metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1166-m1167

(2,4-Dioxo-1,2,3,4-tetra­hydro­pyrimi­dine-5-carboxyl­ato-κ2O4,O5)(4-oxido-2-oxo-1,2-di­hydro­pyrimidine-5-carboxyl­ato-κ2O4,O5)bis­­(1,10-phenanthroline-κ2N,N′)yttrium(III) dihydrate

aCollege of Chemistry and Chemical Engineering, Guangxi Normal University, Yucai Road 15, Guilin 541004, People's Republic of China
*Correspondence e-mail: chenziluczl@yahoo.co.uk

(Received 22 July 2008; accepted 9 August 2008; online 16 August 2008)

In the title compound, [Y(C5H2N2O4)(C5H3N2O4)(C12H8N2)2]·2H2O, the YIII ion lies on a twofold rotation axis and exhibits a distorted square-anti­prismatic coordination geometry. It is chelated by two 1,10-phenanthroline ligands, a 2,4-dioxo-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate mono­anion and a 4-oxido-2-oxo-1,2-dihydro­pyrimidine-5-carboxyl­ate dianion. The H atom involved in an N—H⋯N hydrogen bond between the 1,2-dihydro­pyrimidine units has half occupancy and is disordered around a twofold rotation axis.

Related literature

For the crystal structures of the isostructural Er, Eu, Tb and Yb complexes, see: Sun & Jin (2004[Sun, C.-Y. & Jin, L.-P. (2004). Polyhedron, 23, 2227-2233.]); Xing et al. (2008[Xing, H.-H., Chen, Z.-L. & Ng, S. W. (2008). Acta Cryst. E64, m418.]). For other related literature, see: Tobiki et al. (1980[Tobiki, H., Yamada, H., Nakatsaka, I., Shimago, K., Eda, Y., Noguchi, H., Komatsu, T. & Nakagome, T. (1980). Yakugaku Zasshi, 100, 38-48.]); Castan et al. (1990[Castan, P., Colacio-Rodriguez, E., Beauchamp, A. L., Cros, S. & Wimmer, J. (1990). J. Inorg. Biochem. 38, 225-239.]).

[Scheme 1]

Experimental

Crystal data
  • [Y(C5H2N2O4)(C5H3N2O4)(C12H8N2)2]·2H2O

  • Mr = 794.53

  • Monoclinic, C 2/c

  • a = 17.1740 (13) Å

  • b = 14.4385 (11) Å

  • c = 13.2365 (10) Å

  • β = 100.881 (1)°

  • V = 3223.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.89 mm−1

  • T = 295 (2) K

  • 0.24 × 0.08 × 0.06 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.660, Tmax = 0.895

  • 12035 measured reflections

  • 3152 independent reflections

  • 2986 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.096

  • S = 1.21

  • 3152 reflections

  • 240 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Selected geometric parameters (Å, °)

Y1—O2 2.247 (2)
Y1—O1 2.302 (2)
Y1—N1 2.547 (3)
Y1—N2 2.573 (3)
O2i—Y1—O2 89.15 (13)
O2—Y1—O1i 81.79 (9)
O2—Y1—O1 74.69 (8)
O1i—Y1—O1 146.81 (11)
O2i—Y1—N1 147.62 (8)
O2—Y1—N1 105.31 (9)
O1i—Y1—N1 135.17 (8)
O1—Y1—N1 74.65 (9)
N1—Y1—N1i 77.82 (13)
O2—Y1—N2i 148.38 (8)
O1—Y1—N2i 74.55 (8)
N1—Y1—N2i 73.15 (9)
O2—Y1—N2 79.43 (9)
O1—Y1—N2 122.30 (9)
N1—Y1—N2 63.90 (9)
N2i—Y1—N2 124.07 (12)
Symmetry code: (i) [-x+2, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2ii 0.86 2.04 2.898 (3) 178
N1—H1⋯O1ii 0.86 2.60 3.160 (4) 124
N2—H2⋯N2iii 0.86 1.81 2.669 (5) 174
O5—H5A⋯O4iv 0.85 2.14 2.970 (4) 164
O5—H5B⋯O2v 0.85 2.14 2.985 (4) 173
Symmetry codes: (ii) [x, -y, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z]; (iv) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (v) x, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2,4-Dioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylic acid has attracted much attention because of its potential biological activity and pharmaceutical properties, such as anticancer, antibacterial and antihypertensive properties (Tobiki et al., 1980; Castan et al., 1990). Here we report the crystal structure of YIII complex with 2,4-dioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylic acid and 1,10-phenenthroline as ligands. The title complex turned out to be isostructural with the analogues Eu, Tb, Yb (Sun & Jin, 2004) and Er (Xing et al., 2008) complexes; see Sun & Jin (2004) for their detailed description.

Related literature top

For the crystal structures of the isostructural Er, Eu, Tb and Yb complexes, see: Sun & Jin (2004); Xing et al. (2008). For other related literature, see: Tobiki et al. (1980); Castan et al. (1990).

Experimental top

A mixture of 2,4-dihydroxypyrimidine-5-carboxylic acid (0.0312 g, 0.2 mmol), YCl3.6H2O (0.0607 g, 0.2 mmol), phenanthroline dihydrate (0.0396 g, 0.2 mmol), NaOH (0.0160 g, 0.4 mmol) and water (15 ml) was sealed in a 25 ml, Teflon-lined stainless-steel reactor and heated to 383 K for 120 h. It was then cooled over 48 h to give colourless crystals in 70% yield. Elemental analysis calculated for C34H25N8O10Y: C 51.40, H 3.17, N 14.10%; found: C 51.77, H 3.29, N 14.49%.

Refinement top

H atoms of the water molecule were located in a difference Fourier map and allowed to ride on their parent atom [Uiso(H) = 1.5Ueq(O)]. Other H atoms were placed at calculated positions (C—H = 0.93 Å and N—H = 0.86 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C, N). The pyrimidine hydrogen atom H4 is shared by two N—H groups and thus has an occupancy factor of 0.5.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme and 30% displacement ellipsoids.
(2,4-Dioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylato- κ2O4,O5)(4-oxido-2-oxo-1,2-dihydropyrimidine-5- carboxylato-κ2O4,O5)bis(1,10-phenanthroline- κ2N,N')yttrium(III) dihydrate top
Crystal data top
[Y(C5H2N2O4)(C5H3N2O4)(C12H8N2)2]·2H2OF(000) = 1616
Mr = 794.53Dx = 1.637 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7855 reflections
a = 17.1740 (13) Åθ = 2.3–27.9°
b = 14.4385 (11) ŵ = 1.89 mm1
c = 13.2365 (10) ÅT = 295 K
β = 100.881 (1)°Prism, colourless
V = 3223.2 (4) Å30.24 × 0.08 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
3152 independent reflections
Radiation source: fine-focus sealed tube2986 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 2121
Tmin = 0.660, Tmax = 0.895k = 1717
12035 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.21 w = 1/[σ2(Fo2) + (0.0141P)2 + 9.88P]
where P = (Fo2 + 2Fc2)/3
3152 reflections(Δ/σ)max < 0.001
240 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Y(C5H2N2O4)(C5H3N2O4)(C12H8N2)2]·2H2OV = 3223.2 (4) Å3
Mr = 794.53Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.1740 (13) ŵ = 1.89 mm1
b = 14.4385 (11) ÅT = 295 K
c = 13.2365 (10) Å0.24 × 0.08 × 0.06 mm
β = 100.881 (1)°
Data collection top
Bruker APEXII
diffractometer
3152 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2986 reflections with I > 2σ(I)
Tmin = 0.660, Tmax = 0.895Rint = 0.035
12035 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.21Δρmax = 0.41 e Å3
3152 reflectionsΔρmin = 0.51 e Å3
240 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Y11.00000.88802 (3)0.25000.02339 (12)
N10.90591 (16)0.75076 (19)0.2117 (2)0.0324 (6)
N20.96510 (16)0.80446 (19)0.4073 (2)0.0304 (6)
N30.83326 (16)1.02589 (19)0.0065 (2)0.0297 (6)
H30.83790.98420.05140.036*
N40.78240 (19)1.1684 (2)0.0310 (2)0.0387 (7)
H40.75851.21990.01310.046*0.50
O10.90470 (14)0.93356 (15)0.11247 (17)0.0329 (6)
O20.93006 (14)0.99886 (16)0.31195 (17)0.0337 (6)
O30.84729 (15)1.10907 (17)0.34049 (17)0.0371 (6)
O40.76917 (16)1.11986 (18)0.13684 (19)0.0451 (7)
C10.8770 (2)1.0594 (2)0.2805 (2)0.0272 (7)
C20.84980 (19)1.0723 (2)0.1678 (2)0.0269 (7)
C30.86584 (18)1.0066 (2)0.0941 (2)0.0248 (7)
C40.7937 (2)1.1063 (2)0.0423 (3)0.0324 (7)
C50.8085 (2)1.1498 (2)0.1311 (3)0.0358 (8)
H50.79761.19280.17880.043*
C60.9900 (2)0.8317 (3)0.5036 (3)0.0386 (8)
H61.00890.89200.51480.046*
C70.9896 (3)0.7758 (3)0.5890 (3)0.0512 (11)
H71.00740.79820.65520.061*
C80.9624 (3)0.6872 (3)0.5735 (3)0.0599 (12)
H80.96260.64830.62960.072*
C90.9342 (2)0.6545 (3)0.4735 (3)0.0463 (10)
C100.9355 (2)0.7169 (2)0.3922 (3)0.0327 (8)
C110.9042 (2)0.6886 (2)0.2883 (3)0.0325 (8)
C120.8716 (2)0.5993 (2)0.2699 (3)0.0419 (9)
C130.8735 (3)0.5372 (3)0.3546 (4)0.0607 (13)
H130.85340.47760.34230.073*
C140.9036 (3)0.5634 (3)0.4513 (4)0.0618 (13)
H140.90450.52150.50480.074*
C150.8370 (2)0.5768 (3)0.1686 (4)0.0510 (11)
H150.81480.51850.15330.061*
C160.8357 (2)0.6401 (3)0.0926 (3)0.0490 (10)
H160.81190.62620.02520.059*
C170.8707 (2)0.7264 (3)0.1173 (3)0.0397 (9)
H170.86930.76930.06470.048*
O50.6925 (3)0.1887 (2)0.6600 (3)0.0956 (14)
H510.67930.24540.66440.143*
H520.70820.16810.72080.143*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Y10.0287 (2)0.0187 (2)0.0207 (2)0.0000.00062 (16)0.000
N10.0322 (16)0.0288 (15)0.0352 (16)0.0037 (12)0.0040 (12)0.0035 (12)
N20.0318 (15)0.0294 (15)0.0297 (15)0.0002 (12)0.0051 (12)0.0008 (12)
N30.0389 (16)0.0276 (15)0.0204 (13)0.0051 (12)0.0001 (12)0.0021 (11)
N40.057 (2)0.0273 (15)0.0278 (15)0.0107 (14)0.0016 (14)0.0018 (12)
O10.0421 (14)0.0265 (12)0.0255 (12)0.0100 (10)0.0052 (10)0.0034 (9)
O20.0441 (14)0.0324 (13)0.0226 (12)0.0133 (11)0.0011 (10)0.0006 (10)
O30.0510 (15)0.0374 (14)0.0227 (12)0.0125 (12)0.0064 (11)0.0021 (10)
O40.0562 (17)0.0369 (15)0.0358 (14)0.0044 (13)0.0074 (12)0.0002 (12)
C10.0345 (18)0.0240 (16)0.0224 (16)0.0025 (14)0.0032 (13)0.0017 (13)
C20.0328 (17)0.0263 (16)0.0207 (16)0.0053 (14)0.0031 (13)0.0002 (13)
C30.0284 (16)0.0237 (16)0.0209 (15)0.0008 (13)0.0014 (13)0.0007 (12)
C40.0373 (19)0.0291 (18)0.0280 (17)0.0006 (15)0.0012 (14)0.0021 (14)
C50.050 (2)0.0292 (18)0.0263 (18)0.0094 (16)0.0031 (16)0.0026 (14)
C60.039 (2)0.042 (2)0.0339 (19)0.0026 (17)0.0042 (16)0.0029 (16)
C70.056 (3)0.070 (3)0.028 (2)0.010 (2)0.0082 (18)0.0061 (19)
C80.066 (3)0.069 (3)0.044 (2)0.008 (2)0.009 (2)0.024 (2)
C90.048 (2)0.043 (2)0.048 (2)0.0034 (19)0.0101 (19)0.0158 (19)
C100.0306 (18)0.0296 (18)0.0384 (19)0.0007 (14)0.0078 (15)0.0034 (15)
C110.0311 (18)0.0269 (17)0.0399 (19)0.0005 (14)0.0072 (15)0.0017 (15)
C120.042 (2)0.0279 (19)0.058 (2)0.0074 (16)0.0137 (19)0.0027 (17)
C130.074 (3)0.030 (2)0.080 (3)0.018 (2)0.017 (3)0.004 (2)
C140.076 (3)0.042 (3)0.068 (3)0.017 (2)0.016 (3)0.021 (2)
C150.051 (2)0.035 (2)0.069 (3)0.0161 (19)0.016 (2)0.018 (2)
C160.047 (2)0.050 (2)0.049 (2)0.0137 (19)0.0063 (19)0.022 (2)
C170.039 (2)0.039 (2)0.040 (2)0.0064 (17)0.0052 (16)0.0062 (16)
O50.145 (4)0.059 (2)0.067 (2)0.004 (2)0.017 (2)0.0089 (19)
Geometric parameters (Å, º) top
Y1—O2i2.247 (2)C2—C31.423 (4)
Y1—O22.247 (2)C5—H50.9300
Y1—O1i2.302 (2)C6—C71.391 (5)
Y1—O12.302 (2)C6—H60.9300
Y1—N12.547 (3)C7—C81.362 (6)
Y1—N1i2.547 (3)C7—H70.9300
Y1—N2i2.573 (3)C8—C91.403 (6)
Y1—N22.573 (3)C8—H80.9300
N1—C171.329 (4)C9—C101.407 (5)
N1—C111.358 (4)C9—C141.426 (6)
N2—C61.326 (4)C10—C111.439 (5)
N2—C101.363 (4)C11—C121.408 (5)
N3—C31.373 (4)C12—C151.399 (6)
N3—C41.383 (4)C12—C131.431 (6)
N3—H30.8600C13—C141.342 (6)
N4—C51.343 (4)C13—H130.9300
N4—C41.362 (4)C14—H140.9300
N4—H40.8600C15—C161.355 (6)
O1—C31.247 (4)C15—H150.9300
O2—C11.275 (4)C16—C171.395 (5)
O3—C11.248 (4)C16—H160.9300
O4—C41.258 (4)C17—H170.9300
C1—C21.489 (4)O5—H510.8533
C2—C51.364 (4)O5—H520.8518
O2i—Y1—O289.15 (13)C3—C2—C1122.6 (3)
O2i—Y1—O1i74.69 (8)O1—C3—N3117.7 (3)
O2—Y1—O1i81.79 (9)O1—C3—C2126.6 (3)
O2i—Y1—O181.79 (8)N3—C3—C2115.7 (3)
O2—Y1—O174.69 (8)O4—C4—N4122.7 (3)
O1i—Y1—O1146.81 (11)O4—C4—N3121.5 (3)
O2i—Y1—N1147.62 (8)N4—C4—N3115.8 (3)
O2—Y1—N1105.31 (9)N4—C5—C2124.8 (3)
O1i—Y1—N1135.17 (8)N4—C5—H5117.6
O1—Y1—N174.65 (9)C2—C5—H5117.6
O2i—Y1—N1i105.31 (9)N2—C6—C7124.0 (4)
O2—Y1—N1i147.62 (8)N2—C6—H6118.0
O1i—Y1—N1i74.65 (9)C7—C6—H6118.0
O1—Y1—N1i135.17 (8)C8—C7—C6118.5 (4)
N1—Y1—N1i77.82 (13)C8—C7—H7120.7
O2i—Y1—N2i79.43 (8)C6—C7—H7120.7
O2—Y1—N2i148.38 (8)C7—C8—C9120.4 (4)
O1i—Y1—N2i122.30 (9)C7—C8—H8119.8
O1—Y1—N2i74.55 (8)C9—C8—H8119.8
N1—Y1—N2i73.15 (9)C8—C9—C10117.0 (4)
N1i—Y1—N2i63.90 (9)C8—C9—C14123.6 (4)
O2i—Y1—N2148.38 (8)C10—C9—C14119.4 (4)
O2—Y1—N279.43 (9)N2—C10—C9122.8 (3)
O1i—Y1—N274.55 (8)N2—C10—C11117.7 (3)
O1—Y1—N2122.30 (9)C9—C10—C11119.5 (3)
N1—Y1—N263.90 (9)N1—C11—C12122.7 (3)
N1i—Y1—N273.15 (9)N1—C11—C10118.0 (3)
N2i—Y1—N2124.07 (12)C12—C11—C10119.3 (3)
C17—N1—C11117.1 (3)C15—C12—C11117.5 (4)
C17—N1—Y1123.5 (2)C15—C12—C13123.2 (4)
C11—N1—Y1117.9 (2)C11—C12—C13119.3 (4)
C6—N2—C10117.4 (3)C14—C13—C12121.2 (4)
C6—N2—Y1123.8 (2)C14—C13—H13119.4
C10—N2—Y1117.0 (2)C12—C13—H13119.4
C3—N3—C4125.9 (3)C13—C14—C9121.2 (4)
C3—N3—H3117.0C13—C14—H14119.4
C4—N3—H3117.0C9—C14—H14119.4
C5—N4—C4120.3 (3)C16—C15—C12119.9 (4)
C5—N4—H4119.9C16—C15—H15120.0
C4—N4—H4119.9C12—C15—H15120.0
C3—O1—Y1132.1 (2)C15—C16—C17118.8 (4)
C1—O2—Y1140.2 (2)C15—C16—H16120.6
O3—C1—O2122.6 (3)C17—C16—H16120.6
O3—C1—C2118.5 (3)N1—C17—C16123.9 (4)
O2—C1—C2118.8 (3)N1—C17—H17118.1
C5—C2—C3117.2 (3)C16—C17—H17118.1
C5—C2—C1120.2 (3)H51—O5—H52108.2
O2i—Y1—N1—C178.9 (4)C4—N3—C3—O1174.8 (3)
O2—Y1—N1—C17104.9 (3)C4—N3—C3—C26.6 (5)
O1i—Y1—N1—C17161.4 (3)C5—C2—C3—O1177.5 (3)
O1—Y1—N1—C1735.9 (3)C1—C2—C3—O11.8 (5)
N1i—Y1—N1—C17108.3 (3)C5—C2—C3—N34.0 (5)
N2i—Y1—N1—C1742.2 (3)C1—C2—C3—N3176.7 (3)
N2—Y1—N1—C17174.6 (3)C5—N4—C4—O4178.8 (4)
O2i—Y1—N1—C11157.1 (2)C5—N4—C4—N30.5 (5)
O2—Y1—N1—C1189.1 (2)C3—N3—C4—O4176.4 (3)
O1i—Y1—N1—C114.6 (3)C3—N3—C4—N44.3 (5)
O1—Y1—N1—C11158.1 (3)C4—N4—C5—C22.7 (6)
N1i—Y1—N1—C1157.7 (2)C3—C2—C5—N40.3 (6)
N2i—Y1—N1—C11123.8 (3)C1—C2—C5—N4179.0 (3)
N2—Y1—N1—C1119.3 (2)C10—N2—C6—C71.8 (5)
O2i—Y1—N2—C67.0 (4)Y1—N2—C6—C7162.4 (3)
O2—Y1—N2—C663.6 (3)N2—C6—C7—C80.4 (6)
O1i—Y1—N2—C620.7 (3)C6—C7—C8—C91.3 (7)
O1—Y1—N2—C6127.8 (3)C7—C8—C9—C100.0 (7)
N1—Y1—N2—C6176.6 (3)C7—C8—C9—C14178.8 (5)
N1i—Y1—N2—C699.0 (3)C6—N2—C10—C93.2 (5)
N2i—Y1—N2—C6139.5 (3)Y1—N2—C10—C9162.2 (3)
O2i—Y1—N2—C10157.3 (2)C6—N2—C10—C11176.5 (3)
O2—Y1—N2—C10132.1 (2)Y1—N2—C10—C1118.1 (4)
O1i—Y1—N2—C10143.6 (2)C8—C9—C10—N22.3 (6)
O1—Y1—N2—C1067.9 (2)C14—C9—C10—N2178.8 (4)
N1—Y1—N2—C1019.1 (2)C8—C9—C10—C11177.4 (4)
N1i—Y1—N2—C1065.3 (2)C14—C9—C10—C111.5 (6)
N2i—Y1—N2—C1024.8 (2)C17—N1—C11—C124.1 (5)
O2i—Y1—O1—C368.1 (3)Y1—N1—C11—C12162.8 (3)
O2—Y1—O1—C323.3 (3)C17—N1—C11—C10174.4 (3)
O1i—Y1—O1—C323.2 (3)Y1—N1—C11—C1018.7 (4)
N1—Y1—O1—C3134.3 (3)N2—C10—C11—N10.2 (5)
N1i—Y1—O1—C3171.6 (3)C9—C10—C11—N1179.6 (3)
N2i—Y1—O1—C3149.3 (3)N2—C10—C11—C12178.7 (3)
N2—Y1—O1—C389.8 (3)C9—C10—C11—C121.1 (5)
O2i—Y1—O2—C172.0 (3)N1—C11—C12—C152.7 (6)
O1i—Y1—O2—C1146.7 (4)C10—C11—C12—C15175.7 (3)
O1—Y1—O2—C19.7 (3)N1—C11—C12—C13178.8 (4)
N1—Y1—O2—C178.6 (3)C10—C11—C12—C132.8 (6)
N1i—Y1—O2—C1170.0 (3)C15—C12—C13—C14176.4 (5)
N2i—Y1—O2—C14.0 (4)C11—C12—C13—C142.0 (7)
N2—Y1—O2—C1137.6 (4)C12—C13—C14—C90.6 (8)
Y1—O2—C1—O3176.0 (2)C8—C9—C14—C13176.5 (5)
Y1—O2—C1—C24.6 (5)C10—C9—C14—C132.3 (7)
O3—C1—C2—C515.4 (5)C11—C12—C15—C160.1 (6)
O2—C1—C2—C5164.0 (3)C13—C12—C15—C16178.4 (4)
O3—C1—C2—C3165.3 (3)C12—C15—C16—C171.3 (6)
O2—C1—C2—C315.2 (5)C11—N1—C17—C162.8 (5)
Y1—O1—C3—N3158.7 (2)Y1—N1—C17—C16163.3 (3)
Y1—O1—C3—C222.8 (5)C15—C16—C17—N10.2 (6)
Symmetry code: (i) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O3ii0.861.992.853 (4)178
N3—H3···O2ii0.862.633.189 (4)124
N4—H4···N4iii0.861.812.667 (6)174
O5—H51···O3iv0.852.152.998 (4)173
O5—H52···O4v0.852.102.935 (4)169
Symmetry codes: (ii) x, y+2, z1/2; (iii) x+3/2, y+5/2, z; (iv) x+3/2, y+3/2, z+1; (v) x, y1, z+1.

Experimental details

Crystal data
Chemical formula[Y(C5H2N2O4)(C5H3N2O4)(C12H8N2)2]·2H2O
Mr794.53
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)17.1740 (13), 14.4385 (11), 13.2365 (10)
β (°) 100.881 (1)
V3)3223.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.89
Crystal size (mm)0.24 × 0.08 × 0.06
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.660, 0.895
No. of measured, independent and
observed [I > 2σ(I)] reflections
12035, 3152, 2986
Rint0.035
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.096, 1.21
No. of reflections3152
No. of parameters240
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.51

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Y1—O22.247 (2)Y1—N12.547 (3)
Y1—O12.302 (2)Y1—N22.573 (3)
O2i—Y1—O289.15 (13)N1—Y1—N1i77.82 (13)
O2—Y1—O1i81.79 (9)O2—Y1—N2i148.38 (8)
O2—Y1—O174.69 (8)O1—Y1—N2i74.55 (8)
O1i—Y1—O1146.81 (11)N1—Y1—N2i73.15 (9)
O2i—Y1—N1147.62 (8)O2—Y1—N279.43 (9)
O2—Y1—N1105.31 (9)O1—Y1—N2122.30 (9)
O1i—Y1—N1135.17 (8)N1—Y1—N263.90 (9)
O1—Y1—N174.65 (9)N2i—Y1—N2124.07 (12)
Symmetry code: (i) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O3ii0.861.992.853 (4)177.9
N3—H3···O2ii0.862.633.189 (4)123.8
N4—H4···N4iii0.861.812.667 (6)173.5
O5—H51···O3iv0.852.152.998 (4)173.1
O5—H52···O4v0.852.102.935 (4)168.7
Symmetry codes: (ii) x, y+2, z1/2; (iii) x+3/2, y+5/2, z; (iv) x+3/2, y+3/2, z+1; (v) x, y1, z+1.
 

Acknowledgements

The authors thank the Science Foundation of Guangxi Province, China (Guikeqing 0542021) and the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, for financial support.

References

First citationBruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastan, P., Colacio-Rodriguez, E., Beauchamp, A. L., Cros, S. & Wimmer, J. (1990). J. Inorg. Biochem. 38, 225–239.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, C.-Y. & Jin, L.-P. (2004). Polyhedron, 23, 2227–2233.  Web of Science CSD CrossRef CAS Google Scholar
First citationTobiki, H., Yamada, H., Nakatsaka, I., Shimago, K., Eda, Y., Noguchi, H., Komatsu, T. & Nakagome, T. (1980). Yakugaku Zasshi, 100, 38–48.  CAS PubMed Web of Science Google Scholar
First citationXing, H.-H., Chen, Z.-L. & Ng, S. W. (2008). Acta Cryst. E64, m418.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1166-m1167
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds