organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5-Di­methyl-4-[(E)-3-phen­oxy­benzyl­­idene­amino]-2-phenyl-1H-pyrazol-3(2H)-one

aDepartment of Chemistry, Taishan University, 271021 Taian, Shandong, People's Republic of China, and bLibrary, Taishan University, 271021 Taian, Shandong, People's Republic of China
*Correspondence e-mail: sunyf50@hotmail.com

(Received 30 July 2008; accepted 30 July 2008; online 6 August 2008)

The title Schiff base, C24H21N3O2, adopts an E configuration with respect to the central C=N bond. The pyrazole ring and the central benzene ring attached to the imino group are almost coplanar. The phenyl ring attached to the pyrazole unit is twisted by 39.3 (2)° with respect to the pyrazole ring plane. The phen­oxy benzene ring makes a dihedral angle of 79.8 (2)° with the central benzene ring.

Related literature

For related crystal structures, see: Sun et al. (2007a[Sun, Y.-F., Li, J.-K., Zheng, Z.-B. & Wu, R.-T. (2007a). Acta Cryst. E63, o2522-o2523.],b[Sun, Y.-F., Sun, X.-Z., Zhang, D.-D. & Zheng, Z.-B. (2007b). Acta Cryst. E63, o2178-o2179.],c[Sun, Y.-F., Zhang, D.-D. & Song, H.-C. (2007c). Chin. J. Struct. Chem. 26, 511-514.]).

[Scheme 1]

Experimental

Crystal data
  • C24H21N3O2

  • Mr = 383.44

  • Triclinic, [P \overline 1]

  • a = 7.6640 (12) Å

  • b = 8.3593 (14) Å

  • c = 16.731 (3) Å

  • α = 77.396 (3)°

  • β = 77.587 (2)°

  • γ = 76.240 (3)°

  • V = 1000.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 273 (2) K

  • 0.18 × 0.16 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.985, Tmax = 0.990

  • 5300 measured reflections

  • 3505 independent reflections

  • 2584 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.117

  • S = 1.04

  • 3505 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Antipyrine (2,3-dimethyl-1-phenylpyrazol-5-one) and its derivatives have been long known for their wide spectrum of biological activities. As part of our ongoing studies of antipyrine derivatives, the title compound, (I), has been prepared and its crystal structure is reported here (Fig. 1).

The molecule adopts an E configuration with respect to the central C=N double bond (Fig. 1).The pyrazole ring (N1/N2/C7—C9), the C13—C18 phenyl ring and the imino group are almost coplanar which allows conjugation. But the C1—C6 phenyl ring is twisted with respect to the central pyrazole ring plane by 39.3 (2)°. In addition, the mean planes of the C13—C18 and C19—C24 phenyl rings make a dihedral angle of 79.8 (2)°. Therefore the molecule is not planar. The bond distances and angles agree with the corresponding values found in similar compounds (Sun et al., 2007a,b,c).

Related literature top

For related crystal structures, see: Sun et al. (2007a,b,c).

Experimental top

A mixture of 4-aminoantipyrine (1 mmol) and 3-phenoxybenzaldehyde (1 mmol) in anhydrous ethanol (20 ml) was refluxed for 3 hr, and then cooled to room temperature. After cooling, the solvent was removed under reduced pressure and the solid residue was recrystallized from ethanol to yield the pure product(66% yield). m.p. 425–427 K. A single-crystal suitable for an X-ray structural analysis was obtained by slowly evaporating a ethanolic solution at room temperature.

Refinement top

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry with C—H distances of 0.96 Å and Uiso(H) = 1.5Ueq(C). All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii.
1,5-Dimethyl-4-[(E)-3-phenoxybenzylideneamino]-2-phenyl-1H- pyrazol-3(2H)-one top
Crystal data top
C24H21N3O2Z = 2
Mr = 383.44F(000) = 404
Triclinic, P1Dx = 1.272 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6640 (12) ÅCell parameters from 1817 reflections
b = 8.3593 (14) Åθ = 2–25.1°
c = 16.731 (3) ŵ = 0.08 mm1
α = 77.396 (3)°T = 273 K
β = 77.587 (2)°Block, colorless
γ = 76.240 (3)°0.18 × 0.16 × 0.12 mm
V = 1000.9 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3505 independent reflections
Radiation source: fine-focus sealed tube2584 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 25.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.985, Tmax = 0.990k = 98
5300 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: difference Fourier map
wR(F2) = 0.117H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0553P)2 + 0.1379P]
where P = (Fo2 + 2Fc2)/3
3505 reflections(Δ/σ)max = 0.001
264 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C24H21N3O2γ = 76.240 (3)°
Mr = 383.44V = 1000.9 (3) Å3
Triclinic, P1Z = 2
a = 7.6640 (12) ÅMo Kα radiation
b = 8.3593 (14) ŵ = 0.08 mm1
c = 16.731 (3) ÅT = 273 K
α = 77.396 (3)°0.18 × 0.16 × 0.12 mm
β = 77.587 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3505 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2584 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.990Rint = 0.016
5300 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.04Δρmax = 0.17 e Å3
3505 reflectionsΔρmin = 0.18 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.09698 (15)0.55049 (16)1.14179 (8)0.0559 (3)
O20.41493 (16)1.0621 (2)0.79039 (8)0.0727 (4)
N10.17090 (17)0.46344 (17)1.19591 (8)0.0451 (4)
N20.34291 (17)0.50949 (17)1.17773 (9)0.0436 (3)
N30.15472 (18)0.75399 (18)1.00126 (8)0.0463 (4)
C10.1017 (2)0.3971 (2)1.27873 (10)0.0436 (4)
C20.1611 (2)0.4293 (2)1.34520 (11)0.0534 (5)
H20.24550.49781.33590.064*
C30.0942 (3)0.3590 (3)1.42535 (12)0.0644 (6)
H30.13480.37981.46990.077*
C40.0311 (3)0.2590 (3)1.43974 (13)0.0696 (6)
H40.07520.21181.49380.084*
C50.0915 (3)0.2288 (3)1.37361 (13)0.0641 (5)
H50.17780.16201.38330.077*
C60.0253 (2)0.2967 (2)1.29318 (11)0.0507 (4)
H60.06590.27491.24880.061*
C70.0644 (2)0.5536 (2)1.13636 (10)0.0430 (4)
C80.1860 (2)0.6450 (2)1.07513 (10)0.0412 (4)
C90.3485 (2)0.6120 (2)1.10112 (10)0.0431 (4)
C100.5167 (2)0.6735 (3)1.05804 (11)0.0573 (5)
H10A0.60700.58281.03860.086*
H10B0.56250.71751.09600.086*
H10C0.48940.76001.01170.086*
C110.4972 (2)0.3701 (2)1.19262 (13)0.0607 (5)
H11A0.50380.28891.15880.091*
H11B0.48010.31871.25020.091*
H11C0.60840.41161.17860.091*
C120.0019 (2)0.7838 (2)0.97743 (10)0.0477 (4)
H120.09060.73181.00990.057*
C130.0321 (2)0.8980 (2)0.90021 (10)0.0442 (4)
C140.1005 (2)0.9784 (2)0.84859 (11)0.0502 (4)
H140.21520.96070.86280.060*
C150.0622 (2)1.0844 (2)0.77623 (12)0.0548 (5)
H150.15191.13790.74200.066*
C160.1063 (2)1.1126 (2)0.75369 (11)0.0493 (4)
H160.13041.18320.70440.059*
C170.2385 (2)1.0347 (2)0.80524 (11)0.0474 (4)
C180.2022 (2)0.9280 (2)0.87751 (11)0.0492 (4)
H180.29270.87530.91150.059*
C190.4469 (2)1.1295 (2)0.71019 (11)0.0482 (4)
C200.3803 (3)1.0387 (3)0.64795 (13)0.0618 (5)
H200.30830.93240.65860.074*
C210.4186 (3)1.1025 (3)0.57065 (14)0.0781 (7)
H210.37191.04020.52830.094*
C220.5239 (3)1.2556 (4)0.55469 (15)0.0885 (8)
H220.54921.29850.50130.106*
C230.5939 (3)1.3483 (3)0.61630 (18)0.0836 (7)
H230.66731.45360.60490.100*
C240.5555 (3)1.2854 (2)0.69626 (14)0.0621 (5)
H240.60201.34720.73880.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0386 (7)0.0680 (9)0.0613 (8)0.0141 (6)0.0158 (6)0.0009 (6)
O20.0417 (7)0.1136 (12)0.0539 (8)0.0163 (7)0.0152 (6)0.0112 (8)
N10.0369 (7)0.0496 (9)0.0479 (9)0.0084 (6)0.0113 (6)0.0030 (7)
N20.0319 (7)0.0491 (8)0.0488 (8)0.0050 (6)0.0119 (6)0.0051 (7)
N30.0424 (8)0.0543 (9)0.0427 (8)0.0071 (7)0.0114 (6)0.0085 (7)
C10.0398 (9)0.0379 (9)0.0476 (10)0.0016 (7)0.0093 (7)0.0046 (7)
C20.0522 (10)0.0498 (11)0.0575 (12)0.0003 (9)0.0169 (9)0.0114 (9)
C30.0641 (12)0.0728 (14)0.0502 (12)0.0075 (11)0.0153 (10)0.0160 (10)
C40.0636 (13)0.0783 (15)0.0484 (12)0.0006 (12)0.0003 (10)0.0024 (10)
C50.0561 (11)0.0622 (13)0.0640 (14)0.0119 (10)0.0010 (10)0.0012 (10)
C60.0458 (10)0.0500 (11)0.0527 (11)0.0052 (8)0.0071 (8)0.0078 (8)
C70.0376 (9)0.0453 (10)0.0469 (10)0.0037 (7)0.0125 (7)0.0097 (8)
C80.0369 (8)0.0476 (10)0.0400 (9)0.0061 (7)0.0095 (7)0.0092 (7)
C90.0386 (9)0.0492 (10)0.0419 (9)0.0071 (7)0.0074 (7)0.0103 (8)
C100.0409 (10)0.0769 (14)0.0537 (11)0.0155 (9)0.0075 (8)0.0070 (10)
C110.0441 (10)0.0598 (12)0.0742 (13)0.0031 (9)0.0205 (9)0.0080 (10)
C120.0426 (9)0.0555 (11)0.0445 (10)0.0105 (8)0.0102 (8)0.0044 (8)
C130.0422 (9)0.0477 (10)0.0437 (10)0.0073 (8)0.0109 (7)0.0089 (8)
C140.0398 (9)0.0562 (11)0.0568 (11)0.0123 (8)0.0131 (8)0.0070 (9)
C150.0497 (10)0.0565 (12)0.0590 (12)0.0211 (9)0.0095 (9)0.0004 (9)
C160.0508 (10)0.0451 (10)0.0497 (10)0.0113 (8)0.0128 (8)0.0020 (8)
C170.0378 (9)0.0568 (11)0.0470 (10)0.0085 (8)0.0112 (8)0.0050 (8)
C180.0429 (9)0.0589 (11)0.0449 (10)0.0142 (8)0.0078 (8)0.0024 (8)
C190.0363 (9)0.0573 (11)0.0488 (11)0.0105 (8)0.0137 (8)0.0028 (8)
C200.0598 (12)0.0541 (12)0.0644 (13)0.0029 (9)0.0083 (10)0.0070 (10)
C210.0711 (14)0.1030 (19)0.0636 (15)0.0168 (14)0.0149 (12)0.0192 (13)
C220.0640 (14)0.129 (2)0.0611 (15)0.0159 (15)0.0246 (12)0.0161 (15)
C230.0583 (13)0.0630 (14)0.108 (2)0.0043 (11)0.0239 (13)0.0230 (14)
C240.0521 (11)0.0516 (12)0.0806 (15)0.0063 (9)0.0097 (10)0.0134 (10)
Geometric parameters (Å, º) top
O1—C71.2264 (19)C11—H11A0.9600
O2—C171.383 (2)C11—H11B0.9600
O2—C191.387 (2)C11—H11C0.9600
N1—C71.399 (2)C12—C131.462 (2)
N1—N21.4130 (18)C12—H120.9300
N1—C11.413 (2)C13—C181.386 (2)
N2—C91.376 (2)C13—C141.387 (2)
N2—C111.471 (2)C14—C151.378 (2)
N3—C121.269 (2)C14—H140.9300
N3—C81.395 (2)C15—C161.376 (2)
C1—C61.382 (2)C15—H150.9300
C1—C21.386 (2)C16—C171.374 (2)
C2—C31.382 (3)C16—H160.9300
C2—H20.9300C17—C181.375 (2)
C3—C41.369 (3)C18—H180.9300
C3—H30.9300C19—C201.362 (3)
C4—C51.379 (3)C19—C241.371 (3)
C4—H40.9300C20—C211.353 (3)
C5—C61.379 (3)C20—H200.9300
C5—H50.9300C21—C221.346 (4)
C6—H60.9300C21—H210.9300
C7—C81.445 (2)C22—C231.366 (4)
C8—C91.354 (2)C22—H220.9300
C9—C101.483 (2)C23—C241.393 (3)
C10—H10A0.9600C23—H230.9300
C10—H10B0.9600C24—H240.9300
C10—H10C0.9600
C17—O2—C19118.13 (13)H11A—C11—H11B109.5
C7—N1—N2110.26 (13)N2—C11—H11C109.5
C7—N1—C1125.01 (13)H11A—C11—H11C109.5
N2—N1—C1119.24 (13)H11B—C11—H11C109.5
C9—N2—N1105.45 (12)N3—C12—C13121.58 (17)
C9—N2—C11119.28 (14)N3—C12—H12119.2
N1—N2—C11114.71 (14)C13—C12—H12119.2
C12—N3—C8121.20 (15)C18—C13—C14118.58 (16)
C6—C1—C2119.78 (17)C18—C13—C12119.30 (16)
C6—C1—N1119.10 (15)C14—C13—C12122.11 (15)
C2—C1—N1121.11 (16)C15—C14—C13120.02 (16)
C3—C2—C1119.65 (19)C15—C14—H14120.0
C3—C2—H2120.2C13—C14—H14120.0
C1—C2—H2120.2C16—C15—C14121.13 (17)
C4—C3—C2120.64 (19)C16—C15—H15119.4
C4—C3—H3119.7C14—C15—H15119.4
C2—C3—H3119.7C17—C16—C15118.93 (17)
C3—C4—C5119.6 (2)C17—C16—H16120.5
C3—C4—H4120.2C15—C16—H16120.5
C5—C4—H4120.2C16—C17—C18120.61 (16)
C6—C5—C4120.6 (2)C16—C17—O2123.25 (16)
C6—C5—H5119.7C18—C17—O2116.10 (16)
C4—C5—H5119.7C17—C18—C13120.72 (17)
C5—C6—C1119.70 (18)C17—C18—H18119.6
C5—C6—H6120.1C13—C18—H18119.6
C1—C6—H6120.1C20—C19—C24120.94 (18)
O1—C7—N1123.73 (16)C20—C19—O2120.53 (17)
O1—C7—C8131.93 (16)C24—C19—O2118.42 (17)
N1—C7—C8104.32 (14)C21—C20—C19120.2 (2)
C9—C8—N3121.71 (15)C21—C20—H20119.9
C9—C8—C7108.38 (15)C19—C20—H20119.9
N3—C8—C7129.89 (14)C22—C21—C20120.4 (2)
C8—C9—N2111.07 (15)C22—C21—H21119.8
C8—C9—C10128.06 (16)C20—C21—H21119.8
N2—C9—C10120.86 (14)C21—C22—C23120.5 (2)
C9—C10—H10A109.5C21—C22—H22119.8
C9—C10—H10B109.5C23—C22—H22119.8
H10A—C10—H10B109.5C22—C23—C24120.1 (2)
C9—C10—H10C109.5C22—C23—H23120.0
H10A—C10—H10C109.5C24—C23—H23120.0
H10B—C10—H10C109.5C19—C24—C23117.9 (2)
N2—C11—H11A109.5C19—C24—H24121.1
N2—C11—H11B109.5C23—C24—H24121.1

Experimental details

Crystal data
Chemical formulaC24H21N3O2
Mr383.44
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)7.6640 (12), 8.3593 (14), 16.731 (3)
α, β, γ (°)77.396 (3), 77.587 (2), 76.240 (3)
V3)1000.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.18 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.985, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
5300, 3505, 2584
Rint0.016
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.117, 1.04
No. of reflections3505
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.18

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This project was supported by the Foundation of Taishan University.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-F., Li, J.-K., Zheng, Z.-B. & Wu, R.-T. (2007a). Acta Cryst. E63, o2522–o2523.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSun, Y.-F., Sun, X.-Z., Zhang, D.-D. & Zheng, Z.-B. (2007b). Acta Cryst. E63, o2178–o2179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSun, Y.-F., Zhang, D.-D. & Song, H.-C. (2007c). Chin. J. Struct. Chem. 26, 511–514.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds