metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{μ-5-(di­ethyl­amino)-2-[(2-oxidoeth­­oxy)imino­meth­yl]phenolato}dicopper(II) acetone solvate

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: dongwk@mail.lzjtu.cn

(Received 29 July 2008; accepted 1 August 2008; online 6 August 2008)

The title complex, [Cu2(C13H18N2O3)2]·C3H6O, has been synthesized by the reaction of copper(II) acetate monohydrate with 5,5′-bis­(diethyl­amino)-2,2′-[ethyl­enedioxy­bis(nitrilo­methyl­idyne)]diphenol, where one of the N—O bonds of the ligand was cleaved during the reaction. The complex mol­ecule has a μ-dialkoxo-bridged binuclear structure with both CuII centers exhibiting a square-planar coordination geometry.

Related literature

For related literature, see: Bu et al. (1990[Bu, X. R., You, X. Z. & Meng, Q. J. (1990). Comments Inorg. Chem. 9, 221-244.]); Dong et al. (2007a[Dong, W. K., Chen, X., Wang, S. J., He, X. N., Wu, H. L. & Yu, T. Z. (2007a). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 37, 229-233.],b[Dong, W. K., Duan, J. G. & Liu, G. L. (2007b). Transition Met. Chem. 32, 702-705.]); Sun et al. (2008[Sun, Y.-X., Gao, S.-X., Shi, J.-Y. & Dong, W.-K. (2008). Acta Cryst. E64, m226.]); Zhang et al. (2007[Zhang, Y.-P., Chen, X., Shi, J.-Y., Xu, L. & Dong, W.-K. (2007). Acta Cryst. E63, o3852.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C13H18N2O3)2]·C3H6O

  • Mr = 685.75

  • Monoclinic, P 21 /c

  • a = 20.633 (3) Å

  • b = 11.6045 (14) Å

  • c = 13.0738 (17) Å

  • β = 102.635 (2)°

  • V = 3054.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.44 mm−1

  • T = 298 (2) K

  • 0.53 × 0.49 × 0.47 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.515, Tmax = 0.550 (expected range = 0.475–0.507)

  • 14726 measured reflections

  • 5363 independent reflections

  • 2967 reflections with I > 2σ(I)

  • Rint = 0.092

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.229

  • S = 1.00

  • 5363 reflections

  • 385 parameters

  • H-atom parameters constrained

  • Δρmax = 0.88 e Å−3

  • Δρmin = −1.06 e Å−3

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Several works have been devoted to synthesize and characterize transition metal complexes bearing a salen-type bisoxime ligand or its derivatives (Dong et al., 2007a; Dong et al., 2007b).

The title compound has been synthesized by the reaction of copper(II) acetate monohydrate with a salen-type bisoxime ligand, 5,5'-di(N,N'-diethylamino)-2,2' -[ethylenedioxybis(nitrilomethylidyne)]diphenol (H2L1). The catalytic action of CuII ions resulted in unexpected cleavage of one of the N—O bonds in the ligand H2L1 (Bu et al., 1990) giving a novel dialkoxo-bridged dinuclear complex with a Cu—O—Cu—O four-membered ring core, instead of the expected salen-type bisoxime Cu—N2O2 complex (Sun et al., 2008).

The title molecule has µ-dialkoxo bridged binuclear structure with both CuII centers tetra-coordinated, where oxime nitrogen atom, phenoxo oxygen atom and two bridging alkoxo oxygen atoms act as donors. The Cu2O2 core is formed by two CuII ions and two bridging alkoxo oxygen atoms with Cu—Cu separation of 3.0051 (12) Å. The dihedral angle between the two planes, O2—Cu2—O5 and O2—Cu1—O5, is 8.80 (4)°.

Related literature top

For related literature, see: Bu et al. (1990); Dong et al. (2007a,b); Sun et al. (2008); Zhang et al. (2007).

Experimental top

5, 5'-Di(N,N'-diethylamino)-2,2'- [ethylenedioxybis(nitrilomethylidyne)]diphenol (H2L1) was synthesized according to previously reported procedure (Zhang et al., 2007). A solution of copper(II) acetate monohydrate (20.0 mg, 0.1 mmol) in ethanol (15 ml) was added dropwise to a solution of H2L1 (44.3 mg, 0.1 mmol) in acetone (15 ml) at room temperature. The color of the mixing solution turned to brown immediately. The solution was stirred for 4 h at room temperature and then filtered. The filtrate was allowed to evaporate at room temperature for about three weeks and dark-brown prismatic single crystals suitable for X-ray crystallographic analysis were obtained. Anal. Calcd. for C29H42Cu2N4O7 {[Cu2(L2)2]C3H6O} (%): C, 50.79; H, 6.17; N, 8.17; Cu, 18.53. Found: C, 50.61; H, 6.19; N, 8.01; Cu, 18.29. IR: νC=N, 1614 cm-1 and νAr-O, 1235 cm-1.

Refinement top

H atoms were placed at calculated positions [C—H = 0.96 (CH3), 0.97 Å (CH2), 0.93 Å (CH)] and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
Bis{µ-5-(diethylamino)-2-[(2-oxidoethoxy)iminomethyl]phenolato}dicopper(II) acetone solvate top
Crystal data top
[Cu2(C13H18N2O3)2]·C3H6OF(000) = 1432
Mr = 685.75Dx = 1.491 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2917 reflections
a = 20.633 (3) Åθ = 2.4–22.9°
b = 11.6045 (14) ŵ = 1.44 mm1
c = 13.0738 (17) ÅT = 298 K
β = 102.635 (2)°Prismatic, dark-brown
V = 3054.6 (7) Å30.53 × 0.49 × 0.47 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
5363 independent reflections
Radiation source: fine-focus sealed tube2967 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.092
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2324
Tmin = 0.515, Tmax = 0.550k = 139
14726 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.229H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1245P)2]
where P = (Fo2 + 2Fc2)/3
5363 reflections(Δ/σ)max = 0.001
385 parametersΔρmax = 0.88 e Å3
0 restraintsΔρmin = 1.07 e Å3
Crystal data top
[Cu2(C13H18N2O3)2]·C3H6OV = 3054.6 (7) Å3
Mr = 685.75Z = 4
Monoclinic, P21/cMo Kα radiation
a = 20.633 (3) ŵ = 1.44 mm1
b = 11.6045 (14) ÅT = 298 K
c = 13.0738 (17) Å0.53 × 0.49 × 0.47 mm
β = 102.635 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
5363 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2967 reflections with I > 2σ(I)
Tmin = 0.515, Tmax = 0.550Rint = 0.092
14726 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.229H-atom parameters constrained
S = 1.00Δρmax = 0.88 e Å3
5363 reflectionsΔρmin = 1.07 e Å3
385 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50062 (4)0.85967 (8)0.08317 (7)0.0325 (3)
Cu20.40492 (4)0.91965 (8)0.21830 (7)0.0350 (3)
N10.4892 (3)0.7990 (5)0.0554 (5)0.0362 (15)
N20.8064 (3)0.8744 (7)0.0240 (6)0.061 (2)
N30.4087 (3)1.0305 (6)0.3279 (5)0.0419 (16)
N40.0932 (4)0.9250 (8)0.2481 (7)0.075 (3)
O10.4275 (2)0.7535 (4)0.1126 (4)0.0392 (13)
O20.4116 (2)0.8328 (5)0.0968 (4)0.0412 (13)
O30.5922 (2)0.8847 (4)0.0975 (4)0.0398 (13)
O40.4662 (2)1.0969 (4)0.3692 (4)0.0447 (14)
O50.4970 (2)0.9318 (4)0.2158 (4)0.0395 (13)
O60.3153 (2)0.8842 (5)0.2103 (4)0.0456 (14)
O70.1481 (6)0.5560 (10)0.0993 (9)0.154 (4)
C10.3732 (3)0.8175 (7)0.0905 (6)0.0398 (19)
H1A0.33370.79910.14330.048*
H1B0.38220.89900.09680.048*
C20.3591 (3)0.7965 (7)0.0148 (6)0.042 (2)
H2A0.31890.83730.01990.051*
H2B0.35130.71490.02260.051*
C30.5347 (3)0.7810 (6)0.1079 (6)0.0386 (18)
H30.52220.74870.17440.046*
C40.6025 (3)0.8082 (7)0.0690 (6)0.0389 (18)
C50.6286 (4)0.8589 (7)0.0283 (6)0.0413 (19)
C60.6954 (4)0.8808 (7)0.0556 (7)0.048 (2)
H60.71280.91470.12030.058*
C70.7386 (4)0.8539 (8)0.0103 (7)0.051 (2)
C80.7128 (4)0.8060 (7)0.1067 (7)0.050 (2)
H80.74050.78880.15200.060*
C90.6464 (3)0.7839 (7)0.1356 (6)0.044 (2)
H90.62930.75180.20120.053*
C100.8505 (4)0.8597 (8)0.0509 (8)0.064 (3)
H10A0.82550.87800.12090.077*
H10B0.88680.91430.03340.077*
C110.8781 (5)0.7429 (9)0.0516 (8)0.080 (3)
H11A0.90470.72550.01650.120*
H11B0.90510.73890.10260.120*
H11C0.84250.68820.06900.120*
C120.8390 (5)0.9014 (9)0.1339 (8)0.072 (3)
H12A0.81520.86720.18270.087*
H12B0.88470.87500.15060.087*
C130.8354 (6)1.0267 (10)0.1358 (10)0.097 (4)
H13A0.85041.05760.07690.146*
H13B0.86311.05500.19960.146*
H13C0.79031.05000.13210.146*
C140.5245 (3)1.0263 (7)0.3815 (6)0.0422 (19)
H14A0.51660.95440.41470.051*
H14B0.56111.06520.42800.051*
C150.5443 (3)0.9998 (7)0.2812 (6)0.0397 (19)
H15A0.54981.07130.24560.048*
H15B0.58660.95990.29600.048*
C160.3585 (4)1.0680 (7)0.3631 (7)0.049 (2)
H160.36651.12650.41280.058*
C170.2923 (4)1.0267 (7)0.3318 (7)0.048 (2)
C180.2740 (4)0.9378 (8)0.2589 (7)0.051 (2)
C190.2075 (4)0.9048 (8)0.2342 (7)0.059 (3)
H190.19540.84290.18890.071*
C200.1578 (4)0.9599 (9)0.2739 (8)0.065 (3)
C210.1795 (5)1.0508 (8)0.3459 (8)0.066 (3)
H210.14871.08880.37610.079*
C220.2412 (4)1.0817 (8)0.3705 (7)0.057 (2)
H220.25271.14360.41610.069*
C230.0379 (5)1.0076 (11)0.2675 (10)0.087 (3)
H23A0.05331.08680.27280.104*
H23B0.00131.00200.21120.104*
C240.0237 (6)0.9686 (12)0.3669 (10)0.110 (4)
H24A0.00750.89080.35950.165*
H24B0.00931.01770.38560.165*
H24C0.06360.97180.42080.165*
C250.0727 (5)0.8171 (10)0.1932 (10)0.083 (3)
H25A0.10890.76200.20830.100*
H25B0.03520.78480.21700.100*
C260.0544 (6)0.8385 (12)0.0819 (10)0.109 (4)
H26A0.01380.88180.06590.164*
H26B0.04820.76640.04500.164*
H26C0.08900.88150.06070.164*
C270.2690 (8)0.5540 (14)0.1403 (14)0.151 (6)
H27A0.29450.61700.17610.226*
H27B0.29140.52250.08940.226*
H27C0.26450.49540.19010.226*
C280.2039 (10)0.5947 (16)0.0880 (15)0.139 (6)
C290.1968 (7)0.6857 (14)0.0057 (12)0.135 (5)
H29A0.15140.68920.03230.202*
H29B0.22490.66780.04170.202*
H29C0.20950.75890.03820.202*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0317 (5)0.0379 (6)0.0287 (5)0.0031 (4)0.0086 (4)0.0046 (4)
Cu20.0319 (5)0.0410 (6)0.0332 (6)0.0024 (4)0.0093 (4)0.0071 (4)
N10.030 (3)0.043 (4)0.036 (4)0.004 (3)0.010 (3)0.005 (3)
N20.047 (4)0.071 (5)0.067 (6)0.000 (4)0.018 (4)0.004 (4)
N30.036 (3)0.045 (4)0.047 (4)0.005 (3)0.014 (3)0.010 (3)
N40.057 (5)0.081 (6)0.090 (7)0.005 (5)0.025 (5)0.023 (5)
O10.034 (3)0.046 (3)0.038 (3)0.003 (2)0.009 (2)0.014 (3)
O20.034 (3)0.052 (3)0.039 (3)0.006 (2)0.012 (2)0.011 (3)
O30.034 (3)0.047 (3)0.041 (3)0.007 (2)0.013 (2)0.010 (3)
O40.042 (3)0.042 (3)0.050 (4)0.008 (3)0.011 (3)0.011 (3)
O50.035 (3)0.048 (3)0.037 (3)0.008 (2)0.013 (2)0.011 (3)
O60.038 (3)0.051 (3)0.050 (4)0.004 (3)0.015 (3)0.017 (3)
O70.137 (9)0.164 (11)0.162 (11)0.028 (8)0.036 (8)0.006 (8)
C10.033 (4)0.046 (5)0.038 (5)0.004 (4)0.005 (3)0.007 (4)
C20.035 (4)0.051 (5)0.041 (5)0.004 (4)0.009 (3)0.011 (4)
C30.036 (4)0.042 (5)0.038 (5)0.003 (4)0.010 (3)0.003 (4)
C40.036 (4)0.043 (5)0.041 (5)0.001 (4)0.014 (3)0.004 (4)
C50.036 (4)0.045 (5)0.046 (5)0.001 (4)0.015 (4)0.005 (4)
C60.039 (5)0.055 (5)0.052 (5)0.005 (4)0.015 (4)0.004 (4)
C70.041 (5)0.057 (6)0.059 (6)0.003 (4)0.017 (4)0.004 (5)
C80.042 (5)0.058 (6)0.055 (6)0.000 (4)0.019 (4)0.003 (5)
C90.041 (4)0.048 (5)0.045 (5)0.001 (4)0.014 (4)0.003 (4)
C100.049 (5)0.074 (7)0.072 (7)0.001 (5)0.020 (5)0.002 (6)
C110.066 (6)0.085 (8)0.092 (8)0.011 (6)0.026 (6)0.006 (7)
C120.053 (6)0.087 (8)0.078 (8)0.004 (6)0.017 (5)0.007 (6)
C130.090 (8)0.088 (9)0.111 (11)0.004 (7)0.017 (7)0.006 (8)
C140.038 (4)0.044 (5)0.043 (5)0.008 (4)0.006 (4)0.008 (4)
C150.034 (4)0.044 (5)0.040 (5)0.010 (4)0.008 (3)0.009 (4)
C160.045 (5)0.050 (5)0.053 (6)0.002 (4)0.017 (4)0.014 (4)
C170.043 (5)0.052 (5)0.054 (6)0.005 (4)0.022 (4)0.016 (5)
C180.044 (5)0.058 (6)0.058 (6)0.003 (4)0.023 (4)0.014 (5)
C190.049 (5)0.064 (6)0.069 (7)0.005 (5)0.024 (5)0.017 (5)
C200.053 (6)0.071 (7)0.076 (7)0.006 (5)0.023 (5)0.018 (6)
C210.055 (6)0.071 (7)0.077 (7)0.003 (5)0.027 (5)0.020 (6)
C220.050 (5)0.060 (6)0.065 (6)0.004 (5)0.023 (5)0.019 (5)
C230.069 (7)0.096 (9)0.098 (10)0.007 (6)0.025 (6)0.018 (7)
C240.097 (9)0.115 (11)0.116 (12)0.014 (8)0.019 (8)0.015 (9)
C250.063 (7)0.092 (9)0.100 (10)0.008 (6)0.027 (6)0.021 (8)
C260.097 (9)0.118 (11)0.108 (12)0.006 (8)0.013 (8)0.005 (9)
C270.123 (13)0.170 (18)0.157 (17)0.019 (12)0.025 (12)0.007 (13)
C280.128 (14)0.151 (16)0.145 (16)0.031 (13)0.047 (13)0.010 (12)
C290.125 (12)0.144 (14)0.135 (14)0.020 (11)0.028 (10)0.008 (12)
Geometric parameters (Å, º) top
Cu1—O31.880 (5)C11—H11A0.9600
Cu1—O21.909 (5)C11—H11B0.9600
Cu1—N11.910 (6)C11—H11C0.9600
Cu1—O51.942 (5)C12—C131.456 (14)
Cu1—Cu23.0051 (12)C12—H12A0.9700
Cu2—O61.874 (5)C12—H12B0.9700
Cu2—O21.911 (5)C13—H13A0.9600
Cu2—O51.912 (5)C13—H13B0.9600
Cu2—N31.914 (6)C13—H13C0.9600
N1—C31.295 (8)C14—C151.488 (10)
N1—O11.428 (7)C14—H14A0.9700
N2—C71.394 (10)C14—H14B0.9700
N2—C121.480 (12)C15—H15A0.9700
N2—C101.485 (11)C15—H15B0.9700
N3—C161.297 (9)C16—C171.421 (11)
N3—O41.419 (7)C16—H160.9300
N4—C201.363 (11)C17—C181.400 (11)
N4—C251.459 (13)C17—C221.416 (10)
N4—C231.552 (12)C18—C191.392 (11)
O1—C11.425 (8)C19—C201.401 (11)
O2—C21.412 (8)C19—H190.9300
O3—C51.330 (8)C20—C211.419 (13)
O4—C141.435 (8)C21—C221.295 (11)
O5—C151.393 (8)C21—H210.9300
O6—C181.324 (8)C22—H220.9300
O7—C281.275 (16)C23—C241.465 (14)
C1—C21.488 (10)C23—H23A0.9700
C1—H1A0.9700C23—H23B0.9700
C1—H1B0.9700C24—H24A0.9600
C2—H2A0.9700C24—H24B0.9600
C2—H2B0.9700C24—H24C0.9600
C3—C41.417 (10)C25—C261.442 (15)
C3—H30.9300C25—H25A0.9700
C4—C51.398 (11)C25—H25B0.9700
C4—C91.415 (10)C26—H26A0.9600
C5—C61.371 (10)C26—H26B0.9600
C6—C71.403 (11)C26—H26C0.9600
C6—H60.9300C27—C281.45 (2)
C7—C81.374 (12)C27—H27A0.9600
C8—C91.365 (10)C27—H27B0.9600
C8—H80.9300C27—H27C0.9600
C9—H90.9300C28—C291.49 (2)
C10—C111.470 (13)C29—H29A0.9600
C10—H10A0.9700C29—H29B0.9600
C10—H10B0.9700C29—H29C0.9600
O3—Cu1—O2169.2 (2)H11B—C11—H11C109.5
O3—Cu1—N193.7 (2)C13—C12—N2102.3 (9)
O2—Cu1—N196.1 (2)C13—C12—H12A111.3
O3—Cu1—O594.5 (2)N2—C12—H12A111.3
O2—Cu1—O576.2 (2)C13—C12—H12B111.3
N1—Cu1—O5170.1 (2)N2—C12—H12B111.3
O3—Cu1—Cu2132.92 (15)H12A—C12—H12B109.2
O2—Cu1—Cu238.15 (15)C12—C13—H13A109.5
N1—Cu1—Cu2133.02 (17)C12—C13—H13B109.5
O5—Cu1—Cu238.40 (13)H13A—C13—H13B109.5
O6—Cu2—O295.0 (2)C12—C13—H13C109.5
O6—Cu2—O5170.6 (2)H13A—C13—H13C109.5
O2—Cu2—O576.8 (2)H13B—C13—H13C109.5
O6—Cu2—N393.9 (2)O4—C14—C15113.7 (6)
O2—Cu2—N3167.9 (2)O4—C14—H14A108.8
O5—Cu2—N394.9 (2)C15—C14—H14A108.8
O6—Cu2—Cu1133.10 (16)O4—C14—H14B108.8
O2—Cu2—Cu138.11 (14)C15—C14—H14B108.8
O5—Cu2—Cu139.11 (14)H14A—C14—H14B107.7
N3—Cu2—Cu1132.15 (18)O5—C15—C14111.6 (6)
C3—N1—O1109.2 (6)O5—C15—H15A109.3
C3—N1—Cu1127.5 (5)C14—C15—H15A109.3
O1—N1—Cu1123.0 (4)O5—C15—H15B109.3
C7—N2—C12124.0 (7)C14—C15—H15B109.3
C7—N2—C10119.0 (8)H15A—C15—H15B108.0
C12—N2—C10116.8 (7)N3—C16—C17125.3 (8)
C16—N3—O4110.4 (6)N3—C16—H16117.4
C16—N3—Cu2125.9 (6)C17—C16—H16117.4
O4—N3—Cu2122.9 (4)C18—C17—C22117.7 (7)
C20—N4—C25122.6 (8)C18—C17—C16122.9 (7)
C20—N4—C23119.3 (8)C22—C17—C16119.3 (8)
C25—N4—C23117.8 (8)O6—C18—C19117.7 (8)
C1—O1—N1110.6 (5)O6—C18—C17124.5 (7)
C2—O2—Cu1124.9 (4)C19—C18—C17117.8 (7)
C2—O2—Cu2127.3 (4)C18—C19—C20123.6 (9)
Cu1—O2—Cu2103.7 (2)C18—C19—H19118.2
C5—O3—Cu1127.0 (5)C20—C19—H19118.2
N3—O4—C14110.0 (5)N4—C20—C19121.9 (9)
C15—O5—Cu2126.6 (4)N4—C20—C21122.3 (8)
C15—O5—Cu1129.3 (4)C19—C20—C21115.8 (8)
Cu2—O5—Cu1102.5 (2)C22—C21—C20121.4 (9)
C18—O6—Cu2126.9 (5)C22—C21—H21119.3
O1—C1—C2115.1 (6)C20—C21—H21119.3
O1—C1—H1A108.5C21—C22—C17123.7 (9)
C2—C1—H1A108.5C21—C22—H22118.2
O1—C1—H1B108.5C17—C22—H22118.2
C2—C1—H1B108.5C24—C23—N4104.5 (10)
H1A—C1—H1B107.5C24—C23—H23A110.8
O2—C2—C1112.4 (6)N4—C23—H23A110.8
O2—C2—H2A109.1C24—C23—H23B110.8
C1—C2—H2A109.1N4—C23—H23B110.8
O2—C2—H2B109.1H23A—C23—H23B108.9
C1—C2—H2B109.1C23—C24—H24A109.5
H2A—C2—H2B107.9C23—C24—H24B109.5
N1—C3—C4123.2 (7)H24A—C24—H24B109.5
N1—C3—H3118.4C23—C24—H24C109.5
C4—C3—H3118.4H24A—C24—H24C109.5
C5—C4—C9118.3 (7)H24B—C24—H24C109.5
C5—C4—C3125.0 (7)C26—C25—N4109.4 (11)
C9—C4—C3116.7 (7)C26—C25—H25A109.8
O3—C5—C6117.8 (7)N4—C25—H25A109.8
O3—C5—C4123.5 (7)C26—C25—H25B109.8
C6—C5—C4118.7 (7)N4—C25—H25B109.8
C5—C6—C7122.4 (8)H25A—C25—H25B108.2
C5—C6—H6118.8C25—C26—H26A109.5
C7—C6—H6118.8C25—C26—H26B109.5
C8—C7—N2121.6 (8)H26A—C26—H26B109.5
C8—C7—C6118.9 (8)C25—C26—H26C109.5
N2—C7—C6119.5 (8)H26A—C26—H26C109.5
C9—C8—C7119.6 (8)H26B—C26—H26C109.5
C9—C8—H8120.2C28—C27—H27A109.5
C7—C8—H8120.2C28—C27—H27B109.5
C8—C9—C4122.1 (8)H27A—C27—H27B109.5
C8—C9—H9119.0C28—C27—H27C109.5
C4—C9—H9119.0H27A—C27—H27C109.5
C11—C10—N2113.8 (8)H27B—C27—H27C109.5
C11—C10—H10A108.8O7—C28—C27126.8 (18)
N2—C10—H10A108.8O7—C28—C29112.6 (17)
C11—C10—H10B108.8C27—C28—C29120.5 (16)
N2—C10—H10B108.8C28—C29—H29A109.5
H10A—C10—H10B107.7C28—C29—H29B109.5
C10—C11—H11A109.5H29A—C29—H29B109.5
C10—C11—H11B109.5C28—C29—H29C109.5
H11A—C11—H11B109.5H29A—C29—H29C109.5
C10—C11—H11C109.5H29B—C29—H29C109.5
H11A—C11—H11C109.5
O3—Cu1—Cu2—O6173.8 (3)N1—O1—C1—C273.6 (8)
O2—Cu1—Cu2—O62.9 (3)Cu1—O2—C2—C118.9 (9)
N1—Cu1—Cu2—O614.9 (4)Cu2—O2—C2—C1134.5 (6)
O5—Cu1—Cu2—O6172.3 (3)O1—C1—C2—O264.6 (9)
O3—Cu1—Cu2—O2170.9 (3)O1—N1—C3—C4175.2 (7)
N1—Cu1—Cu2—O217.8 (4)Cu1—N1—C3—C41.9 (11)
O5—Cu1—Cu2—O2169.3 (4)N1—C3—C4—C51.2 (13)
O3—Cu1—Cu2—O51.6 (3)N1—C3—C4—C9179.8 (7)
O2—Cu1—Cu2—O5169.3 (4)Cu1—O3—C5—C6177.8 (5)
N1—Cu1—Cu2—O5172.8 (4)Cu1—O3—C5—C40.5 (11)
O3—Cu1—Cu2—N319.7 (4)C9—C4—C5—O3179.4 (7)
O2—Cu1—Cu2—N3169.3 (4)C3—C4—C5—O32.0 (13)
N1—Cu1—Cu2—N3151.5 (4)C9—C4—C5—C61.2 (12)
O5—Cu1—Cu2—N321.3 (4)C3—C4—C5—C6179.8 (8)
O3—Cu1—N1—C33.2 (7)O3—C5—C6—C7178.2 (7)
O2—Cu1—N1—C3172.3 (7)C4—C5—C6—C70.2 (13)
Cu2—Cu1—N1—C3176.8 (5)C12—N2—C7—C8166.2 (9)
O3—Cu1—N1—O1175.6 (5)C10—N2—C7—C88.8 (13)
O2—Cu1—N1—O10.1 (5)C12—N2—C7—C612.7 (13)
Cu2—Cu1—N1—O110.8 (7)C10—N2—C7—C6172.3 (8)
O6—Cu2—N3—C168.1 (7)C5—C6—C7—C81.4 (14)
O2—Cu2—N3—C16129.1 (11)C5—C6—C7—N2177.5 (8)
O5—Cu2—N3—C16175.3 (7)N2—C7—C8—C9177.8 (8)
Cu1—Cu2—N3—C16162.0 (6)C6—C7—C8—C91.1 (13)
O6—Cu2—N3—O4177.0 (5)C7—C8—C9—C40.3 (13)
O2—Cu2—N3—O439.8 (15)C5—C4—C9—C81.5 (12)
O5—Cu2—N3—O46.4 (6)C3—C4—C9—C8179.8 (7)
Cu1—Cu2—N3—O46.9 (7)C7—N2—C10—C1190.6 (11)
C3—N1—O1—C1150.4 (6)C12—N2—C10—C1184.7 (11)
Cu1—N1—O1—C136.0 (7)C7—N2—C12—C1390.3 (10)
O3—Cu1—O2—C2163.5 (10)C10—N2—C12—C1394.6 (10)
N1—Cu1—O2—C28.5 (6)N3—O4—C14—C1575.3 (7)
O5—Cu1—O2—C2165.3 (6)Cu2—O5—C15—C1423.7 (9)
Cu2—Cu1—O2—C2158.5 (7)Cu1—O5—C15—C14173.3 (5)
O3—Cu1—O2—Cu238.0 (13)O4—C14—C15—O565.7 (9)
N1—Cu1—O2—Cu2167.0 (3)O4—N3—C16—C17175.1 (8)
O5—Cu1—O2—Cu26.8 (2)Cu2—N3—C16—C175.1 (13)
O6—Cu2—O2—C220.1 (6)N3—C16—C17—C181.0 (15)
O5—Cu2—O2—C2164.7 (6)N3—C16—C17—C22175.1 (8)
N3—Cu2—O2—C2117.0 (12)Cu2—O6—C18—C19173.8 (6)
Cu1—Cu2—O2—C2157.8 (7)Cu2—O6—C18—C175.0 (13)
O6—Cu2—O2—Cu1177.9 (3)C22—C17—C18—O6175.0 (8)
O5—Cu2—O2—Cu16.9 (2)C16—C17—C18—O61.2 (15)
N3—Cu2—O2—Cu140.8 (13)C22—C17—C18—C193.8 (13)
O2—Cu1—O3—C5152.7 (11)C16—C17—C18—C19179.9 (9)
N1—Cu1—O3—C52.4 (6)O6—C18—C19—C20175.2 (9)
O5—Cu1—O3—C5177.0 (6)C17—C18—C19—C203.6 (15)
Cu2—Cu1—O3—C5176.0 (5)C25—N4—C20—C1911.0 (16)
C16—N3—O4—C14148.0 (7)C23—N4—C20—C19162.8 (10)
Cu2—N3—O4—C1441.6 (7)C25—N4—C20—C21166.1 (11)
O2—Cu2—O5—C15173.3 (6)C23—N4—C20—C2120.1 (15)
N3—Cu2—O5—C152.3 (6)C18—C19—C20—N4179.8 (9)
Cu1—Cu2—O5—C15166.6 (7)C18—C19—C20—C212.5 (15)
O2—Cu2—O5—Cu16.7 (2)N4—C20—C21—C22179.1 (10)
N3—Cu2—O5—Cu1164.3 (3)C19—C20—C21—C221.8 (15)
O3—Cu1—O5—C1512.8 (6)C20—C21—C22—C172.3 (16)
O2—Cu1—O5—C15172.8 (7)C18—C17—C22—C213.3 (15)
Cu2—Cu1—O5—C15166.1 (8)C16—C17—C22—C21179.6 (9)
O3—Cu1—O5—Cu2178.8 (2)C20—N4—C23—C2498.5 (11)
O2—Cu1—O5—Cu26.8 (2)C25—N4—C23—C2487.4 (12)
O2—Cu2—O6—C18163.7 (7)C20—N4—C25—C2693.3 (12)
N3—Cu2—O6—C188.0 (7)C23—N4—C25—C2680.6 (12)
Cu1—Cu2—O6—C18161.9 (6)

Experimental details

Crystal data
Chemical formula[Cu2(C13H18N2O3)2]·C3H6O
Mr685.75
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)20.633 (3), 11.6045 (14), 13.0738 (17)
β (°) 102.635 (2)
V3)3054.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.44
Crystal size (mm)0.53 × 0.49 × 0.47
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.515, 0.550
No. of measured, independent and
observed [I > 2σ(I)] reflections
14726, 5363, 2967
Rint0.092
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.229, 1.00
No. of reflections5363
No. of parameters385
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.88, 1.07

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Foundation of the Education Department of Gansu Province (No. 0604–01) and the `Qing Lan' Talent Engineering Funds of Lanzhou Jiaotong University (No. QL-03–01 A), which are gratefully acknowledged.

References

First citationBu, X. R., You, X. Z. & Meng, Q. J. (1990). Comments Inorg. Chem. 9, 221–244.  CrossRef CAS Google Scholar
First citationDong, W. K., Chen, X., Wang, S. J., He, X. N., Wu, H. L. & Yu, T. Z. (2007a). Synth. React. Inorg. Met. Org. Nano-Met. Chem. 37, 229–233.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, W. K., Duan, J. G. & Liu, G. L. (2007b). Transition Met. Chem. 32, 702–705.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSun, Y.-X., Gao, S.-X., Shi, J.-Y. & Dong, W.-K. (2008). Acta Cryst. E64, m226.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, Y.-P., Chen, X., Shi, J.-Y., Xu, L. & Dong, W.-K. (2007). Acta Cryst. E63, o3852.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds