metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{μ-6,6′-Dimeth­­oxy-2,2′-[propane-1,3-diylbis(nitrilo­methyl­­idyne)]diphenolato}trinitratocopper(II)europium(III)

aSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and bDepartment of Anesthesiology of the Second Affiliated Hospital, Harbin Medical University, Harbin 150086, People's Republic of China
*Correspondence e-mail: gmli@hlju.edu.cn

(Received 29 July 2008; accepted 14 August 2008; online 30 August 2008)

In the title complex, [CuEu(C19H20N2O4)(NO3)3], the CuII ion is four-coordinated in a square-planar geometry by two O atoms and two N atoms of the deprotonated Schiff base. The EuIII atom is ten-coordinate, chelated by three nitrate groups and linked to the four O atoms of the deprotonated Schiff base.

Related literature

For copper–lanthanide complexes of the same Schiff base, see: Elmali & Elerman (2003[Elmali, A. & Elerman, Y. (2003). Z. Naturforsch. Teil B, 58, 639-643.]); Elmali & Elerman (2004[Elmali, A. & Elerman, Y. (2004). Z. Naturforsch. Teil B, 59, 535-540.]).

[Scheme 1]

Experimental

Crystal data
  • [CuEu(C19H20N2O4)(NO3)3]

  • Mr = 741.90

  • Monoclinic, P 21 /n

  • a = 11.638 (2) Å

  • b = 14.680 (3) Å

  • c = 14.853 (3) Å

  • β = 101.52 (3)°

  • V = 2486.5 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.43 mm−1

  • T = 291 (2) K

  • 0.21 × 0.20 × 0.19 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.527, Tmax = 0.568 (expected range = 0.484–0.521)

  • 23524 measured reflections

  • 5660 independent reflections

  • 5072 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.058

  • S = 1.06

  • 5660 reflections

  • 354 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As shown in Fig. 1, the hexadentate Schiff base ligand links Cu and Eu atoms into a dinuclear complex through two phenolate O atoms, which is similar with the bonding reported for another copper-lanthanide complex of the same ligand (Elmali & Elerman, 2003, 2004). The EuIII centre in (I) is ten-coordinated by four oxygen atoms from the ligand and six oxygen atoms from three nitrate ions. The CuII center is four-coordinate by two nitrogen atoms and two oxygen atoms from the ligand.

Related literature top

For copper–lanthanide complexes of the same Schiff base, see: Elmali & Elerman (2003); Elmali & Elerman (2004).

Experimental top

The title complex was obtained by the treatment of copper(II) acetate monohydrate (0.0499 g, 0.25 mmol) with the Schiff base (0.0855 g, 0.25 mmol) in methanol (25 ml)at room temperature. Then the mixture was refluxed for 3 h after the addition of europium (III) nitrate hexahydrate (0.1117 g, 0.25 mmol). The reaction mixture was cooled and filtered; diethyl ether was allowed to diffuse slowly into the solution of the filtrate. Single crystals were obtained after several days. Analysis calculated for C19H20CuN5O13Eu: C, 30.78; H, 2.76; Cu, 8.50; N, 9.38; Eu, 20.58; found: C, 30.73; H, 2.70; Cu, 8.56; N, 9.44; Eu, 20.61%.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C), C—H = 0.97 Å (methylene C), and with Uiso(H) = 1.2Ueq(C) or C—H = 0.96 Å (methly C) and with Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 40% probability displacement ellipsoids.
{µ-6,6'-Dimethoxy-2,2'-[propane-1,3- diylbis(nitrilomethylidyne)]diphenolato} trinitratocopper(II)europium(III) top
Crystal data top
[CuEu(C19H20N2O4)(NO3)3]F(000) = 1460
Mr = 741.90Dx = 1.982 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 17062 reflections
a = 11.638 (2) Åθ = 3.0–27.5°
b = 14.680 (3) ŵ = 3.43 mm1
c = 14.853 (3) ÅT = 291 K
β = 101.52 (3)°Block, red
V = 2486.5 (9) Å30.21 × 0.20 × 0.19 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5660 independent reflections
Radiation source: fine-focus sealed tube5072 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 10.000 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1513
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1919
Tmin = 0.527, Tmax = 0.568l = 1919
23524 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0213P)2 + 2.281P]
where P = (Fo2 + 2Fc2)/3
5660 reflections(Δ/σ)max = 0.002
354 parametersΔρmax = 0.72 e Å3
6 restraintsΔρmin = 0.45 e Å3
Crystal data top
[CuEu(C19H20N2O4)(NO3)3]V = 2486.5 (9) Å3
Mr = 741.90Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.638 (2) ŵ = 3.43 mm1
b = 14.680 (3) ÅT = 291 K
c = 14.853 (3) Å0.21 × 0.20 × 0.19 mm
β = 101.52 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5660 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5072 reflections with I > 2σ(I)
Tmin = 0.527, Tmax = 0.568Rint = 0.031
23524 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0246 restraints
wR(F2) = 0.058H-atom parameters constrained
S = 1.06Δρmax = 0.72 e Å3
5660 reflectionsΔρmin = 0.45 e Å3
354 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9061 (2)0.36789 (18)0.06244 (19)0.0317 (6)
C20.7932 (3)0.3919 (2)0.10789 (19)0.0345 (6)
C30.7755 (3)0.4599 (2)0.1732 (2)0.0449 (7)
H10.69990.47430.20380.054*
C40.8712 (3)0.5068 (2)0.1931 (2)0.0523 (9)
H20.85940.55360.23610.063*
C50.9823 (3)0.4844 (2)0.1499 (2)0.0463 (8)
H31.04560.51620.16390.056*
C61.0024 (3)0.4136 (2)0.0841 (2)0.0365 (6)
C71.1218 (3)0.3936 (2)0.0403 (2)0.0397 (7)
H41.17830.43440.05180.048*
C81.2885 (3)0.3275 (2)0.0496 (3)0.0536 (9)
H51.30800.38130.08760.064*
H61.32900.33200.00130.064*
C91.3326 (3)0.2449 (2)0.1056 (3)0.0511 (9)
H71.30380.24620.16250.061*
H81.41760.24690.12110.061*
C101.2950 (3)0.1573 (2)0.0561 (3)0.0488 (8)
H91.29750.16380.00850.059*
H101.34830.10880.08150.059*
C111.1568 (2)0.05275 (19)0.09083 (19)0.0336 (6)
H111.21940.01260.09540.040*
C121.0502 (2)0.01617 (18)0.11234 (18)0.0304 (6)
C131.0533 (3)0.0754 (2)0.1430 (2)0.0380 (7)
H121.12020.11050.14420.046*
C140.9582 (3)0.1123 (2)0.1709 (2)0.0458 (8)
H130.96020.17270.18990.055*
C150.8589 (3)0.0602 (2)0.1710 (2)0.0413 (7)
H140.79530.08530.19140.050*
C160.8541 (2)0.02870 (19)0.14095 (19)0.0321 (6)
C170.9492 (2)0.06820 (17)0.10940 (17)0.0282 (5)
C180.6700 (3)0.0552 (3)0.1857 (3)0.0560 (9)
H150.63390.00160.15530.084*
H160.61190.10190.18390.084*
H170.70390.04080.24840.084*
C190.5899 (3)0.3491 (3)0.1377 (3)0.0647 (11)
H180.56500.41150.13940.097*
H190.53630.31220.11210.097*
H200.59130.32870.19880.097*
Cu11.05535 (3)0.22819 (2)0.03974 (2)0.03036 (8)
Eu10.762074 (11)0.247433 (8)0.068399 (9)0.02785 (5)
N11.1594 (2)0.32671 (17)0.01249 (18)0.0382 (6)
N21.1746 (2)0.13432 (16)0.06616 (17)0.0341 (5)
N30.6075 (3)0.12249 (19)0.0485 (2)0.0504 (7)
N40.8226 (5)0.2655 (3)0.2660 (2)0.0872 (15)
N50.6480 (2)0.42062 (17)0.09471 (18)0.0433 (6)
O10.91672 (16)0.30177 (13)0.00059 (14)0.0353 (4)
O20.70508 (18)0.34136 (15)0.08175 (14)0.0399 (5)
O30.93757 (16)0.15332 (12)0.07838 (13)0.0324 (4)
O40.76063 (18)0.08689 (14)0.13955 (15)0.0390 (5)
O50.7096 (2)0.13933 (16)0.06160 (16)0.0478 (5)
O60.5492 (3)0.0630 (2)0.0900 (3)0.1037 (13)
O70.57208 (18)0.17165 (15)0.01090 (16)0.0445 (5)
O80.7188 (3)0.25602 (16)0.2249 (2)0.0633 (8)
O90.8490 (5)0.2703 (3)0.3497 (2)0.1377 (17)
O100.8992 (3)0.2700 (2)0.2174 (2)0.0809 (10)
O110.58719 (19)0.35057 (16)0.07275 (17)0.0478 (5)
O120.6061 (3)0.49507 (18)0.1043 (2)0.0779 (9)
O130.75861 (19)0.41086 (15)0.10619 (17)0.0457 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0326 (14)0.0304 (13)0.0328 (14)0.0001 (11)0.0084 (11)0.0008 (11)
C20.0338 (15)0.0357 (14)0.0341 (14)0.0031 (12)0.0074 (12)0.0002 (12)
C30.0492 (19)0.0455 (18)0.0374 (16)0.0018 (15)0.0022 (14)0.0098 (13)
C40.062 (2)0.052 (2)0.0429 (18)0.0013 (17)0.0104 (16)0.0185 (15)
C50.052 (2)0.0428 (17)0.0477 (18)0.0078 (15)0.0186 (16)0.0115 (14)
C60.0382 (16)0.0335 (14)0.0408 (16)0.0030 (12)0.0149 (13)0.0017 (12)
C70.0350 (16)0.0353 (15)0.0528 (18)0.0075 (13)0.0186 (14)0.0013 (13)
C80.0262 (16)0.0448 (19)0.089 (3)0.0044 (14)0.0089 (17)0.0001 (18)
C90.0259 (16)0.059 (2)0.067 (2)0.0044 (14)0.0062 (15)0.0024 (17)
C100.0306 (16)0.0420 (17)0.079 (2)0.0051 (14)0.0225 (16)0.0063 (16)
C110.0298 (14)0.0363 (14)0.0340 (14)0.0067 (12)0.0052 (11)0.0010 (12)
C120.0329 (14)0.0304 (13)0.0280 (13)0.0012 (11)0.0065 (11)0.0008 (10)
C130.0431 (17)0.0323 (14)0.0382 (16)0.0068 (13)0.0070 (13)0.0022 (12)
C140.057 (2)0.0283 (14)0.0526 (19)0.0006 (14)0.0135 (16)0.0089 (13)
C150.0448 (18)0.0352 (15)0.0463 (17)0.0081 (13)0.0145 (14)0.0057 (13)
C160.0310 (14)0.0312 (14)0.0343 (14)0.0015 (11)0.0072 (11)0.0011 (11)
C170.0323 (14)0.0268 (12)0.0254 (12)0.0026 (11)0.0054 (10)0.0005 (10)
C180.0374 (18)0.061 (2)0.077 (3)0.0020 (16)0.0289 (18)0.0201 (19)
C190.0328 (18)0.084 (3)0.069 (2)0.0063 (18)0.0103 (17)0.024 (2)
Cu10.02206 (16)0.03009 (16)0.03997 (18)0.00026 (13)0.00866 (14)0.00474 (14)
Eu10.02169 (8)0.02888 (8)0.03354 (8)0.00131 (5)0.00688 (5)0.00045 (5)
N10.0247 (12)0.0372 (13)0.0539 (15)0.0038 (10)0.0110 (11)0.0005 (11)
N20.0254 (12)0.0361 (13)0.0422 (13)0.0030 (10)0.0103 (10)0.0021 (10)
N30.0429 (16)0.0409 (15)0.0632 (18)0.0032 (12)0.0008 (14)0.0151 (13)
N40.119 (4)0.100 (3)0.0346 (16)0.079 (3)0.003 (2)0.0102 (17)
N50.0479 (17)0.0361 (14)0.0454 (15)0.0078 (12)0.0084 (12)0.0007 (11)
O10.0274 (10)0.0341 (10)0.0457 (11)0.0018 (8)0.0107 (9)0.0132 (9)
O20.0270 (10)0.0460 (12)0.0437 (12)0.0020 (9)0.0002 (9)0.0098 (9)
O30.0269 (10)0.0276 (9)0.0447 (11)0.0020 (8)0.0122 (8)0.0073 (8)
O40.0310 (11)0.0382 (11)0.0521 (12)0.0011 (9)0.0181 (10)0.0089 (9)
O50.0432 (13)0.0474 (13)0.0544 (13)0.0019 (11)0.0136 (11)0.0141 (11)
O60.068 (2)0.087 (2)0.151 (3)0.0302 (18)0.010 (2)0.070 (2)
O70.0293 (11)0.0483 (13)0.0551 (13)0.0027 (9)0.0066 (10)0.0091 (11)
O80.088 (2)0.0581 (16)0.0499 (15)0.0195 (14)0.0294 (16)0.0010 (12)
O90.166 (4)0.192 (4)0.0457 (17)0.115 (3)0.003 (2)0.020 (2)
O100.0621 (19)0.114 (3)0.0561 (17)0.0386 (18)0.0146 (15)0.0300 (17)
O110.0298 (11)0.0466 (13)0.0674 (15)0.0017 (10)0.0107 (10)0.0029 (11)
O120.089 (2)0.0437 (14)0.099 (2)0.0295 (15)0.0140 (18)0.0063 (15)
O130.0378 (12)0.0380 (12)0.0607 (14)0.0067 (9)0.0087 (10)0.0057 (10)
Geometric parameters (Å, º) top
C1—O11.337 (3)C16—O41.380 (3)
C1—C61.398 (4)C16—C171.409 (4)
C1—C21.398 (4)C17—O31.329 (3)
C2—C31.378 (4)C18—O41.445 (3)
C2—O21.383 (3)C18—H150.9600
C3—C41.392 (5)C18—H160.9600
C3—H10.9300C18—H170.9600
C4—C51.363 (5)C19—O21.433 (4)
C4—H20.9300C19—H180.9600
C5—C61.414 (4)C19—H190.9600
C5—H30.9300C19—H200.9600
C6—C71.441 (4)Cu1—O31.9315 (18)
C7—N11.278 (4)Cu1—O11.9320 (19)
C7—H40.9300Cu1—N21.940 (2)
C8—N11.494 (4)Cu1—N11.980 (2)
C8—C91.501 (5)Eu1—O12.3694 (19)
C8—H50.9700Eu1—O32.4457 (18)
C8—H60.9700Eu1—O132.466 (2)
C9—C101.502 (5)Eu1—O72.470 (2)
C9—H70.9700Eu1—O82.478 (3)
C9—H80.9700Eu1—O102.478 (3)
C10—N21.478 (4)Eu1—O52.480 (2)
C10—H90.9700Eu1—O112.548 (2)
C10—H100.9700Eu1—O42.584 (2)
C11—N21.281 (4)Eu1—O22.593 (2)
C11—C121.445 (4)N3—O61.198 (4)
C11—H110.9300N3—O51.266 (4)
C12—C171.395 (4)N3—O71.271 (3)
C12—C131.418 (4)N4—O91.222 (5)
C13—C141.368 (4)N4—O81.249 (5)
C13—H120.9300N4—O101.256 (6)
C14—C151.387 (5)N5—O121.216 (3)
C14—H130.9300N5—O111.254 (3)
C15—C161.376 (4)N5—O131.273 (3)
C15—H140.9300
O1—C1—C6122.9 (3)O1—Eu1—O361.31 (6)
O1—C1—C2117.9 (2)O1—Eu1—O1379.49 (7)
C6—C1—C2119.2 (3)O3—Eu1—O13125.96 (7)
C3—C2—O2124.8 (3)O1—Eu1—O7135.09 (7)
C3—C2—C1121.1 (3)O3—Eu1—O7116.46 (7)
O2—C2—C1114.0 (2)O13—Eu1—O7117.56 (7)
C2—C3—C4119.6 (3)O1—Eu1—O8134.09 (10)
C2—C3—H1120.2O3—Eu1—O8107.21 (9)
C4—C3—H1120.2O13—Eu1—O873.82 (8)
C5—C4—C3120.3 (3)O7—Eu1—O890.65 (10)
C5—C4—H2119.8O1—Eu1—O1085.77 (10)
C3—C4—H2119.8O3—Eu1—O1068.91 (8)
C4—C5—C6120.9 (3)O13—Eu1—O1072.77 (9)
C4—C5—H3119.6O7—Eu1—O10137.83 (11)
C6—C5—H3119.6O8—Eu1—O1051.04 (12)
C1—C6—C5118.8 (3)O1—Eu1—O588.53 (8)
C1—C6—C7122.9 (3)O3—Eu1—O576.02 (8)
C5—C6—C7118.2 (3)O13—Eu1—O5141.92 (8)
N1—C7—C6127.9 (3)O7—Eu1—O551.56 (8)
N1—C7—H4116.1O8—Eu1—O5134.29 (9)
C6—C7—H4116.1O10—Eu1—O5142.67 (9)
N1—C8—C9113.9 (3)O1—Eu1—O11119.29 (7)
N1—C8—H5108.8O3—Eu1—O11174.77 (7)
C9—C8—H5108.8O13—Eu1—O1150.70 (7)
N1—C8—H6108.8O7—Eu1—O1167.17 (8)
C9—C8—H6108.8O8—Eu1—O1168.45 (9)
H5—C8—H6107.7O10—Eu1—O11105.86 (9)
C8—C9—C10112.7 (3)O5—Eu1—O11109.04 (8)
C8—C9—H7109.0O1—Eu1—O4123.26 (6)
C10—C9—H7109.0O3—Eu1—O462.20 (6)
C8—C9—H8109.0O13—Eu1—O4142.41 (8)
C10—C9—H8109.0O7—Eu1—O469.64 (7)
H7—C9—H8107.8O8—Eu1—O469.12 (7)
N2—C10—C9109.6 (3)O10—Eu1—O479.18 (10)
N2—C10—H9109.7O5—Eu1—O473.38 (8)
C9—C10—H9109.7O11—Eu1—O4117.46 (7)
N2—C10—H10109.7O1—Eu1—O262.67 (7)
C9—C10—H10109.7O3—Eu1—O2114.81 (7)
H9—C10—H10108.2O13—Eu1—O270.45 (8)
N2—C11—C12127.3 (3)O7—Eu1—O283.38 (8)
N2—C11—H11116.3O8—Eu1—O2135.61 (8)
C12—C11—H11116.3O10—Eu1—O2134.86 (10)
C17—C12—C13119.8 (3)O5—Eu1—O271.93 (8)
C17—C12—C11123.0 (2)O11—Eu1—O268.74 (8)
C13—C12—C11117.1 (3)O4—Eu1—O2144.61 (7)
C14—C13—C12120.1 (3)C7—N1—C8114.6 (3)
C14—C13—H12120.0C7—N1—Cu1122.6 (2)
C12—C13—H12120.0C8—N1—Cu1122.8 (2)
C13—C14—C15120.5 (3)C11—N2—C10117.0 (2)
C13—C14—H13119.7C11—N2—Cu1124.85 (19)
C15—C14—H13119.7C10—N2—Cu1118.15 (19)
C16—C15—C14120.1 (3)O6—N3—O5121.1 (3)
C16—C15—H14119.9O6—N3—O7122.8 (3)
C14—C15—H14119.9O5—N3—O7116.1 (2)
C15—C16—O4124.9 (3)O9—N4—O8121.7 (5)
C15—C16—C17121.0 (3)O9—N4—O10121.3 (5)
O4—C16—C17114.1 (2)O8—N4—O10117.0 (3)
O3—C17—C12123.5 (2)O12—N5—O11123.3 (3)
O3—C17—C16118.0 (2)O12—N5—O13120.2 (3)
C12—C17—C16118.5 (2)O11—N5—O13116.5 (2)
O4—C18—H15109.5C1—O1—Cu1124.84 (17)
O4—C18—H16109.5C1—O1—Eu1124.78 (16)
H15—C18—H16109.5Cu1—O1—Eu1110.09 (8)
O4—C18—H17109.5C2—O2—C19117.1 (2)
H15—C18—H17109.5C2—O2—Eu1116.77 (17)
H16—C18—H17109.5C19—O2—Eu1126.1 (2)
O2—C19—H18109.5C17—O3—Cu1127.52 (17)
O2—C19—H19109.5C17—O3—Eu1125.29 (16)
H18—C19—H19109.5Cu1—O3—Eu1107.10 (8)
O2—C19—H20109.5C16—O4—C18116.2 (2)
H18—C19—H20109.5C16—O4—Eu1120.07 (15)
H19—C19—H20109.5C18—O4—Eu1123.57 (19)
O3—Cu1—O178.94 (8)N3—O5—Eu195.64 (17)
O3—Cu1—N293.28 (9)N3—O7—Eu195.94 (17)
O1—Cu1—N2168.21 (10)N4—O8—Eu196.1 (2)
O3—Cu1—N1167.44 (9)N4—O10—Eu195.9 (3)
O1—Cu1—N192.19 (9)N5—O11—Eu194.71 (17)
N2—Cu1—N196.78 (10)N5—O13—Eu198.11 (17)

Experimental details

Crystal data
Chemical formula[CuEu(C19H20N2O4)(NO3)3]
Mr741.90
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)11.638 (2), 14.680 (3), 14.853 (3)
β (°) 101.52 (3)
V3)2486.5 (9)
Z4
Radiation typeMo Kα
µ (mm1)3.43
Crystal size (mm)0.21 × 0.20 × 0.19
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.527, 0.568
No. of measured, independent and
observed [I > 2σ(I)] reflections
23524, 5660, 5072
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.058, 1.06
No. of reflections5660
No. of parameters354
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.45

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work is supported financially by the National Natural Science Foundation of China (Nos. 20672032 and 20572018), the Key Laboratory of Heilongjiang Province and the Education Department of Heilongjiang Province (Nos. ZJG0504, JC200605, 1152GZD02 and 2006FRFLXG031).

References

First citationElmali, A. & Elerman, Y. (2003). Z. Naturforsch. Teil B, 58, 639–643.  CAS Google Scholar
First citationElmali, A. & Elerman, Y. (2004). Z. Naturforsch. Teil B, 59, 535–540.  CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds