organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,9-Bis(1,3-benzo­thia­zol-2-yl)-1,10-phenanthroline di­chloro­methane disolvate

aTennessee State University, Department of Chemistry, 3500 John A Merritt Boulevard, Nashville, TN 37209, USA, and bDepartment of Chemistry, Marquette University, PO Box 1881, Milwaukee, WI 53201-1881, USA
*Correspondence e-mail: mkarim@tnstate.edu

(Received 25 May 2008; accepted 30 June 2008; online 30 August 2008)

In the title compound, C26H14N4S2·2CH2Cl2, the two pendant benzothia­zole groups are slightly twisted with respect to the phenanthroline core [dihedral angles = 1.03 (7) and 9.05 (5)°]. Weak inter­molecular C—H⋯N and C—H⋯Cl inter­actions occur in the crystal structure.

Related literature

For related literature, see: Kerbs (2003[Kerbs, F. C. (2003). Tetrahedron Lett. 44, 6643-6646.]); Gude et al. (2005[Gude, L., Fernandez, M. J., Grant, K. B. & Loernte, A. (2005). Org. Biomol. Chem. 3, 1856-1862.]).

[Scheme 1]

Experimental

Crystal data
  • C26H14N4S2·2CH2Cl2

  • Mr = 616.38

  • Triclinic, [P \overline 1]

  • a = 8.0969 (2) Å

  • b = 12.3990 (2) Å

  • c = 14.6006 (3) Å

  • α = 108.234 (1)°

  • β = 102.181 (1)°

  • γ = 94.335 (1)°

  • V = 1344.93 (5) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 5.67 mm−1

  • T = 100 (2) K

  • 0.75 × 0.07 × 0.05 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT, SADABS, XP and XCIF. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.101, Tmax = 0.765

  • 10764 measured reflections

  • 4352 independent reflections

  • 3831 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.079

  • S = 1.00

  • 4352 reflections

  • 415 parameters

  • All H-atom parameters refined

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1S—H1SB⋯N4i 0.94 (2) 2.44 (2) 3.360 (3) 166.7 (19)
C3—H3⋯Cl1Sii 0.92 (2) 2.82 (2) 3.615 (2) 145.6 (16)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT, SADABS, XP and XCIF. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT, SADABS, XP and XCIF. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Bruker, 2005[Bruker (2005). APEX2, SAINT, SADABS, XP and XCIF. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: XCIF (Bruker, 2005[Bruker (2005). APEX2, SAINT, SADABS, XP and XCIF. Bruker AXS Inc., Madison, Wisconsin, USA.]).

Supporting information


Comment top

As part of our studies of the biological properties of Schiff bases, we attempted to synthesize Schiff bases from 1,10-phenanthroline. It has been found in the literature that Schiff bases formed from S-alkyl and S-aryl substituted amines contain both hard nitrogen and soft sulfur donor atoms. (e.g. Kerbs, 2003). Consequently, these compounds are capable of forming stable complexes with a wide variety of metal ions. These complexes have interesting physio-chemical properties and potential chemotherapeutic effets (e.g. Gude et al.2005). In this paper the synthesis and structure of the title compound, (I), are reported.

The main molecule is close to planar, with dihedral angles of 9.05 (5)° and 1.03 (7)° for the S1 and S2 benzothiazolyl moieties respectively, with respect to the phenanthroline core. There are two dichloromethane solvent molecules in the asymmetric unit (Fig. 1).

Weak intermolecular C—H···N and C—H···Cl interactions (Table 1) may help to stabilise the packing.

Related literature top

For related literature, see: Kerbs (2003); Gude et al. (2005).

Experimental top

To a solution of 1,10-phenanthroline (50 mg, 0.20 mmol) in 5 ml CHCl3, 2-mercaptoaniline (0.60 µL, 0.40 mmol) was added followed by the addition of p-toluene sulfonic acid mono hydrate (76 mg, 0.40 mmol) in a Pyrex tube under argon. The tube was placed in a CEM microwave. The reaction conditions were set up as follows: power: 300 W, ramp time: 20 min, hold time: 20 min, and temperature: 373 K. When the reaction vessel was opened, a yellow precipitate was observed, which was filtered off and washed with cold CHCl3 and dried under vacuum. [y: 30 mg, 40%]. IR: ν= 1597 cm-1 (C=N), 1550 cm-1 (C=C). 1H-NMR([D3],CDCl3, 300 MHz): δ=8.74 (d, 4J= 9.0 Hz,, 8-H, 3-H), 8.41 (d, 3J=9.0 Hz,2H, H-4, H-7), 7.88 (s, 2H, H-5, and H-6), 8.169 (t, 4H, 2 J= 8.1 Hz, 1J=8.7 Hz,H-16, H-16', H-13, H-13'), 7.53 (m, 4H, H-14, H-14', H-15, H-15').13 C: NMR([D3], CDCl3, 75.5 MHz): δ= 155 (C-2, C-9), δ= 146 (C-11,C-12), δ=137.48 (C-3, C-8). δ=127.591 (C-4, C-7,), δ=126.60 (C-5, C-6), δ= 172 (C-13, C-13'), δ= 152 (C-14, C-14'), δ= 130.26 (C-15, C-15'), δ=137.0 (C-19, C-19') δ=126.18 (C-19, C-19'). δ=124.04 (C-18, C-18'). δ=122.54 (C-17, C-17'). δ=120.51 (C-16, C-16').

Yellow needles of (I) were grown from CH2Cl2/hexane at 253 K.

Refinement top

The H atoms were located in difference maps and their positions and Uiso values were freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Bruker, 2005); software used to prepare material for publication: XCIF (Bruker, 2005).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% displacement ellipsoids for the non-hydrogen atoms.
[Figure 2] Fig. 2. The formation of the title compound.
2,9-Bis(1,3-benzothiazol-2-yl)-1,10-phenanthroline dichloromethane disolvate top
Crystal data top
C26H14N4S2·2CH2Cl2Z = 2
Mr = 616.38F(000) = 628
Triclinic, P1Dx = 1.522 Mg m3
Hall symbol: -P 1Melting point > 573 K
a = 8.0969 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 12.3990 (2) ÅCell parameters from 5710 reflections
c = 14.6006 (3) Åθ = 3–65°
α = 108.234 (1)°µ = 5.67 mm1
β = 102.181 (1)°T = 100 K
γ = 94.335 (1)°Needle, yellow
V = 1344.93 (5) Å30.75 × 0.07 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
4352 independent reflections
Radiation source: fine-focus sealed tube3831 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 66.5°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.101, Tmax = 0.765k = 1413
10764 measured reflectionsl = 017
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: difference Fourier map
wR(F2) = 0.079All H-atom parameters refined
S = 1.00 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.6095P]
where P = (Fo2 + 2Fc2)/3
4352 reflections(Δ/σ)max = 0.001
415 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C26H14N4S2·2CH2Cl2γ = 94.335 (1)°
Mr = 616.38V = 1344.93 (5) Å3
Triclinic, P1Z = 2
a = 8.0969 (2) ÅCu Kα radiation
b = 12.3990 (2) ŵ = 5.67 mm1
c = 14.6006 (3) ÅT = 100 K
α = 108.234 (1)°0.75 × 0.07 × 0.05 mm
β = 102.181 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4352 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3831 reflections with I > 2σ(I)
Tmin = 0.101, Tmax = 0.765Rint = 0.021
10764 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.079All H-atom parameters refined
S = 1.00Δρmax = 0.37 e Å3
4352 reflectionsΔρmin = 0.38 e Å3
415 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.16197 (6)0.64055 (4)0.22928 (3)0.02003 (12)
S20.22351 (6)0.40021 (4)0.33879 (3)0.01732 (12)
N10.02010 (19)0.73385 (13)0.44545 (11)0.0161 (3)
N20.17914 (18)0.58715 (12)0.50867 (11)0.0155 (3)
N30.2641 (2)0.84086 (13)0.26682 (12)0.0211 (4)
N40.39069 (19)0.33830 (12)0.48236 (11)0.0167 (3)
C10.1189 (2)0.80420 (15)0.41677 (14)0.0172 (4)
C20.1611 (2)0.90203 (16)0.48337 (14)0.0195 (4)
C30.0951 (2)0.92663 (16)0.58255 (14)0.0195 (4)
C40.0093 (2)0.85441 (15)0.61687 (13)0.0164 (4)
C50.0753 (2)0.87447 (16)0.72043 (14)0.0186 (4)
C60.1658 (2)0.79970 (16)0.75169 (14)0.0196 (4)
C70.2011 (2)0.69974 (15)0.68113 (13)0.0167 (4)
C80.2901 (2)0.61883 (16)0.71135 (14)0.0188 (4)
C90.3234 (2)0.52576 (16)0.64199 (14)0.0180 (4)
C100.2672 (2)0.51431 (15)0.54114 (14)0.0160 (4)
C110.0425 (2)0.75722 (15)0.54414 (13)0.0156 (4)
C120.1452 (2)0.67863 (15)0.57772 (13)0.0159 (4)
C130.1855 (2)0.77490 (15)0.30927 (14)0.0174 (4)
C140.2697 (2)0.67676 (16)0.12950 (14)0.0198 (4)
C150.3127 (2)0.78754 (16)0.16477 (14)0.0202 (4)
C160.3991 (3)0.83493 (19)0.09613 (15)0.0274 (5)
C170.4411 (3)0.77107 (19)0.00363 (16)0.0295 (5)
C180.3985 (3)0.66055 (19)0.03754 (16)0.0280 (5)
C190.3121 (3)0.61241 (18)0.02860 (15)0.0247 (4)
C200.3034 (2)0.41652 (15)0.46417 (13)0.0154 (4)
C210.3131 (2)0.27520 (15)0.30739 (14)0.0177 (4)
C220.3991 (2)0.25688 (15)0.39417 (14)0.0171 (4)
C230.4800 (2)0.15927 (16)0.38635 (15)0.0196 (4)
C240.4739 (2)0.08355 (16)0.29330 (15)0.0221 (4)
C250.3865 (3)0.10262 (17)0.20755 (15)0.0245 (4)
C260.3058 (2)0.19776 (17)0.21311 (15)0.0219 (4)
H20.233 (3)0.9445 (19)0.4549 (16)0.028 (6)*
H30.118 (2)0.9906 (18)0.6279 (15)0.017 (5)*
H50.054 (2)0.9395 (18)0.7645 (15)0.016 (5)*
H60.207 (2)0.8083 (16)0.8204 (15)0.015 (5)*
H80.328 (2)0.6297 (17)0.7835 (16)0.021 (5)*
H90.380 (3)0.4734 (18)0.6609 (15)0.022 (5)*
H160.425 (3)0.909 (2)0.1181 (16)0.029 (6)*
H170.504 (3)0.803 (2)0.0520 (17)0.034 (6)*
H180.429 (2)0.6211 (17)0.1043 (16)0.019 (5)*
H190.286 (3)0.535 (2)0.0041 (16)0.029 (6)*
H230.535 (3)0.1458 (18)0.4413 (16)0.021 (5)*
H240.528 (3)0.0190 (19)0.2872 (15)0.023 (5)*
H250.381 (3)0.0496 (19)0.1426 (16)0.025 (6)*
H260.245 (3)0.2090 (17)0.1567 (16)0.021 (5)*
Cl1S0.32173 (7)0.83312 (4)0.34294 (4)0.03355 (14)
Cl2S0.32540 (7)0.60371 (4)0.20953 (4)0.03418 (14)
C1S0.3093 (3)0.68551 (17)0.33012 (15)0.0217 (4)
H1SA0.201 (3)0.6616 (17)0.3398 (14)0.020 (5)*
H1SB0.403 (3)0.6741 (18)0.3742 (16)0.026 (6)*
Cl3S0.07322 (8)0.63525 (5)0.93119 (5)0.04547 (17)
Cl4S0.05564 (10)0.87470 (6)1.03272 (6)0.0674 (2)
C2S0.1165 (3)0.7470 (2)1.04721 (19)0.0406 (6)
H2SA0.241 (4)0.763 (2)1.0784 (19)0.049 (7)*
H2SB0.047 (3)0.726 (2)1.087 (2)0.049 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0242 (3)0.0178 (2)0.0193 (2)0.00770 (18)0.00485 (18)0.00731 (19)
S20.0174 (2)0.0169 (2)0.0178 (2)0.00438 (17)0.00378 (17)0.00611 (18)
N10.0145 (8)0.0172 (8)0.0189 (8)0.0021 (6)0.0067 (6)0.0076 (6)
N20.0128 (8)0.0152 (8)0.0189 (8)0.0011 (6)0.0053 (6)0.0058 (6)
N30.0232 (9)0.0223 (9)0.0222 (9)0.0082 (7)0.0080 (7)0.0109 (7)
N40.0146 (8)0.0159 (8)0.0204 (8)0.0020 (6)0.0054 (6)0.0066 (6)
C10.0142 (9)0.0175 (9)0.0226 (10)0.0019 (7)0.0076 (7)0.0085 (8)
C20.0198 (10)0.0174 (9)0.0251 (10)0.0062 (8)0.0087 (8)0.0097 (8)
C30.0205 (10)0.0154 (10)0.0241 (10)0.0028 (8)0.0100 (8)0.0057 (8)
C40.0136 (9)0.0153 (9)0.0210 (10)0.0000 (7)0.0073 (7)0.0055 (7)
C50.0174 (10)0.0163 (10)0.0206 (10)0.0009 (7)0.0079 (7)0.0025 (8)
C60.0180 (10)0.0232 (10)0.0168 (10)0.0010 (8)0.0053 (7)0.0054 (8)
C70.0124 (9)0.0185 (9)0.0185 (9)0.0010 (7)0.0041 (7)0.0059 (8)
C80.0144 (9)0.0225 (10)0.0203 (10)0.0009 (7)0.0045 (7)0.0086 (8)
C90.0149 (10)0.0186 (10)0.0224 (10)0.0038 (8)0.0040 (7)0.0098 (8)
C100.0104 (9)0.0148 (9)0.0233 (10)0.0002 (7)0.0054 (7)0.0069 (8)
C110.0121 (9)0.0162 (9)0.0201 (10)0.0005 (7)0.0060 (7)0.0076 (7)
C120.0119 (9)0.0155 (9)0.0209 (10)0.0006 (7)0.0063 (7)0.0062 (8)
C130.0161 (10)0.0169 (9)0.0222 (10)0.0032 (7)0.0093 (7)0.0078 (8)
C140.0163 (10)0.0237 (10)0.0228 (10)0.0051 (8)0.0065 (7)0.0110 (8)
C150.0203 (10)0.0228 (10)0.0206 (10)0.0065 (8)0.0077 (7)0.0089 (8)
C160.0330 (12)0.0290 (12)0.0264 (11)0.0177 (9)0.0105 (9)0.0128 (9)
C170.0310 (12)0.0381 (13)0.0238 (11)0.0151 (10)0.0061 (9)0.0145 (10)
C180.0301 (12)0.0337 (12)0.0187 (11)0.0105 (9)0.0040 (8)0.0069 (9)
C190.0260 (11)0.0233 (11)0.0239 (11)0.0069 (8)0.0048 (8)0.0068 (9)
C200.0109 (9)0.0163 (9)0.0199 (9)0.0003 (7)0.0042 (7)0.0077 (7)
C210.0136 (9)0.0165 (9)0.0235 (10)0.0017 (7)0.0053 (7)0.0072 (8)
C220.0141 (9)0.0163 (9)0.0209 (10)0.0011 (7)0.0057 (7)0.0062 (8)
C230.0174 (10)0.0185 (10)0.0271 (11)0.0030 (7)0.0080 (8)0.0116 (8)
C240.0206 (10)0.0155 (10)0.0323 (12)0.0028 (8)0.0115 (8)0.0077 (8)
C250.0237 (11)0.0199 (10)0.0254 (11)0.0005 (8)0.0086 (8)0.0005 (9)
C260.0182 (10)0.0241 (10)0.0201 (10)0.0017 (8)0.0027 (8)0.0045 (8)
Cl1S0.0412 (3)0.0209 (3)0.0436 (3)0.0111 (2)0.0151 (2)0.0133 (2)
Cl2S0.0537 (4)0.0306 (3)0.0227 (3)0.0168 (2)0.0146 (2)0.0094 (2)
C1S0.0249 (11)0.0205 (10)0.0228 (11)0.0081 (8)0.0076 (8)0.0095 (8)
Cl3S0.0506 (4)0.0385 (3)0.0509 (4)0.0138 (3)0.0195 (3)0.0139 (3)
Cl4S0.0650 (5)0.0360 (4)0.0686 (5)0.0069 (3)0.0205 (4)0.0029 (3)
C2S0.0348 (14)0.0513 (15)0.0376 (14)0.0033 (11)0.0082 (11)0.0187 (12)
Geometric parameters (Å, º) top
S1—C141.7370 (19)C10—C201.469 (2)
S1—C131.7607 (18)C11—C121.460 (2)
S2—C211.7334 (18)C14—C191.391 (3)
S2—C201.7491 (18)C14—C151.407 (3)
N1—C11.330 (2)C15—C161.405 (3)
N1—C111.351 (2)C16—C171.376 (3)
N2—C101.331 (2)C16—H160.94 (2)
N2—C121.352 (2)C17—C181.400 (3)
N3—C131.299 (2)C17—H170.98 (2)
N3—C151.382 (2)C18—C191.385 (3)
N4—C201.303 (2)C18—H180.91 (2)
N4—C221.384 (2)C19—H190.97 (2)
C1—C21.414 (3)C21—C261.397 (3)
C1—C131.464 (3)C21—C221.405 (3)
C2—C31.359 (3)C22—C231.404 (3)
C2—H20.93 (2)C23—C241.377 (3)
C3—C41.408 (3)C23—H230.90 (2)
C3—H30.92 (2)C24—C251.400 (3)
C4—C111.422 (3)C24—H240.93 (2)
C4—C51.427 (3)C25—C261.380 (3)
C5—C61.353 (3)C25—H250.96 (2)
C5—H50.92 (2)C26—H260.92 (2)
C6—C71.435 (3)Cl1S—C1S1.7733 (19)
C6—H60.96 (2)Cl2S—C1S1.773 (2)
C7—C81.405 (3)C1S—H1SA0.95 (2)
C7—C121.414 (3)C1S—H1SB0.94 (2)
C8—C91.364 (3)Cl3S—C2S1.766 (3)
C8—H80.99 (2)Cl4S—C2S1.754 (3)
C9—C101.404 (3)C2S—H2SA0.99 (3)
C9—H90.90 (2)C2S—H2SB0.97 (3)
C14—S1—C1388.49 (9)N3—C15—C16125.46 (18)
C21—S2—C2088.48 (9)N3—C15—C14115.44 (17)
C1—N1—C11117.85 (15)C16—C15—C14119.10 (18)
C10—N2—C12117.47 (15)C17—C16—C15119.06 (19)
C13—N3—C15110.46 (16)C17—C16—H16120.7 (14)
C20—N4—C22110.30 (15)C15—C16—H16120.3 (14)
N1—C1—C2123.86 (17)C16—C17—C18121.17 (19)
N1—C1—C13116.02 (16)C16—C17—H17119.5 (13)
C2—C1—C13120.12 (16)C18—C17—H17119.3 (13)
C3—C2—C1118.15 (18)C19—C18—C17120.83 (19)
C3—C2—H2125.4 (14)C19—C18—H18120.8 (13)
C1—C2—H2116.4 (14)C17—C18—H18118.4 (13)
C2—C3—C4120.23 (18)C18—C19—C14118.09 (19)
C2—C3—H3120.3 (12)C18—C19—H19119.8 (13)
C4—C3—H3119.5 (12)C14—C19—H19122.1 (13)
C3—C4—C11117.41 (17)N4—C20—C10124.42 (16)
C3—C4—C5122.00 (17)N4—C20—S2116.40 (14)
C11—C4—C5120.56 (17)C10—C20—S2119.17 (13)
C6—C5—C4120.92 (17)C26—C21—C22121.22 (17)
C6—C5—H5121.6 (12)C26—C21—S2128.96 (15)
C4—C5—H5117.4 (12)C22—C21—S2109.82 (14)
C5—C6—C7120.55 (17)N4—C22—C23125.39 (17)
C5—C6—H6123.3 (12)N4—C22—C21114.98 (16)
C7—C6—H6116.1 (12)C23—C22—C21119.60 (17)
C8—C7—C12117.46 (16)C24—C23—C22119.06 (19)
C8—C7—C6121.80 (17)C24—C23—H23120.1 (13)
C12—C7—C6120.73 (16)C22—C23—H23120.9 (13)
C9—C8—C7120.03 (17)C23—C24—C25120.61 (18)
C9—C8—H8120.5 (12)C23—C24—H24119.8 (13)
C7—C8—H8119.5 (12)C25—C24—H24119.6 (13)
C8—C9—C10118.20 (17)C26—C25—C24121.51 (19)
C8—C9—H9120.5 (13)C26—C25—H25117.7 (13)
C10—C9—H9121.3 (13)C24—C25—H25120.8 (13)
N2—C10—C9124.03 (17)C25—C26—C21117.99 (19)
N2—C10—C20116.04 (16)C25—C26—H26121.5 (13)
C9—C10—C20119.93 (16)C21—C26—H26120.4 (13)
N1—C11—C4122.47 (16)Cl2S—C1S—Cl1S110.15 (11)
N1—C11—C12118.95 (16)Cl2S—C1S—H1SA109.8 (12)
C4—C11—C12118.57 (16)Cl1S—C1S—H1SA107.6 (12)
N2—C12—C7122.76 (16)Cl2S—C1S—H1SB105.3 (13)
N2—C12—C11118.65 (16)Cl1S—C1S—H1SB110.1 (13)
C7—C12—C11118.56 (16)H1SA—C1S—H1SB113.8 (18)
N3—C13—C1124.79 (16)Cl4S—C2S—Cl3S111.12 (14)
N3—C13—S1116.14 (14)Cl4S—C2S—H2SA106.9 (15)
C1—C13—S1119.06 (13)Cl3S—C2S—H2SA109.9 (15)
C19—C14—C15121.75 (18)Cl4S—C2S—H2SB106.1 (16)
C19—C14—S1128.78 (15)Cl3S—C2S—H2SB108.2 (16)
C15—C14—S1109.46 (14)H2SA—C2S—H2SB115 (2)
C11—N1—C1—C20.4 (3)C14—S1—C13—N30.46 (15)
C11—N1—C1—C13179.31 (15)C14—S1—C13—C1178.90 (14)
N1—C1—C2—C30.9 (3)C13—S1—C14—C19179.45 (19)
C13—C1—C2—C3179.40 (16)C13—S1—C14—C150.63 (14)
C1—C2—C3—C41.3 (3)C13—N3—C15—C16179.48 (19)
C2—C3—C4—C110.5 (3)C13—N3—C15—C140.4 (2)
C2—C3—C4—C5177.33 (17)C19—C14—C15—N3179.34 (17)
C3—C4—C5—C6175.55 (18)S1—C14—C15—N30.7 (2)
C11—C4—C5—C62.2 (3)C19—C14—C15—C160.8 (3)
C4—C5—C6—C71.5 (3)S1—C14—C15—C16179.16 (15)
C5—C6—C7—C8177.99 (17)N3—C15—C16—C17179.27 (19)
C5—C6—C7—C121.3 (3)C14—C15—C16—C170.8 (3)
C12—C7—C8—C91.7 (3)C15—C16—C17—C180.4 (3)
C6—C7—C8—C9179.01 (17)C16—C17—C18—C190.2 (3)
C7—C8—C9—C100.3 (3)C17—C18—C19—C140.3 (3)
C12—N2—C10—C91.2 (2)C15—C14—C19—C180.2 (3)
C12—N2—C10—C20179.38 (15)S1—C14—C19—C18179.70 (16)
C8—C9—C10—N21.8 (3)C22—N4—C20—C10178.79 (16)
C8—C9—C10—C20178.81 (16)C22—N4—C20—S20.35 (19)
C1—N1—C11—C41.3 (2)N2—C10—C20—N4178.51 (16)
C1—N1—C11—C12177.38 (16)C9—C10—C20—N42.1 (3)
C3—C4—C11—N10.9 (3)N2—C10—C20—S22.4 (2)
C5—C4—C11—N1178.72 (16)C9—C10—C20—S2177.03 (13)
C3—C4—C11—C12177.81 (16)C21—S2—C20—N40.89 (14)
C5—C4—C11—C120.0 (2)C21—S2—C20—C10178.30 (14)
C10—N2—C12—C70.9 (2)C20—S2—C21—C26177.75 (18)
C10—N2—C12—C11177.37 (15)C20—S2—C21—C221.12 (13)
C8—C7—C12—N22.3 (3)C20—N4—C22—C23178.48 (17)
C6—C7—C12—N2178.33 (16)C20—N4—C22—C210.6 (2)
C8—C7—C12—C11175.94 (16)C26—C21—C22—N4177.75 (16)
C6—C7—C12—C113.4 (2)S2—C21—C22—N41.22 (19)
N1—C11—C12—N22.3 (2)C26—C21—C22—C230.3 (3)
C4—C11—C12—N2178.98 (15)S2—C21—C22—C23179.26 (14)
N1—C11—C12—C7176.04 (15)N4—C22—C23—C24178.07 (17)
C4—C11—C12—C72.7 (2)C21—C22—C23—C240.3 (3)
C15—N3—C13—C1179.20 (16)C22—C23—C24—C250.8 (3)
C15—N3—C13—S10.1 (2)C23—C24—C25—C260.8 (3)
N1—C1—C13—N3170.20 (17)C24—C25—C26—C210.2 (3)
C2—C1—C13—N310.1 (3)C22—C21—C26—C250.3 (3)
N1—C1—C13—S110.5 (2)S2—C21—C26—C25179.07 (15)
C2—C1—C13—S1169.22 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1S—H1SB···N4i0.94 (2)2.44 (2)3.360 (3)166.7 (19)
C3—H3···Cl1Sii0.92 (2)2.82 (2)3.615 (2)145.6 (16)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC26H14N4S2·2CH2Cl2
Mr616.38
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.0969 (2), 12.3990 (2), 14.6006 (3)
α, β, γ (°)108.234 (1), 102.181 (1), 94.335 (1)
V3)1344.93 (5)
Z2
Radiation typeCu Kα
µ (mm1)5.67
Crystal size (mm)0.75 × 0.07 × 0.05
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.101, 0.765
No. of measured, independent and
observed [I > 2σ(I)] reflections
10764, 4352, 3831
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.079, 1.00
No. of reflections4352
No. of parameters415
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.37, 0.38

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Bruker, 2005), XCIF (Bruker, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1S—H1SB···N4i0.94 (2)2.44 (2)3.360 (3)166.7 (19)
C3—H3···Cl1Sii0.92 (2)2.82 (2)3.615 (2)145.6 (16)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+2, z+1.
 

Footnotes

Current address: Department of Chemistry and Biochemistry, 3210 N Cramer Street, Milwaukee, WI 53211, USA.

References

First citationBruker (2005). APEX2, SAINT, SADABS, XP and XCIF. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGude, L., Fernandez, M. J., Grant, K. B. & Loernte, A. (2005). Org. Biomol. Chem. 3, 1856–1862.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKerbs, F. C. (2003). Tetrahedron Lett. 44, 6643–6646.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds