organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-Di­meth­oxy­biphen­yl

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan, bTDK Corporation, 2-15-7, Hiagashi Owada, Ichikawa, Chiba 272-8558, Japan, and cInstrumentaion Analysis Center, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: yonezawa@cc.tuat.ac.jp

(Received 4 July 2008; accepted 5 August 2008; online 9 August 2008)

The mol­ecule of the title compound, C14H14O2, lies on a crystallographic twofold axis perpendicular to the central C—C bond; there is one half-mol­ecule in the asymmetric unit. The angle between the least-squares planes of the two aromatic rings is 66.94 (7)°. The meth­oxy group, with a twist angle of 10.69 (8)°, is slightly out of the plane of the benzene ring. In the crystal structure, C—H⋯π inter­actions are observed between adjacent mol­ecules along the c-axis direction.

Related literature

For related literature, see: Hargreaves et al. (1961[Hargreaves, A., Rizvi, S. H. & Trotter, J. (1961). Proc. Chem. Soc. 122-3.]); Yonezawa et al. (1993[Yonezawa, N., Miyata, S., Nakamura, T., Mori, S., Ueha, Y. & Katakai, R. (1993). Macromolecules, 26, 5262-5263.], 2000[Yonezawa, N., Ikezaki, T., Nakamura, H. & Maeyama, K. (2000). Macromolecules, 33, 8125-8129.], 2003[Yonezawa, N., Mori, S., Miyata, S., Ueha, A. Y., Wu, S. M. & Maeyama, K. (2003). Polym. J. 35, 998-1002.]); Iyoda et al. (1990[Iyoda, M., Otsuka, H., Sato, K., Nisato, N. & Oda, M. (1990). Bull. Chem. Soc. Jpn, 63, 80-87.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14O2

  • Mr = 214.25

  • Tetragonal, P 41 21 2

  • a = 7.39307 (13) Å

  • c = 20.1623 (4) Å

  • V = 1102.02 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.68 mm−1

  • T = 193 K

  • 0.40 × 0.20 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.813, Tmax = 0.934

  • 20356 measured reflections

  • 651 independent reflections

  • 640 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.071

  • S = 1.14

  • 651 reflections

  • 75 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cg1i 0.95 2.85 3.7266 (14) 154
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 4}}]. Cg1 is the centroid of atoms C1–C6.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Biphenyl is the simplest example of aromatic ring assemblies in which aromatic rings are connected by a single bond. The apparent single bond lies behind the characteristic diversity in the molecular structure and chemical properties of these assemblies. As with the formal single bonding of alternative polyenes, the single bond between the aromatic rings has the nature of double bonding. However, the steric hindrance of substituents, especially at the o-positions, collapses coplanarity lowering the stabilizing conjugative effects on the structure. The non-substituted biphenyl is planar in the solid state in spite of the o-protons' repulsion (Hargreaves et al., 1961) but it has a twisted conformation in solution. In the past decade and a half, the authors have demonstrated the excellent acyl-accepting ability of (I), an o,o'-disubstituted biphenyl, in consecutive dual electrophilic aromatic aroylation reactions, especially in condensation polymerization or monomer preparation for wholly aromatic polyketones (Yonezawa et al., 1993, 2000, 2003). The strong electron donating ability of the o-methoxy group should make (I) highly reactive against electrophiles not only for a first acylation but also for a second one, even though the introduced ketonic carbonyl group has a strong electron-withdrawing nature. The maintenance of high reactivity after the first acylation is thought to be brought about by the suitable conformation of the mono-acylated intermediate preventing the transmission of the electron-withdrawing effect of the acyl group to the other aromatic ring.

The molecule of (I) lies across a crystallographic 2-fold axis so that the asymmetric unit contains one-half molecule (Fig. 1). The 2-fold axis is perpendicular to the central C—C bond of (I). The angle between the least-squares planes of the two phenyl rings is 66.94 (7)°. The methoxy group is slightly out of the plane of the phenyl ring with the angle between the O1—C7 bond and least-squares plane of the phenyl ring at 10.69 (8)°. The molecular packing of (I) is mainly stabilized by van der Waals interactions. In addition, C—H···π interactions are observed between adjacent molecules along the c-direction (Fig. 2). The distance between H3 and Cg (the ring center of gravity) at (3/2 - x, y - 1/2, 1/4 - z) is 2.85 Å. The slightly short intermolecular C6···H7A at (y + 1/2, 1/2 - x, z - 1/4) contact of 2.86 Å is also found.

Related literature top

For related literature, see: Hargreaves et al. (1961); Yonezawa et al. (1993, 2000, 2003); Iyoda et al. (1990).

Experimental top

To the solution of 2,2'-dihydroxybiphenyl (5.5 g, 26 mmol) in an aqueous NaOH solution (3.2 wt-%, 220 ml), dimethyl sulfate (16 g, 127 mmol) was added dropwise over a period of 10 min with ice-cooling and vigorous stirring. After stirring for 3 h, the resulting precipitate was collected by filtration and dissolved in chloroform (ca 100 ml). The solution was washed with aqueous 1 M NaOH solution (ca 100 ml) and dried over granular magnesium sulfate. The crude product obtained by evaporation of the above solution was recrystallized from acetone. Yield 72%. M.p. 154–154.5°C. Lit. 154–155°C(Iyoda et al., 1990). Colorless single crystals suitable for X-ray diffraction were obtained by simple standing of the hot acetone solution of the crude crystals at room temperature in an Erlenmeyer flask with a cork-stopper.

Refinement top

All the H atoms were found in difference maps and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and Uĩso~(H) = 1.2U~eq~(C). The anomalous scattering signal of (I) is too weak to predict the accurate absolute structure. Therefore, the merging of Friedel-pair data was performed before final refinement.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), with the atom-labeling scheme and displacement ellipsoids drawn at the 50% probability level. Unlabeled atoms are related to labeled atoms by x, y, -z.
[Figure 2] Fig. 2. A partial packing diagram of (I), viewed down the b-axis. Green broken and full lines indicate the C—H···π and short C···H interactions, respectively.
2,2'-Dimethoxybiphenyl top
Crystal data top
C14H14O2Dx = 1.291 Mg m3
Mr = 214.25Melting point = 427.0–427.5 K
Tetragonal, P41212Cu Kα radiation, λ = 1.54187 Å
Hall symbol: P 4abw 2nwCell parameters from 19640 reflections
a = 7.39307 (13) Åθ = 4.4–68.2°
c = 20.1623 (4) ŵ = 0.68 mm1
V = 1102.02 (4) Å3T = 193 K
Z = 4Block, colorless
F(000) = 4560.40 × 0.20 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
651 independent reflections
Radiation source: rotating anode640 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10.00 pixels mm-1θmax = 68.2°, θmin = 6.4°
ω scansh = 88
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 88
Tmin = 0.813, Tmax = 0.934l = 2424
20356 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.1367P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
651 reflectionsΔρmax = 0.15 e Å3
75 parametersΔρmin = 0.11 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0079 (11)
Crystal data top
C14H14O2Z = 4
Mr = 214.25Cu Kα radiation
Tetragonal, P41212µ = 0.68 mm1
a = 7.39307 (13) ÅT = 193 K
c = 20.1623 (4) Å0.40 × 0.20 × 0.10 mm
V = 1102.02 (4) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
651 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
640 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 0.934Rint = 0.024
20356 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.14Δρmax = 0.15 e Å3
651 reflectionsΔρmin = 0.11 e Å3
75 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.41372 (12)0.38528 (13)0.07663 (4)0.0307 (3)
C10.64788 (17)0.51523 (17)0.01376 (5)0.0237 (3)
C20.59201 (17)0.38066 (18)0.05852 (6)0.0249 (3)
C30.71465 (19)0.25505 (19)0.08287 (6)0.0297 (3)
H30.67530.16270.11230.036*
C40.89583 (18)0.2648 (2)0.06399 (7)0.0332 (4)
H40.97930.17740.08000.040*
C50.95499 (19)0.4005 (2)0.02208 (6)0.0338 (4)
H51.07920.40930.01050.041*
C60.83034 (18)0.52435 (19)0.00291 (6)0.0290 (3)
H60.87080.61710.03200.035*
C70.3605 (2)0.2711 (2)0.13032 (7)0.0364 (4)
H7A0.23470.29690.14230.044*
H7B0.43880.29390.16860.044*
H7C0.37150.14420.11690.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0242 (5)0.0351 (6)0.0327 (5)0.0000 (4)0.0018 (4)0.0101 (4)
C10.0259 (7)0.0252 (7)0.0201 (6)0.0028 (5)0.0028 (5)0.0028 (5)
C20.0244 (6)0.0274 (7)0.0229 (6)0.0016 (5)0.0030 (5)0.0025 (5)
C30.0327 (7)0.0281 (7)0.0282 (6)0.0012 (6)0.0051 (5)0.0031 (6)
C40.0299 (7)0.0359 (8)0.0339 (7)0.0067 (6)0.0073 (6)0.0019 (6)
C50.0238 (7)0.0462 (9)0.0313 (7)0.0004 (6)0.0014 (5)0.0038 (6)
C60.0284 (7)0.0350 (8)0.0237 (6)0.0048 (6)0.0004 (6)0.0009 (6)
C70.0351 (8)0.0410 (9)0.0331 (6)0.0020 (6)0.0055 (6)0.0094 (6)
Geometric parameters (Å, º) top
O1—C21.3682 (16)C4—C51.383 (2)
O1—C71.4279 (16)C4—H40.9500
C1—C61.3918 (18)C5—C61.393 (2)
C1—C21.4053 (18)C5—H50.9500
C1—C1i1.494 (3)C6—H60.9500
C2—C31.3876 (18)C7—H7A0.9800
C3—C41.3944 (19)C7—H7B0.9800
C3—H30.9500C7—H7C0.9800
C2—O1—C7116.93 (11)C4—C5—C6119.25 (14)
C6—C1—C2118.31 (12)C4—C5—H5120.4
C6—C1—C1i120.99 (10)C6—C5—H5120.4
C2—C1—C1i120.69 (10)C1—C6—C5121.46 (13)
O1—C2—C3123.49 (12)C1—C6—H6119.3
O1—C2—C1115.90 (11)C5—C6—H6119.3
C3—C2—C1120.60 (12)O1—C7—H7A109.5
C2—C3—C4119.78 (13)O1—C7—H7B109.5
C2—C3—H3120.1H7A—C7—H7B109.5
C4—C3—H3120.1O1—C7—H7C109.5
C5—C4—C3120.53 (13)H7A—C7—H7C109.5
C5—C4—H4119.7H7B—C7—H7C109.5
C3—C4—H4119.7
C7—O1—C2—C39.30 (18)C1—C2—C3—C41.5 (2)
C7—O1—C2—C1169.45 (11)C2—C3—C4—C51.1 (2)
C6—C1—C2—O1175.77 (11)C3—C4—C5—C62.1 (2)
C1i—C1—C2—O12.66 (18)C2—C1—C6—C52.0 (2)
C6—C1—C2—C33.02 (18)C1i—C1—C6—C5179.53 (12)
C1i—C1—C2—C3178.54 (12)C4—C5—C6—C10.5 (2)
O1—C2—C3—C4177.22 (12)
Symmetry code: (i) y, x, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg1ii0.952.853.7266 (14)154
Symmetry code: (ii) x+3/2, y1/2, z+1/4.

Experimental details

Crystal data
Chemical formulaC14H14O2
Mr214.25
Crystal system, space groupTetragonal, P41212
Temperature (K)193
a, c (Å)7.39307 (13), 20.1623 (4)
V3)1102.02 (4)
Z4
Radiation typeCu Kα
µ (mm1)0.68
Crystal size (mm)0.40 × 0.20 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.813, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
20356, 651, 640
Rint0.024
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.071, 1.14
No. of reflections651
No. of parameters75
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.11

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg1i0.952.853.7266 (14)154
Symmetry code: (i) x+3/2, y1/2, z+1/4.
 

Acknowledgements

This work was partially supported by The Shorai Foundation for Science and Technology, Tokyo, Japan.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationHargreaves, A., Rizvi, S. H. & Trotter, J. (1961). Proc. Chem. Soc. 122–3.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIyoda, M., Otsuka, H., Sato, K., Nisato, N. & Oda, M. (1990). Bull. Chem. Soc. Jpn, 63, 80–87.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYonezawa, N., Ikezaki, T., Nakamura, H. & Maeyama, K. (2000). Macromolecules, 33, 8125–8129.  Web of Science CrossRef CAS Google Scholar
First citationYonezawa, N., Miyata, S., Nakamura, T., Mori, S., Ueha, Y. & Katakai, R. (1993). Macromolecules, 26, 5262–5263.  CrossRef CAS Web of Science Google Scholar
First citationYonezawa, N., Mori, S., Miyata, S., Ueha, A. Y., Wu, S. M. & Maeyama, K. (2003). Polym. J. 35, 998–1002.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds