organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-(Propane-1,3-di­yl)dipiperidinium sulfate monohydrate

aCollege of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
*Correspondence e-mail: yangeli66@yahoo.com.cn

(Received 19 July 2008; accepted 6 August 2008; online 16 August 2008)

In the title compound, C13H28N22+·SO42−·H2O, extensive hydrogen-bonding inter­actions between the protonated 4,4′-(propane-1,3-di­yl)dipiperidinium ions, the sulfate anions and the water mol­ecules lead to a three-dimensional pillared and layered structure with the 4,4′-(propane-1,3-di­yl)­dipiperidinium ions acting as the pillars.

[Scheme 1]

Experimental

Crystal data
  • C13H28N22+·SO42−·H2O

  • Mr = 326.45

  • Monoclinic, P 21 /n

  • a = 6.2019 (2) Å

  • b = 22.5110 (5) Å

  • c = 12.0052 (3) Å

  • β = 100.439 (2)°

  • V = 1648.32 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 (2) K

  • 0.22 × 0.14 × 0.09 mm

Data collection
  • Siemens SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.927, Tmax = 0.98

  • 13022 measured reflections

  • 2932 independent reflections

  • 2011 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.131

  • S = 1.03

  • 2932 reflections

  • 202 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O4i 0.85 1.98 2.819 (3) 168
O1W—H1WB⋯O3ii 0.85 1.97 2.799 (3) 165
N1—H1NA⋯O4iii 0.94 (3) 2.09 (3) 2.904 (3) 144 (3)
N1—H1NB⋯O3iv 0.85 (3) 1.91 (3) 2.711 (3) 157 (3)
N2—H2NA⋯O1v 0.88 (3) 1.83 (3) 2.704 (3) 177 (3)
N2—H2NB⋯O4vi 0.92 (3) 2.02 (3) 2.845 (4) 149 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x, -y, -z+1; (iv) -x+1, -y, -z+1; (v) x+1, y, z; (vi) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Bergerhoff et al., 1999[Bergerhoff, G., Berndt, M. & Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The asymmetric unit of the title compound, (I), consists of one protonated 4,4'-(propane-1,3-diyl)dipiperidinium ion, one deprotonated sulfate anion and one water molecule (Figure 1). Both protonated N ends of the 4,4'-(propane-1,3-diyl)dipiperidinium ion form N—H···O hydrogen bonds with the sulfate anion, as well as the water molecules form O—H···O hydrogen bonds with the sulfate anion, which leads to the formation of two-dimensional hydrogen-bonding layer parallel to the ac plane (Table 1 & Figure 2). The resulting layers are further pillared by the 4,4'-(propane-1,3-diyl)dipiperidinium ions to complete the three-dimensional structure.

Related literature top

Please supply any relevant related literature.

Experimental top

A solution of 4,4-trimethylenedipiperidine (1 mmol), sulfuric acid (1 mmol) and H2O (10 ml) was slowly evaporated at room temperature, giving colorless single crystals suitable for X-ray analysis.

Refinement top

The H atoms bonded to C and O atoms were placed at calculated positions, and refined with isotropic displacement parameters, using a riding model [C—H 0.93Å and Uiso(H) = 1.2Ueq(C); O—H 0.85Å and Uiso(H) = 1.5Ueq(C)]. The H atoms bonded to N atoms were refined freely.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Bergerhoff et al., 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The three-dimensional structure of the title compound, showing the hydrogen bonding interactions (dashed lines).
4,4'-(Propane-1,3-diyl)dipiperidinium sulfate monohydrate top
Crystal data top
C13H28N22+·SO42·H2OF(000) = 712
Mr = 326.45Dx = 1.315 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 99 reflections
a = 6.2019 (2) Åθ = 2.0–25.1°
b = 22.5110 (5) ŵ = 0.22 mm1
c = 12.0052 (3) ÅT = 293 K
β = 100.439 (2)°Prism, colorless
V = 1648.32 (8) Å30.22 × 0.14 × 0.09 mm
Z = 4
Data collection top
Siemens SMART 1K CCD area-detector
diffractometer
2932 independent reflections
Radiation source: fine-focus sealed tube2011 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ϕ and ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.927, Tmax = 0.98k = 2626
13022 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0635P)2 + 0.5599P]
where P = (Fo2 + 2Fc2)/3
2932 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C13H28N22+·SO42·H2OV = 1648.32 (8) Å3
Mr = 326.45Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.2019 (2) ŵ = 0.22 mm1
b = 22.5110 (5) ÅT = 293 K
c = 12.0052 (3) Å0.22 × 0.14 × 0.09 mm
β = 100.439 (2)°
Data collection top
Siemens SMART 1K CCD area-detector
diffractometer
2932 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2011 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.98Rint = 0.066
13022 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.34 e Å3
2932 reflectionsΔρmin = 0.40 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.28582 (11)0.18642 (3)0.35885 (6)0.0255 (2)
O1W0.7186 (3)0.20465 (10)0.15532 (19)0.0458 (6)
H1WA0.60740.22740.14210.069*
H1WB0.81810.22790.14100.069*
O10.2335 (3)0.19986 (9)0.23718 (16)0.0346 (5)
O20.2510 (4)0.12374 (10)0.38116 (19)0.0489 (6)
O30.5164 (3)0.20349 (10)0.40084 (18)0.0431 (6)
O40.1467 (3)0.22203 (10)0.42124 (19)0.0493 (7)
N10.1395 (4)0.13893 (12)0.4911 (2)0.0310 (6)
H1NA0.026 (5)0.1498 (14)0.529 (3)0.046*
H1NB0.258 (6)0.1500 (14)0.533 (3)0.046*
N20.8705 (4)0.19250 (11)0.0746 (2)0.0279 (6)
H2NA0.986 (5)0.1962 (14)0.128 (3)0.042*
H2NB0.851 (5)0.2258 (14)0.029 (3)0.042*
C10.1335 (5)0.07379 (13)0.4752 (3)0.0328 (7)
H1A0.14820.05450.54840.039*
H1B0.00680.06240.43060.039*
C20.3159 (5)0.05304 (13)0.4160 (2)0.0279 (7)
H2A0.45550.05890.46610.033*
H2B0.29870.01080.40070.033*
C30.3192 (4)0.08591 (12)0.3044 (2)0.0249 (6)
H3A0.18590.07560.25070.030*
C40.3183 (5)0.15306 (12)0.3261 (2)0.0300 (7)
H4A0.30800.17390.25460.036*
H4B0.45540.16430.37390.036*
C50.1292 (5)0.17174 (14)0.3825 (2)0.0351 (8)
H5A0.00870.16340.33260.042*
H5B0.13690.21410.39720.042*
C60.5170 (5)0.06873 (12)0.2525 (2)0.0297 (7)
H6A0.52590.09570.19050.036*
H6B0.64830.07430.30920.036*
C70.5158 (4)0.00503 (12)0.2080 (3)0.0296 (7)
H7A0.39180.00010.14660.036*
H7B0.49640.02220.26810.036*
C80.7255 (5)0.01124 (13)0.1655 (3)0.0315 (7)
H8A0.84650.01120.22930.038*
H8B0.75490.01910.11290.038*
C90.6696 (5)0.18163 (13)0.1245 (3)0.0298 (7)
H9A0.54130.18200.06470.036*
H9B0.65360.21320.17740.036*
C100.6836 (4)0.12266 (12)0.1851 (2)0.0269 (7)
H10A0.54940.11600.21410.032*
H10B0.80420.12360.24910.032*
C110.7181 (4)0.07147 (12)0.1069 (2)0.0264 (7)
H11A0.59430.07120.04330.032*
C120.9259 (5)0.08438 (13)0.0598 (3)0.0332 (7)
H12A1.05080.08440.12150.040*
H12B0.94790.05300.00760.040*
C130.9149 (5)0.14331 (13)0.0008 (3)0.0346 (8)
H13A1.05280.15060.02580.042*
H13B0.79970.14200.06730.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0231 (4)0.0290 (4)0.0237 (4)0.0011 (3)0.0024 (3)0.0009 (3)
O1W0.0439 (13)0.0327 (13)0.0623 (16)0.0011 (10)0.0131 (12)0.0080 (11)
O10.0342 (11)0.0457 (14)0.0209 (12)0.0003 (9)0.0027 (9)0.0051 (9)
O20.0630 (16)0.0310 (14)0.0508 (16)0.0044 (11)0.0049 (12)0.0120 (11)
O30.0239 (11)0.0606 (15)0.0401 (14)0.0115 (10)0.0070 (10)0.0122 (11)
O40.0416 (13)0.0637 (17)0.0469 (15)0.0067 (12)0.0196 (11)0.0167 (12)
N10.0267 (13)0.0376 (16)0.0275 (16)0.0033 (11)0.0019 (12)0.0095 (12)
N20.0327 (14)0.0249 (15)0.0230 (14)0.0041 (11)0.0036 (11)0.0046 (11)
C10.0350 (16)0.0349 (19)0.0274 (17)0.0063 (14)0.0028 (13)0.0008 (14)
C20.0298 (15)0.0218 (16)0.0298 (17)0.0013 (12)0.0008 (13)0.0008 (13)
C30.0267 (14)0.0203 (15)0.0258 (16)0.0005 (12)0.0008 (12)0.0047 (12)
C40.0401 (17)0.0219 (17)0.0266 (17)0.0035 (13)0.0022 (14)0.0004 (13)
C50.0396 (18)0.0320 (18)0.0291 (18)0.0142 (14)0.0058 (14)0.0019 (14)
C60.0318 (16)0.0244 (17)0.0326 (18)0.0010 (12)0.0047 (13)0.0020 (13)
C70.0324 (15)0.0227 (16)0.0357 (18)0.0010 (12)0.0110 (13)0.0020 (13)
C80.0347 (16)0.0229 (17)0.0379 (19)0.0002 (13)0.0094 (14)0.0012 (13)
C90.0325 (16)0.0251 (17)0.0317 (18)0.0027 (12)0.0051 (13)0.0021 (13)
C100.0300 (15)0.0235 (17)0.0286 (17)0.0016 (12)0.0093 (13)0.0005 (13)
C110.0272 (15)0.0248 (17)0.0275 (17)0.0003 (12)0.0058 (13)0.0011 (12)
C120.0407 (17)0.0243 (17)0.0398 (19)0.0020 (13)0.0206 (15)0.0047 (14)
C130.0391 (17)0.0342 (19)0.0324 (19)0.0038 (14)0.0114 (15)0.0033 (14)
Geometric parameters (Å, º) top
S1—O21.459 (2)C4—H4B0.9700
S1—O11.469 (2)C5—H5A0.9700
S1—O41.477 (2)C5—H5B0.9700
S1—O31.478 (2)C6—C71.530 (4)
O1W—H1WA0.8501C6—H6A0.9700
O1W—H1WB0.8500C6—H6B0.9700
N1—C11.478 (4)C7—C81.525 (4)
N1—C51.489 (4)C7—H7A0.9700
N1—H1NA0.94 (3)C7—H7B0.9700
N1—H1NB0.85 (3)C8—C111.524 (4)
N2—C131.488 (4)C8—H8A0.9700
N2—C91.497 (4)C8—H8B0.9700
N2—H2NA0.88 (3)C9—C101.509 (4)
N2—H2NB0.92 (3)C9—H9A0.9700
C1—C21.515 (4)C9—H9B0.9700
C1—H1A0.9700C10—C111.526 (4)
C1—H1B0.9700C10—H10A0.9700
C2—C31.534 (4)C10—H10B0.9700
C2—H2A0.9700C11—C121.527 (4)
C2—H2B0.9700C11—H11A0.9800
C3—C61.523 (4)C12—C131.509 (4)
C3—C41.534 (4)C12—H12A0.9700
C3—H3A0.9800C12—H12B0.9700
C4—C51.516 (4)C13—H13A0.9700
C4—H4A0.9700C13—H13B0.9700
O2—S1—O1111.60 (13)C3—C6—C7115.3 (2)
O2—S1—O4108.18 (14)C3—C6—H6A108.4
O1—S1—O4110.38 (13)C7—C6—H6A108.4
O2—S1—O3110.79 (13)C3—C6—H6B108.4
O1—S1—O3108.13 (12)C7—C6—H6B108.4
O4—S1—O3107.69 (14)H6A—C6—H6B107.5
H1WA—O1W—H1WB100.7C8—C7—C6113.0 (2)
C1—N1—C5112.5 (2)C8—C7—H7A109.0
C1—N1—H1NA108.6 (19)C6—C7—H7A109.0
C5—N1—H1NA112.1 (19)C8—C7—H7B109.0
C1—N1—H1NB111 (2)C6—C7—H7B109.0
C5—N1—H1NB106 (2)H7A—C7—H7B107.8
H1NA—N1—H1NB107 (3)C11—C8—C7114.3 (2)
C13—N2—C9112.4 (2)C11—C8—H8A108.7
C13—N2—H2NA108 (2)C7—C8—H8A108.7
C9—N2—H2NA110 (2)C11—C8—H8B108.7
C13—N2—H2NB105.2 (19)C7—C8—H8B108.7
C9—N2—H2NB109.9 (19)H8A—C8—H8B107.6
H2NA—N2—H2NB111 (3)N2—C9—C10110.9 (2)
N1—C1—C2111.3 (2)N2—C9—H9A109.4
N1—C1—H1A109.4C10—C9—H9A109.4
C2—C1—H1A109.4N2—C9—H9B109.4
N1—C1—H1B109.4C10—C9—H9B109.4
C2—C1—H1B109.4H9A—C9—H9B108.0
H1A—C1—H1B108.0C9—C10—C11111.7 (2)
C1—C2—C3113.0 (2)C9—C10—H10A109.3
C1—C2—H2A109.0C11—C10—H10A109.3
C3—C2—H2A109.0C9—C10—H10B109.3
C1—C2—H2B109.0C11—C10—H10B109.3
C3—C2—H2B109.0H10A—C10—H10B107.9
H2A—C2—H2B107.8C8—C11—C10112.6 (2)
C6—C3—C2112.0 (2)C8—C11—C12112.5 (2)
C6—C3—C4110.4 (2)C10—C11—C12107.8 (2)
C2—C3—C4109.0 (2)C8—C11—H11A107.9
C6—C3—H3A108.5C10—C11—H11A107.9
C2—C3—H3A108.5C12—C11—H11A107.9
C4—C3—H3A108.5C13—C12—C11112.3 (2)
C5—C4—C3112.1 (2)C13—C12—H12A109.2
C5—C4—H4A109.2C11—C12—H12A109.2
C3—C4—H4A109.2C13—C12—H12B109.2
C5—C4—H4B109.2C11—C12—H12B109.2
C3—C4—H4B109.2H12A—C12—H12B107.9
H4A—C4—H4B107.9N2—C13—C12111.0 (2)
N1—C5—C4109.9 (2)N2—C13—H13A109.4
N1—C5—H5A109.7C12—C13—H13A109.4
C4—C5—H5A109.7N2—C13—H13B109.4
N1—C5—H5B109.7C12—C13—H13B109.4
C4—C5—H5B109.7H13A—C13—H13B108.0
H5A—C5—H5B108.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4i0.851.982.819 (3)168
O1W—H1WB···O3ii0.851.972.799 (3)165
N1—H1NA···O4iii0.94 (3)2.09 (3)2.904 (3)144 (3)
N1—H1NB···O3iv0.85 (3)1.91 (3)2.711 (3)157 (3)
N2—H2NA···O1v0.88 (3)1.83 (3)2.704 (3)177 (3)
N2—H2NB···O4vi0.92 (3)2.02 (3)2.845 (4)149 (3)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x, y, z+1; (iv) x+1, y, z+1; (v) x+1, y, z; (vi) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC13H28N22+·SO42·H2O
Mr326.45
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.2019 (2), 22.5110 (5), 12.0052 (3)
β (°) 100.439 (2)
V3)1648.32 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.22 × 0.14 × 0.09
Data collection
DiffractometerSiemens SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.927, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
13022, 2932, 2011
Rint0.066
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.131, 1.03
No. of reflections2932
No. of parameters202
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.40

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Bergerhoff et al., 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4i0.851.982.819 (3)168.3
O1W—H1WB···O3ii0.851.972.799 (3)164.9
N1—H1NA···O4iii0.94 (3)2.09 (3)2.904 (3)144 (3)
N1—H1NB···O3iv0.85 (3)1.91 (3)2.711 (3)157 (3)
N2—H2NA···O1v0.88 (3)1.83 (3)2.704 (3)177 (3)
N2—H2NB···O4vi0.92 (3)2.02 (3)2.845 (4)149 (3)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x, y, z+1; (iv) x+1, y, z+1; (v) x+1, y, z; (vi) x+1/2, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge financial support from the Natural Science Foundation of Fujian Province (2006 F3042).

References

First citationBergerhoff, G., Berndt, M. & Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds