organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1803-o1804

N,N′-Bis(3-meth­oxy­benzyl­­idene)ethane-1,2-di­amine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bChemistry Department, University of Isfahan, Isfahan 81746-73441, Iran
*Correspondence e-mail: hkfun@usm.my

(Received 7 August 2008; accepted 18 August 2008; online 23 August 2008)

The mol­ecule of the title bidentate Schiff base ligand, C18H20N2O2, has twofold crystallographic rotation symmetry, giving one half-mol­ecule per asymmetric unit. It adopts a twisted E configuration with respect to the azomethine C=N bond. The imino group is coplanar with the aromatic ring. The dihedral angle between the two benzene rings is 69.52 (5)°. The meth­oxy group is coplanar with the benzene ring, as indicated by the C—O—C—C torsion angle of −179.56 (8)°. In the unit cell, mol­ecules are linked together by inter­molecular C—H⋯O hydrogen bonds, forming chains along the a axis; these chains are further stacked down the b axis by both inter­molecular C—H⋯O and C—H⋯π inter­actions.

Related literature

For related structures see: Fun et al. (2008a[Fun, H.-K., Kia, R. & Kargar, H. (2008a). Acta Cryst. E64, o1335.],b[Fun, H.-K., Kargar, H. & Kia, R. (2008b). Acta Cryst. E64, o1308.],c[Fun, H.-K., Mirkhani, V., Kia, R. & Vartooni, A. R. (2008c). Acta Cryst. E64, o1374-o1375.],d[Fun, H.-K., Mirkhani, V., Kia, R. & Vartooni, A. R. (2008d). Acta Cryst. E64, o1471.]); Calligaris & Randaccio, (1987[Calligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715-738. London: Pergamon.]). For information on Schiff base complexes and their applications, see: Kia et al. (2007a[Kia, R., Mirkhani, V., Kalman, A. & Deak, A. (2007a). Polyhedron, 26, 1117-1716.],b[Kia, R., Mirkhani, V., Harkema, S. & van Hummel, G. J. (2007b). Inorg. Chim. Acta, 360, 3369-3375.]); Pal et al. (2005[Pal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). Inorg. Chem. 44, 3880-3889.]); Hou et al. (2001[Hou, B., Friedman, N., Ruhman, S., Sheves, M. & Ottolenghi, M. (2001). J. Phys. Chem. B, 105, 7042-7048.])

[Scheme 1]

Experimental

Crystal data
  • C18H20N2O2

  • Mr = 296.36

  • Monoclinic, C 2/c

  • a = 22.7076 (3) Å

  • b = 6.0374 (1) Å

  • c = 11.6789 (2) Å

  • β = 100.235 (1)°

  • V = 1575.64 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100.0 (1) K

  • 0.49 × 0.33 × 0.22 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.886, Tmax = 0.982

  • 11683 measured reflections

  • 2298 independent reflections

  • 1879 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.108

  • S = 1.10

  • 2298 reflections

  • 113 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O1i 0.96 2.50 3.3809 (13) 153
C8—H8BCg1ii 0.984 (13) 2.822 (13) 3.6221 (12) 138.9 (9)
C9—H9CCg1iii 0.96 2.75 3.5636 (12) 143
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]. Cg1 is the centroid of the C1–C6 benzene ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Schiff bases are one of most prevalent mixed-donor ligands found in the field of coordination chemistry. There has been growing interest in Schiff base ligands, mainly because of their wide applications in the fields of biochemistry, synthesis, and catalysis (Kia et al., 2007a,b; Pal et al., 2005; Hou et al., 2001). Many Schiff base complexes have been structurally characterized, but in comparison only a relatively small number of free Schiff bases have been described (Calligaris & Randaccio, 1987). As an extension of our work (Fun et al., 2008a, 2008b, 2008c, 2008d) on the structural characterization of Schiff base compounds, the title compound (I), (Fig. 1), is reported here.

(I) has twofold crystallographic rotation symmetry to give 1/2 molecule per asymmetric unit and it adopts a twisted E configuration with respect to the azomethine C=N bond. Bond lengths and angles are within normal ranges. The imino group is coplanar with the aromatic ring. The dihedral angle between two phenyl rings is 69.52 (5)°. The methoxy group is coplanar with the benzene ring as indicated by the C9–O1–C2–C1 torsion of -179.56 (8)°. In the unit cell, (Fig. 2), neighbouring molecules are linked together by intermolecular C—H···O hydrogen bonds to form chains along the a-axis and these chains are further stacked down the b-axis by both intermolecular C—H···O and C—H···π interactions (Table 1).

Related literature top

For related structures see: Fun et al. (2008a,b,c,d); Calligaris & Randaccio, (1987). For information on Schiff base complexes and their applications, see: Kia et al. (2007a,b); Pal et al. (2005); Hou et al. (2001)

Experimental top

The overall synthetic method has been described earlier (Fun et al., 2008a), except that ethylenediamine (1 mmol, 60 mg) and 3-methoxybenzaldehyde (2 mmol, 137 mg) were used as starting materials. Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

Refinement top

H atoms bound to C7 and C8 were located from the difference Fourier map and freely refined. The rest of the hydrogen atoms were positioned geometrically with C—H = 0.93–0.96 Å and refined in riding mode with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was used for the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labels and 50% probability ellipsoids for non-H atoms [symmetry code for A: -x + 1, Y, 0.5 - Z].
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the b axis, showing chains along the a axis and stacking of these chains along the b axis. Intermolecular interactions are shown as dashed lines.
N,N'-Bis(3-methoxybenzylidene)ethane-1,2-diamine top
Crystal data top
C18H20N2O2F(000) = 632
Mr = 296.36Dx = 1.249 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3509 reflections
a = 22.7076 (3) Åθ = 3.6–33.9°
b = 6.0374 (1) ŵ = 0.08 mm1
c = 11.6789 (2) ÅT = 100 K
β = 100.235 (1)°Block, colourless
V = 1575.64 (4) Å30.49 × 0.33 × 0.22 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2298 independent reflections
Radiation source: fine-focus sealed tube1879 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 30.0°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 3131
Tmin = 0.886, Tmax = 0.982k = 88
11683 measured reflectionsl = 1416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.7792P]
where P = (Fo2 + 2Fc2)/3
2298 reflections(Δ/σ)max < 0.001
113 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C18H20N2O2V = 1575.64 (4) Å3
Mr = 296.36Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.7076 (3) ŵ = 0.08 mm1
b = 6.0374 (1) ÅT = 100 K
c = 11.6789 (2) Å0.49 × 0.33 × 0.22 mm
β = 100.235 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2298 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1879 reflections with I > 2σ(I)
Tmin = 0.886, Tmax = 0.982Rint = 0.029
11683 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.35 e Å3
2298 reflectionsΔρmin = 0.21 e Å3
113 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.29856 (3)0.12810 (12)0.16829 (6)0.02029 (18)
N10.44163 (4)0.77578 (14)0.17093 (8)0.0197 (2)
C10.36408 (4)0.39310 (16)0.11788 (8)0.0166 (2)
H1A0.36290.46250.18850.020*
C20.33032 (4)0.20304 (16)0.08715 (8)0.0167 (2)
C30.33099 (4)0.10022 (17)0.01966 (9)0.0196 (2)
H3A0.30800.02570.04070.024*
C40.36637 (4)0.18805 (18)0.09415 (9)0.0216 (2)
H4A0.36710.11970.16530.026*
C50.40051 (4)0.37574 (18)0.06388 (9)0.0203 (2)
H5A0.42400.43280.11450.024*
C60.39970 (4)0.47980 (17)0.04289 (8)0.0172 (2)
C70.43794 (4)0.67504 (17)0.07480 (9)0.0184 (2)
C80.48159 (5)0.96685 (17)0.18898 (10)0.0215 (2)
C90.26352 (5)0.06749 (17)0.14119 (10)0.0225 (2)
H9A0.24430.10470.20550.034*
H9B0.28900.18740.12670.034*
H9C0.23370.04190.07310.034*
H7A0.4614 (6)0.722 (2)0.0143 (11)0.027 (3)*
H8B0.4562 (6)1.100 (2)0.1792 (11)0.025 (3)*
H8A0.5085 (6)0.971 (2)0.1293 (12)0.026 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0226 (4)0.0197 (4)0.0195 (4)0.0036 (3)0.0063 (3)0.0004 (3)
N10.0174 (4)0.0181 (4)0.0228 (4)0.0004 (3)0.0018 (3)0.0020 (3)
C10.0170 (4)0.0178 (4)0.0144 (4)0.0026 (3)0.0015 (3)0.0002 (3)
C20.0152 (4)0.0179 (4)0.0167 (5)0.0027 (3)0.0020 (3)0.0019 (3)
C30.0190 (5)0.0191 (5)0.0196 (5)0.0007 (4)0.0006 (4)0.0027 (4)
C40.0202 (5)0.0281 (5)0.0157 (5)0.0031 (4)0.0014 (4)0.0039 (4)
C50.0177 (5)0.0271 (5)0.0161 (5)0.0012 (4)0.0031 (4)0.0016 (4)
C60.0153 (4)0.0192 (5)0.0163 (4)0.0022 (3)0.0003 (3)0.0022 (4)
C70.0164 (4)0.0197 (5)0.0189 (5)0.0008 (4)0.0026 (4)0.0056 (4)
C80.0186 (5)0.0162 (5)0.0291 (6)0.0010 (4)0.0027 (4)0.0027 (4)
C90.0226 (5)0.0189 (5)0.0255 (5)0.0033 (4)0.0025 (4)0.0019 (4)
Geometric parameters (Å, º) top
O1—C21.3659 (12)C4—H4A0.9300
O1—C91.4277 (12)C5—C61.3993 (14)
N1—C71.2665 (14)C5—H5A0.9300
N1—C81.4597 (13)C6—C71.4723 (14)
C1—C21.3912 (14)C7—H7A0.999 (13)
C1—C61.3954 (13)C8—C8i1.519 (2)
C1—H1A0.9300C8—H8B0.984 (13)
C2—C31.3958 (14)C8—H8A1.005 (13)
C3—C41.3899 (14)C9—H9A0.9600
C3—H3A0.9300C9—H9B0.9600
C4—C51.3830 (15)C9—H9C0.9600
C2—O1—C9117.53 (8)C1—C6—C7121.54 (9)
C7—N1—C8116.68 (9)C5—C6—C7118.98 (9)
C2—C1—C6120.12 (9)N1—C7—C6123.50 (9)
C2—C1—H1A119.9N1—C7—H7A122.1 (8)
C6—C1—H1A119.9C6—C7—H7A114.4 (8)
O1—C2—C1115.39 (8)N1—C8—C8i111.10 (7)
O1—C2—C3124.31 (9)N1—C8—H8B106.9 (8)
C1—C2—C3120.29 (9)C8i—C8—H8B108.8 (8)
C4—C3—C2119.28 (9)N1—C8—H8A111.0 (8)
C4—C3—H3A120.4C8i—C8—H8A110.5 (7)
C2—C3—H3A120.4H8B—C8—H8A108.3 (11)
C5—C4—C3120.84 (9)O1—C9—H9A109.5
C5—C4—H4A119.6O1—C9—H9B109.5
C3—C4—H4A119.6H9A—C9—H9B109.5
C4—C5—C6120.01 (9)O1—C9—H9C109.5
C4—C5—H5A120.0H9A—C9—H9C109.5
C6—C5—H5A120.0H9B—C9—H9C109.5
C1—C6—C5119.46 (9)
C9—O1—C2—C1179.56 (8)C2—C1—C6—C50.84 (14)
C9—O1—C2—C30.45 (14)C2—C1—C6—C7177.36 (8)
C6—C1—C2—O1177.98 (8)C4—C5—C6—C10.24 (15)
C6—C1—C2—C31.17 (14)C4—C5—C6—C7178.01 (9)
O1—C2—C3—C4178.19 (9)C8—N1—C7—C6179.92 (9)
C1—C2—C3—C40.88 (15)C1—C6—C7—N10.51 (15)
C2—C3—C4—C50.27 (15)C5—C6—C7—N1177.70 (10)
C3—C4—C5—C60.04 (15)C7—N1—C8—C8i136.92 (11)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1ii0.962.503.3809 (13)153
C8—H8B···Cg1iii0.984 (13)2.822 (13)3.6221 (12)138.9 (9)
C9—H9C···Cg1iv0.962.753.5636 (12)143
Symmetry codes: (ii) x+1/2, y1/2, z+1/2; (iii) x, y+1, z; (iv) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC18H20N2O2
Mr296.36
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)22.7076 (3), 6.0374 (1), 11.6789 (2)
β (°) 100.235 (1)
V3)1575.64 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.49 × 0.33 × 0.22
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.886, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
11683, 2298, 1879
Rint0.029
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.108, 1.11
No. of reflections2298
No. of parameters113
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.21

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.96002.50003.3809 (13)153.00
C8—H8B···Cg1ii0.984 (13)2.822 (13)3.6221 (12)138.9 (9)
C9—H9C···Cg1iii0.96002.75003.5636 (12)143.00
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z.
 

Footnotes

Additional correspondence author: e-mail: mirkhani@sci.ui.ac.ir.

Acknowledgements

HKF thanks the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. VM and ARV thank the University of Isfahan for financial support and Dr Reza Kia for the manuscript preparation.

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715–738. London: Pergamon.  Google Scholar
First citationFun, H.-K., Kargar, H. & Kia, R. (2008b). Acta Cryst. E64, o1308.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Kia, R. & Kargar, H. (2008a). Acta Cryst. E64, o1335.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Mirkhani, V., Kia, R. & Vartooni, A. R. (2008c). Acta Cryst. E64, o1374–o1375.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Mirkhani, V., Kia, R. & Vartooni, A. R. (2008d). Acta Cryst. E64, o1471.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHou, B., Friedman, N., Ruhman, S., Sheves, M. & Ottolenghi, M. (2001). J. Phys. Chem. B, 105, 7042–7048.  Web of Science CrossRef CAS Google Scholar
First citationKia, R., Mirkhani, V., Harkema, S. & van Hummel, G. J. (2007b). Inorg. Chim. Acta, 360, 3369–3375.  Web of Science CSD CrossRef CAS Google Scholar
First citationKia, R., Mirkhani, V., Kalman, A. & Deak, A. (2007a). Polyhedron, 26, 1117–1716.  Google Scholar
First citationPal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). Inorg. Chem. 44, 3880–3889.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages o1803-o1804
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds