organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­ethyl 2,2′-(2,3,5,6-tetra­fluoro-p-phenylenedi­methylene)di­propanoate

aSchool of Chemistry and Chemical Engineering, Jiangsu Polytechnic University, Changzhou 213164, People's Republic of China
*Correspondence e-mail: xihaitao@em.jpu.edu.cn

(Received 6 July 2008; accepted 23 August 2008; online 30 August 2008)

In the mol­ecule of the title compound, C22H26F4O8, a crystallographic inversion centre is located at the centroid of the benzene ring. C—H⋯F and C—H⋯O intra­molecular hydrogen bonds are observed as well as an inter­molecular C—H⋯O inter­action.

Related literature

For related literature, see: Benetti et al. (1995[Benetti, S., Romagnoil, R., DeRisi, C., Spalluto, G. & Zanirato, V. (1995). Chem. Rev. 95, 1065-1114.]); Howard et al. (1996[Howard, J. A. K., Hoy, V. J., O'Hagan, D. & Smith, G. T. (1996). Tetrahedron, 52, 12613-12615.]); Thalladi et al. (1998[Thalladi, V. R., Weiss, H. C., Boese, R., Nangia, A. & Desiraju, G. R. (1998). J. Am. Chem. Soc. 120, 8702-9708.]).

[Scheme 1]

Experimental

Crystal data
  • C22H26F4O8

  • Mr = 494.43

  • Orthorhombic, P b c a

  • a = 9.833 (5) Å

  • b = 8.797 (4) Å

  • c = 27.587 (14) Å

  • V = 2386 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 291 (2) K

  • 0.30 × 0.26 × 0.24 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.96, Tmax = 0.97

  • 11819 measured reflections

  • 2343 independent reflections

  • 1411 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.097

  • S = 1.02

  • 2343 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯F2 0.97 2.42 2.852 (3) 107
C7—H7A⋯O2 0.97 2.29 2.667 (3) 102
C8—H8C⋯O2i 0.96 2.54 3.472 (4) 162
Symmetry code: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

β-Keto esters are multicoupling reagents with electrophilic and nuclephilic sites that have proven to be valuable tools in the synthesis of a wide variety of molecular systems(Benetti et al.,1995). In the present paper, we report the crystal structure of the title compound, (I). The molecule of (I) lies on a crystallographic inversion center located at the middle of the benzene ring. Selected bond distances and angles are given in Table 1. One pair of symmetrically related ethyl groups was found to be disordered over two orientations (Fig.1) The feature of the title compound in packing is based on C-H···O intramolecular interaction and C-H···F intramolecular interaction which had been reported in related references (Howard et al., 1996; Thalladi et al., 1998)(Fig.2); the C4-H4a···F2 distance is 2.852 Å. the C7-H7a···O2 distance is 2.667 Å and the C8-H8C···O2 distance is 3.472 Å.

Related literature top

For related literature, see: Benetti et al. (1995);Howard et al.(1996); Thalladi et al. (1998).

Experimental top

A mixture of 1,4-bis(bromomethyl)-2,3,5,6-tetrafluorobenzene (1.67g,5mmol), ethyl malonate(1.53mL,10mmol),potassuium carbonate(1.38g 10mmol) and acetonitrile(25mL) was stirred and refluxed for 8h. The solvent was evaporated on a rotary evaporator and the resulting oil was chromatographed on a silica-gel column,yielding the title compound (1.78g,69%). Crystals appropriate for data collection were obtained by slow evaporation of an acetonitrile solution at 283K. (m.p. 324-326K).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule (I),showing the atom-labelling scheme. (thermal ellipsoids are shown at 30% probability levels).[Symmetry code:(A) -x+2, -y+1,-z]
[Figure 2] Fig. 2. The molecular packing diagram in the crystal for (I) (Dashed lines indicate hydrogen bonds).
Tetraethyl 2,2'-(2,3,5,6-tetrafluoro-p-phenylenedimethylene)dipropanoate top
Crystal data top
C22H26F4O8Dx = 1.376 Mg m3
Mr = 494.43Melting point = 324–326 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3968 reflections
a = 9.833 (5) Åθ = 5.5–26.8°
b = 8.797 (4) ŵ = 0.12 mm1
c = 27.587 (14) ÅT = 291 K
V = 2386 (2) Å3Block, colorless
Z = 40.30 × 0.26 × 0.24 mm
F(000) = 1032
Data collection top
Bruker SMART Apex CCD
diffractometer
2343 independent reflections
Radiation source: sealed tube1411 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
phi and ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1112
Tmin = 0.96, Tmax = 0.97k = 105
11819 measured reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.03P)2 + 0.22P]
where P = (Fo2 + 2Fc2)/3
2343 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C22H26F4O8V = 2386 (2) Å3
Mr = 494.43Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 9.833 (5) ŵ = 0.12 mm1
b = 8.797 (4) ÅT = 291 K
c = 27.587 (14) Å0.30 × 0.26 × 0.24 mm
Data collection top
Bruker SMART Apex CCD
diffractometer
2343 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1411 reflections with I > 2σ(I)
Tmin = 0.96, Tmax = 0.97Rint = 0.059
11819 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.02Δρmax = 0.16 e Å3
2343 reflectionsΔρmin = 0.15 e Å3
156 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9879 (2)0.6145 (3)0.03274 (8)0.0390 (6)
C20.9112 (2)0.4839 (3)0.04088 (8)0.0355 (5)
C30.9249 (2)0.3719 (3)0.00603 (8)0.0389 (6)
C40.8172 (2)0.4682 (3)0.08408 (8)0.0454 (7)
H4A0.76220.37740.08030.054*
H4B0.75650.55500.08530.054*
C50.8979 (2)0.4582 (3)0.13216 (8)0.0419 (6)
H50.93050.55990.14090.050*
C60.8013 (3)0.4001 (3)0.17246 (8)0.0499 (7)
C70.7966 (3)0.3238 (3)0.25401 (9)0.0570 (7)
H7A0.72030.26460.24220.068*
H7B0.76190.40280.27520.068*
C80.8912 (3)0.2252 (3)0.28077 (11)0.0633 (8)
H8A0.92430.14680.25960.095*
H8B0.84480.17990.30780.095*
H8C0.96640.28460.29240.095*
C91.0178 (2)0.3515 (3)0.12940 (8)0.0448 (7)
C101.0781 (3)0.0853 (3)0.11522 (9)0.0538 (7)
H10A1.03720.01120.12390.065*
H10B1.15210.10540.13760.065*
C111.1313 (3)0.0783 (3)0.06437 (9)0.0568 (7)
H11A1.05900.05050.04270.085*
H11B1.20260.00390.06250.085*
H11C1.16660.17600.05530.085*
F10.98045 (14)0.72947 (17)0.06482 (5)0.0522 (4)
F20.85239 (14)0.24185 (19)0.01115 (5)0.0546 (4)
O10.87007 (16)0.3924 (2)0.21311 (5)0.0495 (5)
O20.68696 (19)0.3633 (2)0.16648 (7)0.0587 (5)
O30.97511 (17)0.2082 (2)0.11861 (6)0.0545 (5)
O41.13167 (17)0.3861 (2)0.13604 (6)0.0526 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0430 (13)0.0427 (15)0.0313 (11)0.0002 (12)0.0017 (10)0.0024 (11)
C20.0358 (12)0.0442 (14)0.0266 (10)0.0010 (11)0.0017 (9)0.0088 (11)
C30.0432 (13)0.0455 (15)0.0280 (11)0.0024 (13)0.0063 (10)0.0057 (11)
C40.0443 (13)0.0598 (18)0.0322 (11)0.0021 (13)0.0061 (11)0.0094 (12)
C50.0462 (14)0.0537 (17)0.0258 (10)0.0021 (13)0.0034 (10)0.0042 (11)
C60.0569 (17)0.0594 (19)0.0335 (12)0.0139 (15)0.0119 (12)0.0100 (13)
C70.0707 (18)0.0593 (18)0.0411 (13)0.0087 (15)0.0088 (13)0.0088 (14)
C80.0652 (19)0.0536 (18)0.0712 (19)0.0072 (16)0.0121 (15)0.0161 (16)
C90.0354 (14)0.071 (2)0.0284 (12)0.0039 (13)0.0018 (10)0.0072 (13)
C100.0566 (16)0.0553 (18)0.0494 (14)0.0151 (15)0.0027 (13)0.0066 (14)
C110.0589 (17)0.0521 (16)0.0594 (16)0.0145 (14)0.0128 (14)0.0038 (15)
F10.0598 (9)0.0513 (9)0.0457 (7)0.0051 (8)0.0158 (7)0.0146 (7)
F20.0615 (9)0.0584 (10)0.0439 (8)0.0110 (8)0.0038 (7)0.0030 (8)
O10.0582 (10)0.0578 (12)0.0324 (8)0.0049 (9)0.0083 (8)0.0063 (8)
O20.0526 (11)0.0613 (14)0.0621 (12)0.0012 (10)0.0191 (9)0.0198 (10)
O30.0466 (10)0.0574 (13)0.0596 (11)0.0119 (10)0.0048 (9)0.0020 (10)
O40.0399 (10)0.0566 (12)0.0612 (11)0.0093 (9)0.0100 (8)0.0039 (10)
Geometric parameters (Å, º) top
C1—F11.346 (3)C7—C81.471 (3)
C1—C3i1.376 (3)C7—H7A0.9700
C1—C21.393 (3)C7—H7B0.9700
C2—C31.383 (3)C8—H8A0.9600
C2—C41.514 (3)C8—H8B0.9600
C3—F21.355 (3)C8—H8C0.9600
C3—C1i1.376 (3)C9—O41.174 (3)
C4—C51.548 (3)C9—O31.361 (3)
C4—H4A0.9700C10—O31.484 (3)
C4—H4B0.9700C10—C111.499 (3)
C5—C91.509 (3)C10—H10A0.9700
C5—C61.549 (3)C10—H10B0.9700
C5—H50.9800C11—H11A0.9600
C6—O21.182 (3)C11—H11B0.9600
C6—O11.311 (3)C11—H11C0.9600
C7—O11.469 (3)
F1—C1—C3i118.6 (2)O1—C7—H7B110.0
F1—C1—C2119.0 (2)C8—C7—H7B110.0
C3i—C1—C2122.3 (2)H7A—C7—H7B108.4
C3—C2—C1115.0 (2)C7—C8—H8A109.5
C3—C2—C4122.8 (2)C7—C8—H8B109.5
C1—C2—C4122.2 (2)H8A—C8—H8B109.5
F2—C3—C1i118.8 (2)C7—C8—H8C109.5
F2—C3—C2118.5 (2)H8A—C8—H8C109.5
C1i—C3—C2122.6 (2)H8B—C8—H8C109.5
C2—C4—C5111.52 (19)O4—C9—O3124.7 (3)
C2—C4—H4A109.3O4—C9—C5125.1 (3)
C5—C4—H4A109.3O3—C9—C5110.2 (2)
C2—C4—H4B109.3O3—C10—C11109.1 (2)
C5—C4—H4B109.3O3—C10—H10A109.9
H4A—C4—H4B108.0C11—C10—H10A109.9
C9—C5—C4113.1 (2)O3—C10—H10B109.9
C9—C5—C6108.1 (2)C11—C10—H10B109.9
C4—C5—C6108.6 (2)H10A—C10—H10B108.3
C9—C5—H5109.0C10—C11—H11A109.5
C4—C5—H5109.0C10—C11—H11B109.5
C6—C5—H5109.0H11A—C11—H11B109.5
O2—C6—O1126.6 (2)C10—C11—H11C109.5
O2—C6—C5125.0 (2)H11A—C11—H11C109.5
O1—C6—C5108.3 (2)H11B—C11—H11C109.5
O1—C7—C8108.5 (2)C6—O1—C7115.1 (2)
O1—C7—H7A110.0C9—O3—C10118.5 (2)
C8—C7—H7A110.0
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···F20.972.422.852 (3)107
C7—H7A···O20.972.292.667 (3)102
C8—H8C···O2ii0.962.543.472 (4)162
Symmetry code: (ii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H26F4O8
Mr494.43
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)291
a, b, c (Å)9.833 (5), 8.797 (4), 27.587 (14)
V3)2386 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.30 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART Apex CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.96, 0.97
No. of measured, independent and
observed [I > 2σ(I)] reflections
11819, 2343, 1411
Rint0.059
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.097, 1.02
No. of reflections2343
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···F20.972.422.852 (3)107
C7—H7A···O20.972.292.667 (3)102
C8—H8C···O2i0.962.543.472 (4)162
Symmetry code: (i) x+1/2, y, z+1/2.
 

Footnotes

Contribution No. 20272019.

Acknowledgements

The authors are grateful to Jiangsu Polytechnic University, the Natural Science Foundation of China (No.20272019) and the Key Laboratory of Fine Petrochemical Engineering of Jiangsu Province (KF0503) for finanical support.

References

First citationBenetti, S., Romagnoil, R., DeRisi, C., Spalluto, G. & Zanirato, V. (1995). Chem. Rev. 95, 1065–1114.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationHoward, J. A. K., Hoy, V. J., O'Hagan, D. & Smith, G. T. (1996). Tetrahedron, 52, 12613–12615.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThalladi, V. R., Weiss, H. C., Boese, R., Nangia, A. & Desiraju, G. R. (1998). J. Am. Chem. Soc. 120, 8702–9708.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds