49982 (10)0.32502 (19)0.0469 (6)
C40.5482 (3)0.43475 (10)0.37282 (16)0.0400 (6)
C50.6718 (4)0.31736 (9)0.45548 (17)0.0381 (6)
C60.8291 (4)0.29162 (10)0.56401 (18)0.0470 (6)
C70.7714 (5)0.22849 (12)0.6121 (2)0.0671 (8)
C80.5497 (5)0.18915 (12)0.5515 (2)0.0681 (9)
C90.3881 (5)0.21314 (11)0.4428 (2)0.0643 (8)
C100.4499 (4)0.27661 (11)0.39432 (19)0.0542 (7)
H10.070 (5)0.5532 (12)0.046 (2)0.0759*
H1A0.916 (4)0.3921 (10)0.4045 (18)0.0503*
H2A0.321390.561960.329030.0581*
H2B0.528670.595430.252770.0581*
H3A0.772410.486550.262940.0563*
H3B0.796320.522300.392500.0563*
H70.882850.212480.685920.0805*
H80.508240.146200.583830.0817*
H90.235820.186500.401360.0771*
H100.340850.292090.319620.0650*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0646 (8)0.0765 (9)0.0763 (9)0.0227 (7)0.0221 (7)0.0104 (7)
O10.0610 (10)0.0615 (10)0.0597 (10)0.0270 (8)0.0055 (7)0.0027 (7)
O20.0655 (10)0.0638 (10)0.0645 (10)0.0308 (8)0.0073 (8)0.0113 (8)
O30.0265 (7)0.0653 (10)0.1013 (12)0.0009 (6)0.0170 (7)0.0277 (8)
N10.0247 (7)0.0430 (9)0.0571 (10)0.0037 (7)0.0065 (7)0.0100 (7)
C10.0396 (10)0.0384 (11)0.0494 (11)0.0076 (9)0.0113 (9)0.0120 (9)
C20.0434 (10)0.0409 (10)0.0591 (12)0.0036 (9)0.0060 (9)0.0057 (9)
C30.0335 (9)0.0497 (11)0.0552 (12)0.0062 (8)0.0034 (9)0.0103 (9)
C40.0278 (8)0.0474 (11)0.0433 (10)0.0045 (8)0.0038 (7)0.0057 (8)
C50.0311 (9)0.0373 (10)0.0465 (10)0.0036 (8)0.0094 (8)0.0014 (8)
C60.0396 (10)0.0451 (11)0.0525 (11)0.0081 (9)0.0007 (9)0.0020 (9)
C70.0680 (15)0.0628 (15)0.0654 (14)0.0041 (13)0.0018 (12)0.0211 (12)
C80.0742 (16)0.0465 (12)0.0866 (18)0.0138 (12)0.0233 (14)0.0113 (12)
C90.0606 (13)0.0506 (13)0.0804 (16)0.0227 (11)0.0114 (12)0.0102 (12)
C100.0496 (12)0.0540 (13)0.0551 (12)0.0146 (10)0.0014 (9)0.0000 (10)
Geometric parameters (Å, º) top
F1—C61.351 (2)C6—C71.365 (3)
O1—C11.300 (2)C7—C81.361 (3)
O2—C11.215 (2)C8—C91.368 (3)
O3—C41.223 (2)C9—C101.379 (3)
O1—H10.86 (2)C2—H2A0.9700
N1—C41.350 (2)C2—H2B0.9700
N1—C51.415 (2)C3—H3A0.9700
N1—H1A0.88 (2)C3—H3B0.9700
C1—C21.484 (3)C7—H70.9300
C2—C31.513 (3)C8—H80.9300
C3—C41.502 (3)C9—H90.9300
C5—C101.378 (3)C10—H100.9300
C5—C61.370 (3)
F1···N12.723 (2)C6···C9vii3.566 (3)
F1···C2i3.357 (2)C9···O1viii3.402 (3)
F1···H1A2.648 (19)C9···C6v3.566 (3)
F1···H2Aii2.8200C10···O33.000 (3)
F1···H2Bi2.6100C1···H1iii2.68 (2)
O1···O2iii2.664 (2)C1···H3Av2.9200
O1···C9iv3.402 (3)C4···H102.9100
O2···C1iii3.396 (2)H1···O2iii1.81 (2)
O2···C43.135 (2)H1···C1iii2.68 (2)
O2···O1iii2.664 (2)H1···H1iii2.42 (3)
O3···C3v3.262 (2)H1A···F12.648 (19)
O3···C13.101 (3)H1A···O3vii2.04 (2)
O3···N1v2.908 (2)H1A···H3A2.3900
O3···C103.000 (3)H1A···H3B2.5400
O1···H9iv2.5800H2A···O32.5900
O1···H3Av2.7400H2A···F1ii2.8200
O2···H8vi2.5400H2B···F1i2.6100
O2···H1iii1.81 (2)H3A···O1vii2.7400
O2···H3A2.6300H3A···O22.6300
O3···H1Av2.04 (2)H3A···O3vii2.8100
O3···H2A2.5900H3A···C1vii2.9200
O3···H3Av2.8100H3A···H1A2.3900
O3···H102.7200H3B···H1A2.5400
O3···H3Bii2.8000H3B···O3ii2.8000
N1···F12.723 (2)H7···H10ix2.3900
N1···O3vii2.908 (2)H8···O2x2.5400
C1···O33.101 (3)H9···O1viii2.5800
C1···O2iii3.396 (2)H10···O32.7200
C2···F1i3.357 (2)H10···C42.9100
C3···O3vii3.262 (2)H10···H7xi2.3900
C4···O23.135 (2)
C1—O1—H1111.6 (16)C8—C9—C10120.3 (2)
C4—N1—C5124.00 (15)C5—C10—C9120.65 (19)
C4—N1—H1A116.6 (13)C1—C2—H2A109.00
C5—N1—H1A119.3 (13)C1—C2—H2B109.00
O1—C1—O2122.59 (18)C3—C2—H2A109.00
O1—C1—C2114.01 (17)C3—C2—H2B109.00
O2—C1—C2123.40 (18)H2A—C2—H2B108.00
C1—C2—C3114.31 (16)C2—C3—H3A109.00
C2—C3—C4113.08 (16)C2—C3—H3B109.00
N1—C4—C3115.05 (14)C4—C3—H3A109.00
O3—C4—C3122.21 (17)C4—C3—H3B109.00
O3—C4—N1122.74 (17)H3A—C3—H3B108.00
N1—C5—C6120.67 (17)C6—C7—H7120.00
N1—C5—C10121.94 (17)C8—C7—H7120.00
C6—C5—C10117.39 (17)C7—C8—H8120.00
C5—C6—C7122.39 (19)C9—C8—H8120.00
F1—C6—C5117.86 (17)C8—C9—H9120.00
F1—C6—C7119.76 (18)C10—C9—H9120.00
C6—C7—C8119.6 (2)C5—C10—H10120.00
C7—C8—C9119.6 (2)C9—C10—H10120.00
C5—N1—C4—O31.1 (3)N1—C5—C6—C7179.78 (19)
C5—N1—C4—C3179.64 (16)C10—C5—C6—F1179.37 (17)
C4—N1—C5—C6129.3 (2)C10—C5—C6—C70.5 (3)
C4—N1—C5—C1051.4 (3)N1—C5—C10—C9179.55 (19)
O1—C1—C2—C3170.92 (17)C6—C5—C10—C91.2 (3)
O2—C1—C2—C39.5 (3)F1—C6—C7—C8179.9 (2)
C1—C2—C3—C467.8 (2)C5—C6—C7—C80.3 (3)
C2—C3—C4—O39.2 (3)C6—C7—C8—C90.3 (4)
C2—C3—C4—N1171.57 (16)C7—C8—C9—C100.4 (4)
N1—C5—C6—F10.1 (3)C8—C9—C10—C51.1 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x, y+1/2, z+1/2; (v) x1, y, z; (vi) x, y+1/2, z1/2; (vii) x+1, y, z; (viii) x, y1/2, z+1/2; (ix) x+1, y+1/2, z+1/2; (x) x, y+1/2, z+1/2; (xi) x1, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2iii0.86 (2)1.81 (2)2.664 (2)178 (2)
N1—H1A···O3vii0.88 (2)2.04 (2)2.908 (2)169.7 (18)
C8—H8···O2x0.932.543.435 (3)160
C9—H9···O1viii0.932.583.402 (3)147
C2—H2B···F1i0.972.613.357 (2)134
C2—H2A···F1ii0.972.823.602 (2)138
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (vii) x+1, y, z; (viii) x, y1/2, z+1/2; (x) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H10FNO3
Mr211.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)4.8054 (3), 19.0399 (13), 11.0429 (8)
β (°) 101.821 (3)
V3)988.94 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.25 × 0.15 × 0.10
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.975, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
11668, 2550, 1366
Rint0.038
(sin θ/λ)max1)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.145, 1.01
No. of reflections2550
No. of parameters142
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.20

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.86 (2)1.81 (2)2.664 (2)178 (2)
N1—H1A···O3ii0.88 (2)2.04 (2)2.908 (2)169.7 (18)
C8—H8···O2iii0.932.543.435 (3)160
C9—H9···O1iv0.932.583.402 (3)147
C2—H2B···F1v0.972.613.357 (2)134
C2—H2A···F1vi0.972.823.602 (2)138
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x, y+1/2, z+1/2; (iv) x, y1/2, z+1/2; (v) x+2, y+1, z+1; (vi) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge the Higher Education Commision, Islamabad, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore. SA is also thankful to PSF for financial support under project No. PSF/R&D/C-QU/Chem(270).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationShah, F. A., Tahir, M. N., Ali, S. & Kashmiri, M. A. (2008). Acta Cryst. E64, o787.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds