metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{μ-N,N′-Bis[(E)-4-pyridylmethyl­­idene]naphthalene-1,5-di­amine}bis­­[di­chlorido(di­methyl sulfide)platinum(II)]

aDepartment of Chemistry (BK21), Sungkyunkwan University, Natural Science Campus, Suwon 440-746, Republic of Korea
*Correspondence e-mail: soonwlee@skku.edu

(Received 4 July 2008; accepted 3 August 2008; online 9 August 2008)

The title dinuclear platinum compound, [Pt2Cl4(C22H16N4)(C2H6S)2], with a long bridging bipyridyl-type ligand, is centrosymmetric and the PtII cation shows a slightly distorted square-planar coordination geometry. The Cl ligands are trans to each other, with a Cl—Pt—Cl angle of 178.83 (8)°. The pyridine ring forms a dihedral angle of 48.8 (2)° with the planar PtCl2SN unit. Within the mol­ecule, the distance between Pt atoms is 20.262 (5) Å and the N⋯N separation between the terminal pyridyl rings is 16.23 (1)Å.

Related literature

For related literature, see: Barnett & Champness (2003[Barnett, S. A. & Champness, N. R. (2003). Coord. Chem. Rev. 246, 145-168.]); Costa et al. (2003[Costa, P. M. F. J., Mora, M., Calhorda, M. J., Felix, V., Ferreira, P., Drew, M. G. B. & Wadepohl, H. (2003). J. Organomet. Chem. 687, 57-68.]); Han & Lee (2004[Han, W. S. & Lee, S. W. (2004). Dalton Trans. pp. 1656-1663.]); Hill et al. (1998[Hill, G. S., Irwin, M. J., Levy, C. J., Rendina, L. M. & Puddephatt, R. J. (1998). Inorg. Synth. 32, 149-153.]); Huh et al. (2008[Huh, S. H., Yun, H. J. & Lee, S. W. (2008). Inorg. Chim. Acta, 361, 2101-2108 .]) and references therein; Kinnunen et al. (2002[Kinnunen, T.-J. J., Haukka, M., Pesonen, E. & Pakkanen, T. A. (2002). J. Organomet. Chem. 655, 31-38.]); Leininger et al. (2000[Leininger, S., Olenyuk, B. & Stang, P. J. (2000). Chem. Rev. 100, 853-908.]); Min et al. (2006[Min, D., Cho, B.-Y. & Lee, S. W. (2006). Inorg. Chim. Acta, 359, 577-584.]); Kinnunen et al. (2002[Kinnunen, T.-J. J., Haukka, M., Pesonen, E. & Pakkanen, T. A. (2002). J. Organomet. Chem. 655, 31-38.]); Leininger et al. (2000[Leininger, S., Olenyuk, B. & Stang, P. J. (2000). Chem. Rev. 100, 853-908.]); Min et al. (2006[Min, D., Cho, B.-Y. & Lee, S. W. (2006). Inorg. Chim. Acta, 359, 577-584.]).

[Scheme 1]

Experimental

Crystal data
  • [Pt2Cl4(C22H16N4)(C2H6S)2]

  • Mr = 992.62

  • Triclinic, [P \overline 1]

  • a = 5.172 (2) Å

  • b = 7.2482 (11) Å

  • c = 20.728 (3) Å

  • α = 91.596 (12)°

  • β = 91.974 (19)°

  • γ = 97.804 (17)°

  • V = 769.0 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 9.59 mm−1

  • T = 293 (2) K

  • 0.44 × 0.20 × 0.10 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.115, Tmax = 0.383

  • 3026 measured reflections

  • 2696 independent reflections

  • 2447 reflections with I > 2σ(I)

  • Rint = 0.042

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.093

  • S = 1.05

  • 2696 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.96 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pt1—N1 2.057 (6)
Pt1—S1 2.285 (2)
Pt1—Cl2 2.301 (2)
Pt1—Cl1 2.303 (2)
N1—Pt1—S1 175.98 (18)
N1—Pt1—Cl2 88.55 (19)
S1—Pt1—Cl2 95.31 (8)
N1—Pt1—Cl1 90.40 (19)
S1—Pt1—Cl1 85.74 (8)
Cl2—Pt1—Cl1 178.83 (8)

Data collection: XSCANS (Siemens, 1995[Siemens (1995). XSCANS User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The N-donor linking (exo N-donor bidentate) ligands such as pyrazine, 4,4'-bipyridine, 1,2-bis(4-pyridyl)ethylene, and 1,2-bis(4-pyridyl)ethane are widely used for the synthesis of discrete dinuclear, polynuclear, and coordination network compounds (Leininger et al., 2000; Kinnunen et al., 2002; Costa et al., 2003; Barnett & Champness, 2003). We also reported dinuclear discrete rods, tetranuclear rectangles, and one-dimensional coordination networks of Cp*Rh(III) compounds by employing such ligands, where Cp* is 1,2,3,4,5-pentamethylcyclopentadiene (Han & Lee, 2004). Recently, we reported several novel long bipyridyl-type linking ligands including ligand L and their coordination polymers of several transition metals (Min et al., 2006; Huh et al., 2008). As a continuation of our research, we decided to use ligand L to prepare novel platinum polynuclear or coordination network compounds. The layer diffusion (dichloromethane–benzene) of [Pt(SMe2)2Cl2] with an equimolar amount L with dichloromethane and benzene as solvents gave an unexpected dinuclear [Pt2L(SMe2)2Cl4] compound. Moreover, the reaction involving 2 equiv of L also gave the same product. The molecular structure of the title compound is shown Fig. 1. The complex molecule is centrosymmetric with the PtII ion exhibiting a slightly distorted square-planar coordination geometry. Each Pt atom is coordinated by two trans chloro ligands, one sulfur atom of SMe2, and pyridine N atom of ligand L. The PtCl2SN core is essentially planar with the highest displacement of 0.012 (2) Å for the Pt atom. Within the molecule, the distance between Pt atoms is 20.262 (5) Å, and the N···N separation between the terminal pyridyl rings of 16.23 (1) Å is somewhat longer than that of the free ligand (16.0 Å; Min et al., 2006).

Related literature top

For related literature, see: Barnett & Champness (2003); Costa et al. (2003); Han & Lee (2004); Hill et al. (1998); Huh et al. (2008) and references therein; Kinnunen et al. (2002); Leininger et al. (2000); Min et al. (2006); Kinnunen et al. (2002); Leininger et al. (2000); Min et al. (2006).

Experimental top

A dichloromethane solution (7 ml) of L (40 mg, 0.136 mmol) was layered onto the top of a benzene solution (7 ml) of Pt(SMe2)2Cl2 (50 mg, 0.130 mmol) (Hill et al., 1998). Yellow crystals of [Pt2L(SMe2)2Cl4] formed in 5 days (53 mg, 0.053 mmol, 39%). The title compound is insoluble in common organic solvents. Anal. Calcd for C26H28N4S2Cl2Pt2 (Mr = 992.62): C 31.46; H 2.84; N, 5.65; S 6.46. Found: C 31.32; H 2.87; N 6.03; S 6.65. IR (KBr, ν, cm-1): 1620 (s), 1590 (s), 1402 (s), 1378 (m), 1308 (s), 1197 (m), 1036 (m), 983 (m), 811 (m), 659 (m).

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93-96 Å and constrained to ride on their parent atoms with Uiso(H)=1.2Ueq(C).

Computing details top

Data collection: XSCANS (Siemens, 1995); cell refinement: XSCANS (Siemens, 1995); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing 50% probability displacement ellipsoids. H atoms are omitted for clarity. Unlabeled atoms are related to labeled atoms by the symmetry operation i = -x + 1, -y + 1, -z + 1.
{µ-N,N'-Bis[(E)-4-pyridylmethylidene]naphthalene- 1,5-diamine}bis[dichlorido(dimethyl sulfide)platinum(II)] top
Crystal data top
[Pt2Cl4(C22H16N4)(C2H6S)2]Z = 1
Mr = 992.62F(000) = 468
Triclinic, P1Dx = 2.143 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.172 (2) ÅCell parameters from 21 reflections
b = 7.2482 (11) Åθ = 4.7–12.5°
c = 20.728 (3) ŵ = 9.59 mm1
α = 91.596 (12)°T = 293 K
β = 91.974 (19)°Block, yellow
γ = 97.804 (17)°0.44 × 0.20 × 0.10 mm
V = 769.0 (3) Å3
Data collection top
Siemens P4
diffractometer
2447 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.042
Graphite monochromatorθmax = 25.1°, θmin = 2.0°
ω scansh = 60
Absorption correction: ψ scan
(North et al., 1968)
k = 88
Tmin = 0.115, Tmax = 0.383l = 2424
3026 measured reflections3 standard reflections every 97 reflections
2696 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0492P)2 + 1.8521P]
where P = (Fo2 + 2Fc2)/3
2696 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.96 e Å3
Crystal data top
[Pt2Cl4(C22H16N4)(C2H6S)2]γ = 97.804 (17)°
Mr = 992.62V = 769.0 (3) Å3
Triclinic, P1Z = 1
a = 5.172 (2) ÅMo Kα radiation
b = 7.2482 (11) ŵ = 9.59 mm1
c = 20.728 (3) ÅT = 293 K
α = 91.596 (12)°0.44 × 0.20 × 0.10 mm
β = 91.974 (19)°
Data collection top
Siemens P4
diffractometer
2447 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.042
Tmin = 0.115, Tmax = 0.3833 standard reflections every 97 reflections
3026 measured reflections intensity decay: none
2696 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.05Δρmax = 0.73 e Å3
2696 reflectionsΔρmin = 0.96 e Å3
172 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.76885 (6)0.00003 (4)0.835419 (14)0.05066 (13)
Cl20.8555 (5)0.2416 (3)0.76008 (12)0.0684 (5)
Cl10.6804 (6)0.2461 (3)0.90917 (11)0.0783 (7)
S11.0252 (5)0.1418 (3)0.91231 (11)0.0646 (5)
N10.5382 (12)0.1450 (8)0.7698 (3)0.0477 (13)
N20.1135 (13)0.4034 (9)0.6076 (3)0.0539 (15)
C10.3549 (16)0.0685 (10)0.7380 (4)0.0536 (18)
H10.33080.05360.74610.064*
C20.2008 (16)0.1659 (11)0.6934 (4)0.0545 (18)
H20.07440.11000.67230.065*
C30.2373 (16)0.3491 (11)0.6804 (3)0.0515 (17)
C40.4212 (15)0.4285 (10)0.7142 (4)0.0509 (17)
H40.44540.55140.70750.061*
C50.5705 (15)0.3241 (11)0.7584 (4)0.0505 (16)
H50.69540.37840.78070.061*
C60.0727 (15)0.4623 (11)0.6348 (3)0.0508 (17)
H60.10950.58130.62600.061*
C70.2847 (15)0.5245 (11)0.5700 (4)0.0515 (17)
C80.3580 (18)0.7091 (12)0.5875 (4)0.060 (2)
H80.28300.76120.62260.072*
C90.5474 (18)0.8204 (12)0.5523 (4)0.063 (2)
H90.59320.94560.56410.076*
C100.3377 (16)0.2520 (11)0.4981 (4)0.0577 (19)
H100.21250.17660.52010.069*
C110.4057 (15)0.4428 (11)0.5180 (3)0.0491 (16)
C121.208 (3)0.3570 (17)0.8815 (7)0.104 (4)
H12A1.33820.33080.85020.156*
H12B1.29140.42290.91640.156*
H12C1.09200.43210.86150.156*
C130.803 (2)0.2317 (17)0.9678 (5)0.089 (3)
H13A0.69000.13010.98880.134*
H13B0.70030.31030.94470.134*
H13C0.90010.30270.99960.134*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.0554 (2)0.04379 (18)0.05348 (19)0.00442 (12)0.01683 (13)0.00739 (12)
Cl20.0754 (14)0.0514 (10)0.0776 (13)0.0024 (9)0.0253 (11)0.0063 (9)
Cl10.1031 (18)0.0645 (13)0.0607 (12)0.0161 (12)0.0249 (12)0.0036 (10)
S10.0712 (14)0.0539 (11)0.0696 (13)0.0034 (10)0.0301 (11)0.0115 (9)
N10.043 (3)0.048 (3)0.052 (3)0.003 (3)0.008 (3)0.006 (3)
N20.051 (4)0.065 (4)0.047 (3)0.006 (3)0.013 (3)0.012 (3)
C10.056 (4)0.043 (4)0.063 (4)0.004 (3)0.020 (4)0.012 (3)
C20.052 (4)0.058 (4)0.057 (4)0.016 (3)0.017 (3)0.003 (3)
C30.058 (5)0.057 (4)0.039 (3)0.006 (3)0.012 (3)0.009 (3)
C40.052 (4)0.049 (4)0.055 (4)0.011 (3)0.015 (3)0.016 (3)
C50.047 (4)0.058 (4)0.048 (4)0.006 (3)0.014 (3)0.005 (3)
C60.048 (4)0.060 (4)0.047 (4)0.011 (3)0.009 (3)0.013 (3)
C70.052 (4)0.059 (4)0.047 (4)0.012 (3)0.016 (3)0.017 (3)
C80.068 (5)0.061 (5)0.054 (4)0.013 (4)0.022 (4)0.013 (4)
C90.071 (6)0.056 (5)0.062 (5)0.005 (4)0.018 (4)0.014 (4)
C100.058 (5)0.055 (4)0.060 (4)0.004 (4)0.017 (4)0.012 (4)
C110.051 (4)0.055 (4)0.043 (4)0.010 (3)0.011 (3)0.016 (3)
C120.107 (9)0.083 (7)0.112 (9)0.034 (7)0.030 (8)0.018 (7)
C130.104 (9)0.101 (8)0.066 (6)0.016 (7)0.022 (6)0.026 (5)
Geometric parameters (Å, º) top
Pt1—N12.057 (6)C5—H50.9300
Pt1—S12.285 (2)C6—H60.9300
Pt1—Cl22.301 (2)C7—C81.376 (12)
Pt1—Cl12.303 (2)C7—C111.420 (11)
S1—C131.795 (12)C8—C91.418 (12)
S1—C121.799 (12)C8—H80.9300
N1—C11.344 (10)C9—C10i1.347 (12)
N1—C51.357 (10)C9—H90.9300
N2—C61.250 (10)C10—C9i1.347 (12)
N2—C71.427 (9)C10—C111.426 (11)
C1—C21.386 (11)C10—H100.9300
C1—H10.9300C11—C11i1.435 (14)
C2—C31.398 (11)C12—H12A0.9600
C2—H20.9300C12—H12B0.9600
C3—C41.378 (11)C12—H12C0.9600
C3—C61.484 (10)C13—H13A0.9600
C4—C51.392 (10)C13—H13B0.9600
C4—H40.9300C13—H13C0.9600
N1—Pt1—S1175.98 (18)N2—C6—H6118.8
N1—Pt1—Cl288.55 (19)C3—C6—H6118.8
S1—Pt1—Cl295.31 (8)C8—C7—C11120.0 (7)
N1—Pt1—Cl190.40 (19)C8—C7—N2122.0 (7)
S1—Pt1—Cl185.74 (8)C11—C7—N2117.5 (7)
Cl2—Pt1—Cl1178.83 (8)C7—C8—C9120.2 (8)
C13—S1—C1299.7 (7)C7—C8—H8119.9
C13—S1—Pt1105.2 (4)C9—C8—H8119.9
C12—S1—Pt1111.4 (4)C10i—C9—C8121.2 (8)
C1—N1—C5118.8 (6)C10i—C9—H9119.4
C1—N1—Pt1122.1 (5)C8—C9—H9119.4
C5—N1—Pt1119.1 (5)C9i—C10—C11120.8 (7)
C6—N2—C7120.3 (7)C9i—C10—H10119.6
N1—C1—C2122.1 (7)C11—C10—H10119.6
N1—C1—H1119.0C7—C11—C10122.2 (7)
C2—C1—H1119.0C7—C11—C11i119.2 (9)
C1—C2—C3119.4 (7)C10—C11—C11i118.5 (9)
C1—C2—H2120.3S1—C12—H12A109.5
C3—C2—H2120.3S1—C12—H12B109.5
C4—C3—C2118.4 (7)H12A—C12—H12B109.5
C4—C3—C6119.7 (7)S1—C12—H12C109.5
C2—C3—C6121.8 (7)H12A—C12—H12C109.5
C3—C4—C5119.8 (7)H12B—C12—H12C109.5
C3—C4—H4120.1S1—C13—H13A109.5
C5—C4—H4120.1S1—C13—H13B109.5
N1—C5—C4121.6 (7)H13A—C13—H13B109.5
N1—C5—H5119.2S1—C13—H13C109.5
C4—C5—H5119.2H13A—C13—H13C109.5
N2—C6—C3122.4 (7)H13B—C13—H13C109.5
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Pt2Cl4(C22H16N4)(C2H6S)2]
Mr992.62
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.172 (2), 7.2482 (11), 20.728 (3)
α, β, γ (°)91.596 (12), 91.974 (19), 97.804 (17)
V3)769.0 (3)
Z1
Radiation typeMo Kα
µ (mm1)9.59
Crystal size (mm)0.44 × 0.20 × 0.10
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.115, 0.383
No. of measured, independent and
observed [I > 2σ(I)] reflections
3026, 2696, 2447
Rint0.042
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.093, 1.05
No. of reflections2696
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.96

Computer programs: XSCANS (Siemens, 1995), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Pt1—N12.057 (6)Pt1—Cl22.301 (2)
Pt1—S12.285 (2)Pt1—Cl12.303 (2)
N1—Pt1—S1175.98 (18)N1—Pt1—Cl190.40 (19)
N1—Pt1—Cl288.55 (19)S1—Pt1—Cl185.74 (8)
S1—Pt1—Cl295.31 (8)Cl2—Pt1—Cl1178.83 (8)
 

References

First citationBarnett, S. A. & Champness, N. R. (2003). Coord. Chem. Rev. 246, 145–168.  Web of Science CrossRef CAS Google Scholar
First citationCosta, P. M. F. J., Mora, M., Calhorda, M. J., Felix, V., Ferreira, P., Drew, M. G. B. & Wadepohl, H. (2003). J. Organomet. Chem. 687, 57–68.  Web of Science CSD CrossRef CAS Google Scholar
First citationHan, W. S. & Lee, S. W. (2004). Dalton Trans. pp. 1656–1663.  Google Scholar
First citationHill, G. S., Irwin, M. J., Levy, C. J., Rendina, L. M. & Puddephatt, R. J. (1998). Inorg. Synth. 32, 149–153.  CrossRef CAS Google Scholar
First citationHuh, S. H., Yun, H. J. & Lee, S. W. (2008). Inorg. Chim. Acta, 361, 2101–2108 .  Web of Science CSD CrossRef CAS Google Scholar
First citationKinnunen, T.-J. J., Haukka, M., Pesonen, E. & Pakkanen, T. A. (2002). J. Organomet. Chem. 655, 31–38.  Web of Science CSD CrossRef CAS Google Scholar
First citationLeininger, S., Olenyuk, B. & Stang, P. J. (2000). Chem. Rev. 100, 853–908.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMin, D., Cho, B.-Y. & Lee, S. W. (2006). Inorg. Chim. Acta, 359, 577–584.  CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1995). XSCANS User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds