organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-3-phenyl­sulfonyl-5-propyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 13 July 2008; accepted 10 August 2008; online 16 August 2008)

The title compound, C18H18O3S, was prepared by the oxidation of 2-methyl-3-phenyl­sulfanyl-5-propyl-1-benzofuran with 3-chloro­peroxy­benzoic acid. The phenyl ring makes a dihedral angle of 81.74 (6)° with the plane of the benzofuran fragment. The crystal structure is stabilized by C—H⋯π inter­actions between a methyl H atom and the phenyl ring of the phenyl­sulfonyl substituent from a neighbouring mol­ecule, and by inter­molecular C—H⋯O inter­actions.

Related literature

For the crystal structures of similar 2-methyl-3-phenyl­sulfonyl-1-benzofuran compounds, see: Choi et al. (2008a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o1016.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o1257.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18O3S

  • Mr = 314.38

  • Monoclinic, P 21 /n

  • a = 7.2712 (9) Å

  • b = 17.583 (2) Å

  • c = 12.788 (2) Å

  • β = 102.669 (2)°

  • V = 1595.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 173 (2) K

  • 0.40 × 0.40 × 0.30 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 8966 measured reflections

  • 3125 independent reflections

  • 2606 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.135

  • S = 1.12

  • 3125 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C9–C14 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O3i 0.95 2.60 3.355 (3) 137
C18—H18CCgii 0.98 3.29 3.947 (4) 126
Symmetry codes: (i) x+1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

This work is related to our communications on the synthesis and structure of 2-methyl-3-phenylsulfonyl-1-benzofuran analogues, viz. 5-ethyl-2-methyl-3-phenylsulfonyl-1-benzofuran (Choi et al., 2008a) and 5-isopropyl-2-methyl-3-phenylsulfonyl-1-benzofuran (Choi et al., 2008b). Here we report the crystal structure of the title compound, 2-methyl-3-phenylsulfonyl-5-propyl-1-benzofuran (Fig. 1).

The benzofuran unit is almost planar, with a mean deviation of 0.018 (2) Å from the least-squares plane defined by the nine constituent atoms. The phenyl ring (C9–C14) makes a dihedral angle of 81.74 (6)° with the plane of the benzofuran fragment. The crystal packing (Fig. 2) is stabilized by intermolecular C—H···π interactions between a methyl H atom and the phenyl ring of the phenylsulfonyl substituent, with a C18—H18C···Cgii separation of 3.291 (4) Å (Fig. 2 and Table 1; Cg is the centroid of the C9–C14 phenyl ring, symmetry code as in Fig. 2). The molecular packing is further stabilized by intermolecular C—H···O interactions (Fig. 2 and Table 1; symmetry code as in Fig. 2).

Related literature top

For the crystal structures of similar 2-methyl-3-phenylsulfonyl-1-benzofuran compounds, see: Choi et al. (2008a,b).

Experimental top

77% 3-Chloroperoxybenzoic acid (471 mg, 2.1 mmol) was added in small portions to a stirred solution of 2-methyl-3-phenylsulfanyl-5-propyl-1-benzofuran (282 mg, 1.0 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 4 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated under vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 83%, m.p. 388–389 K; Rf = 0.75 (hexane–ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in acetone at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 0.94 (t, J = 7.32 Hz, 3H), 1.62–1.69 (m, 2H), 2,68 (t,J = 7.32 Hz, 2H), 2.79 (s, 3H), 7.12 (d, J = 8.44 Hz, 1H), 7.31 (d, J = 8.44 Hz, 1H), 7.48–7.60 (m, 3H), 7.67 (s, 1H), 8.01 (d, J = 8.44 Hz, 2H); EI-MS 314 [M+].

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms, 0.99 Å for the methylene H atoms, and 0.98 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic and methylene H atoms, and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. C—H···π and C—H···O interactions (dotted lines) in the title compound. Cg denotes the ring centroid. [Symmetry code: (i) x + 1, y, z; (ii) x + 1/2, -y + 3/2, 1/2 + z+1/2; (iii) x - 1, y, z; (iv) x - 1/2, -y + 3/2, z + 1/2.]
2-Methyl-3-phenylsulfonyl-5-propyl-1-benzofuran top
Crystal data top
C18H18O3SF(000) = 664
Mr = 314.38Dx = 1.309 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P_2ynCell parameters from 3769 reflections
a = 7.2712 (9) Åθ = 2.4–28.3°
b = 17.583 (2) ŵ = 0.21 mm1
c = 12.788 (2) ÅT = 173 K
β = 102.669 (2)°Block, colourless
V = 1595.1 (4) Å30.40 × 0.40 × 0.30 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2606 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.053
Graphite monochromatorθmax = 26.0°, θmin = 2.0°
Detector resolution: 10.0 pixels mm-1h = 85
ϕ and ω scansk = 2121
8966 measured reflectionsl = 1315
3125 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0731P)2 + 0.5558P]
where P = (Fo2 + 2Fc2)/3
3125 reflections(Δ/σ)max = 0.001
200 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C18H18O3SV = 1595.1 (4) Å3
Mr = 314.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.2712 (9) ŵ = 0.21 mm1
b = 17.583 (2) ÅT = 173 K
c = 12.788 (2) Å0.40 × 0.40 × 0.30 mm
β = 102.669 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2606 reflections with I > 2σ(I)
8966 measured reflectionsRint = 0.053
3125 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.12Δρmax = 0.36 e Å3
3125 reflectionsΔρmin = 0.37 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.61553 (7)0.71791 (3)0.30885 (4)0.02750 (18)
O10.7452 (2)0.52071 (8)0.44838 (12)0.0335 (4)
O20.7324 (2)0.76700 (8)0.38556 (12)0.0367 (4)
O30.4196 (2)0.73668 (9)0.27128 (12)0.0359 (4)
C10.6276 (3)0.62641 (11)0.36076 (15)0.0258 (4)
C20.4937 (3)0.56569 (11)0.32516 (16)0.0266 (4)
C30.3214 (3)0.55783 (13)0.25182 (16)0.0310 (5)
H30.26250.60070.21310.037*
C40.2374 (3)0.48657 (13)0.23632 (17)0.0347 (5)
C50.3257 (3)0.42403 (13)0.29533 (19)0.0403 (6)
H50.26690.37560.28390.048*
C60.4948 (3)0.43051 (12)0.36937 (19)0.0380 (5)
H60.55280.38800.40940.046*
C70.5749 (3)0.50211 (12)0.38205 (16)0.0300 (5)
C80.7750 (3)0.59641 (12)0.43314 (16)0.0304 (5)
C90.7172 (3)0.71003 (11)0.19608 (16)0.0276 (4)
C100.6070 (3)0.68438 (12)0.09947 (17)0.0327 (5)
H100.47810.67170.09390.039*
C110.6880 (4)0.67762 (13)0.01194 (18)0.0403 (6)
H110.61440.66030.05460.048*
C120.8757 (4)0.69593 (13)0.0204 (2)0.0407 (6)
H120.93040.69100.04020.049*
C130.9842 (3)0.72143 (13)0.1167 (2)0.0393 (5)
H131.11290.73410.12180.047*
C140.9063 (3)0.72851 (12)0.20576 (18)0.0339 (5)
H140.98040.74570.27220.041*
C150.0537 (3)0.47675 (16)0.1550 (2)0.0445 (6)
H15A0.04730.51580.09860.053*
H15B0.05490.42640.12050.053*
C160.1198 (4)0.4823 (2)0.1979 (2)0.0575 (8)
H16A0.12510.53340.22960.069*
H16B0.11290.44440.25580.069*
C170.2983 (3)0.46938 (15)0.1141 (2)0.0463 (6)
H17A0.29570.41850.08330.056*
H17B0.30800.50760.05730.056*
H17C0.40740.47370.14720.056*
C180.9566 (3)0.62697 (14)0.4949 (2)0.0458 (6)
H18A1.05960.60870.46330.069*
H18B0.97700.60970.56950.069*
H18C0.95320.68270.49290.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0294 (3)0.0218 (3)0.0307 (3)0.00328 (19)0.0053 (2)0.00131 (19)
O10.0344 (8)0.0271 (7)0.0364 (8)0.0002 (6)0.0022 (6)0.0050 (6)
O20.0446 (9)0.0263 (7)0.0377 (8)0.0017 (7)0.0059 (7)0.0062 (6)
O30.0323 (9)0.0338 (8)0.0409 (9)0.0094 (7)0.0069 (7)0.0003 (7)
C10.0277 (10)0.0236 (9)0.0264 (10)0.0004 (8)0.0063 (8)0.0003 (8)
C20.0277 (10)0.0266 (10)0.0274 (10)0.0005 (8)0.0099 (8)0.0029 (8)
C30.0278 (11)0.0360 (11)0.0302 (11)0.0009 (9)0.0088 (8)0.0021 (9)
C40.0314 (12)0.0418 (12)0.0340 (11)0.0063 (9)0.0143 (9)0.0110 (9)
C50.0435 (14)0.0326 (11)0.0490 (14)0.0125 (10)0.0193 (11)0.0104 (10)
C60.0452 (14)0.0271 (11)0.0440 (13)0.0023 (10)0.0148 (11)0.0019 (9)
C70.0314 (11)0.0293 (10)0.0302 (10)0.0010 (8)0.0088 (9)0.0002 (8)
C80.0327 (11)0.0259 (10)0.0312 (10)0.0002 (9)0.0042 (9)0.0008 (8)
C90.0314 (11)0.0202 (9)0.0309 (11)0.0037 (8)0.0065 (8)0.0043 (8)
C100.0315 (11)0.0325 (11)0.0327 (11)0.0003 (9)0.0040 (9)0.0041 (9)
C110.0518 (15)0.0368 (12)0.0314 (11)0.0026 (11)0.0074 (10)0.0025 (9)
C120.0534 (15)0.0316 (11)0.0427 (13)0.0031 (11)0.0228 (11)0.0062 (10)
C130.0343 (12)0.0323 (11)0.0545 (14)0.0007 (9)0.0165 (11)0.0067 (10)
C140.0324 (12)0.0280 (10)0.0399 (12)0.0006 (9)0.0045 (9)0.0018 (9)
C150.0374 (13)0.0589 (15)0.0392 (13)0.0113 (11)0.0130 (10)0.0187 (11)
C160.0352 (14)0.096 (2)0.0409 (14)0.0089 (14)0.0068 (11)0.0107 (14)
C170.0322 (13)0.0517 (15)0.0532 (15)0.0029 (11)0.0057 (11)0.0032 (12)
C180.0391 (13)0.0368 (12)0.0523 (14)0.0034 (10)0.0103 (11)0.0062 (11)
Geometric parameters (Å, º) top
S—O21.437 (2)C10—C111.380 (3)
S—O31.438 (2)C10—H100.9500
S—C11.735 (2)C11—C121.384 (4)
S—C91.765 (2)C11—H110.9500
O1—C81.369 (2)C12—C131.384 (4)
O1—C71.378 (3)C12—H120.9500
C1—C81.360 (3)C13—C141.384 (3)
C1—C21.449 (3)C13—H130.9500
C2—C71.392 (3)C14—H140.9500
C2—C31.398 (3)C15—C161.485 (4)
C3—C41.389 (3)C15—H15A0.9900
C3—H30.9500C15—H15B0.9900
C4—C51.407 (3)C16—C171.508 (3)
C4—C151.512 (3)C16—H16A0.9900
C5—C61.382 (3)C16—H16B0.9900
C5—H50.9500C17—H17A0.9800
C6—C71.382 (3)C17—H17B0.9800
C6—H60.9500C17—H17C0.9800
C8—C181.483 (3)C18—H18A0.9800
C9—C141.391 (3)C18—H18B0.9800
C9—C101.392 (3)C18—H18C0.9800
O2—S—O3118.98 (9)C10—C11—C12120.4 (2)
O2—S—C1108.86 (9)C10—C11—H11119.8
O3—S—C1107.68 (10)C12—C11—H11119.8
O2—S—C9108.30 (10)C13—C12—C11120.4 (2)
O3—S—C9107.87 (9)C13—C12—H12119.8
C1—S—C9104.17 (9)C11—C12—H12119.8
C8—O1—C7106.97 (15)C12—C13—C14120.3 (2)
C8—C1—C2107.64 (18)C12—C13—H13119.8
C8—C1—S125.89 (16)C14—C13—H13119.8
C2—C1—S126.07 (15)C13—C14—C9118.7 (2)
C7—C2—C3119.09 (19)C13—C14—H14120.6
C7—C2—C1104.40 (18)C9—C14—H14120.6
C3—C2—C1136.49 (19)C16—C15—C4115.6 (2)
C4—C3—C2119.1 (2)C16—C15—H15A108.4
C4—C3—H3120.4C4—C15—H15A108.4
C2—C3—H3120.4C16—C15—H15B108.4
C3—C4—C5119.6 (2)C4—C15—H15B108.4
C3—C4—C15119.7 (2)H15A—C15—H15B107.4
C5—C4—C15120.7 (2)C15—C16—C17113.4 (2)
C6—C5—C4122.4 (2)C15—C16—H16A108.9
C6—C5—H5118.8C17—C16—H16A108.9
C4—C5—H5118.8C15—C16—H16B108.9
C7—C6—C5116.4 (2)C17—C16—H16B108.9
C7—C6—H6121.8H16A—C16—H16B107.7
C5—C6—H6121.8C16—C17—H17A109.5
O1—C7—C6126.0 (2)C16—C17—H17B109.5
O1—C7—C2110.60 (18)H17A—C17—H17B109.5
C6—C7—C2123.4 (2)C16—C17—H17C109.5
C1—C8—O1110.39 (18)H17A—C17—H17C109.5
C1—C8—C18134.4 (2)H17B—C17—H17C109.5
O1—C8—C18115.24 (18)C8—C18—H18A109.5
C14—C9—C10121.3 (2)C8—C18—H18B109.5
C14—C9—S119.47 (16)H18A—C18—H18B109.5
C10—C9—S119.19 (17)C8—C18—H18C109.5
C11—C10—C9118.9 (2)H18A—C18—H18C109.5
C11—C10—H10120.6H18B—C18—H18C109.5
C9—C10—H10120.6
O2—S—C1—C827.3 (2)C1—C2—C7—C6177.9 (2)
O3—S—C1—C8157.57 (18)C2—C1—C8—O10.9 (2)
C9—S—C1—C888.1 (2)S—C1—C8—O1173.94 (14)
O2—S—C1—C2160.91 (17)C2—C1—C8—C18177.5 (2)
O3—S—C1—C230.7 (2)S—C1—C8—C184.4 (4)
C9—S—C1—C283.72 (19)C7—O1—C8—C11.0 (2)
C8—C1—C2—C70.4 (2)C7—O1—C8—C18177.68 (19)
S—C1—C2—C7173.44 (15)O2—S—C9—C1419.23 (19)
C8—C1—C2—C3177.8 (2)O3—S—C9—C14149.23 (16)
S—C1—C2—C34.7 (3)C1—S—C9—C1496.53 (17)
C7—C2—C3—C41.1 (3)O2—S—C9—C10161.66 (16)
C1—C2—C3—C4176.9 (2)O3—S—C9—C1031.66 (18)
C2—C3—C4—C50.7 (3)C1—S—C9—C1082.58 (17)
C2—C3—C4—C15178.30 (18)C14—C9—C10—C110.2 (3)
C3—C4—C5—C60.1 (3)S—C9—C10—C11179.34 (16)
C15—C4—C5—C6179.2 (2)C9—C10—C11—C120.1 (3)
C4—C5—C6—C70.6 (3)C10—C11—C12—C130.2 (3)
C8—O1—C7—C6177.3 (2)C11—C12—C13—C140.3 (3)
C8—O1—C7—C20.7 (2)C12—C13—C14—C90.4 (3)
C5—C6—C7—O1177.6 (2)C10—C9—C14—C130.4 (3)
C5—C6—C7—C20.2 (3)S—C9—C14—C13179.49 (16)
C3—C2—C7—O1178.77 (17)C3—C4—C15—C1694.1 (3)
C1—C2—C7—O10.2 (2)C5—C4—C15—C1686.9 (3)
C3—C2—C7—C60.6 (3)C4—C15—C16—C17178.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O3i0.952.603.355 (3)137
C18—H18C···Cgii0.983.293.947 (4)126
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H18O3S
Mr314.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)7.2712 (9), 17.583 (2), 12.788 (2)
β (°) 102.669 (2)
V3)1595.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.40 × 0.40 × 0.30
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8966, 3125, 2606
Rint0.053
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.135, 1.12
No. of reflections3125
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.37

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O3i0.952.603.355 (3)136.6
C18—H18C···Cgii0.983.293.947 (4)125.9
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+3/2, z+1/2.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o1016.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o1257.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds