metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1124-m1125

The cocrystal μ-oxalato-κ4O1,O2:O1′,O2′-bis­­(aqua­(nitrato-κO){[1-(2-pyridyl-κN)eth­yl­idene]hydrazine-κN}copper(II)) μ-oxalato-κ4O1,O2:O1′,O2′-bis­­((methanol-κO)(nitrato-κO){[1-(2-pyridyl-κN)eth­yl­idene]hydrazine-κN}copper(II)) (1/1)

aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bDépartement de Chimie, Faculté des Sciences, Université de Nouakchott, Nouakchott, Mauritania, and cDépartement de Chimie, Faculté des Sciences, Université de Conakry, Conakry, Guinea
*Correspondence e-mail: mlgayeastou@yahoo.fr

(Received 7 July 2008; accepted 31 July 2008; online 6 August 2008)

The title cocrystal, [Cu2(C2O4)(NO3)2(C7H9N3)2(H2O)2][Cu2(C2O4)(NO3)2(C7H9N3)2(CH4O)2], is a 1:1 cocrystal of two centrosymmetric CuII complexes with oxalate dianions and Schiff base ligands. In each mol­ecule, the CuII centre is in a distorted octa­hedral cis-CuN2O4 environment, the donor atoms of the N,N′-bidentate Schiff base ligand and the bridging O,O′-bidentate oxalate group lying in the equatorial plane. In one mol­ecule, a monodentate nitrate anion and a water mol­ecule occupy the axial sites, and in the other, a monodentate nitrate anion and a methanol mol­ecule occupy these sites. In the crystal structure, inter­molecular N—H⋯O, O—H⋯O and N—H⋯N hydrogen bonds link the mol­ecules into a network. Weak intra­molecular N—H⋯O inter­actions are also observed.

Related literature

For related structures: see Kelly et al. (2005[Kelly, T. L., Milway, V. A., Grove, H., Niel, V., Abedin, T. S. M., Thompson, L. K., Zhao, L., Harvey, R. G., Miller, D. O., Leech, M., Goeta, A. E. & Howard, J. A. K. (2005). Polyhedron, 24, 807-821.]); Bulut et al. (2005[Bulut, A., İçbudak, H., Sezer, G. & Kazak, C. (2005). Acta Cryst. C61, m228-m230.]); Moreno et al. (2007[Moreno, Y., Salgado, Y., Garland, M. T. & Baggio, R. (2007). Acta Cryst. C63, m487-m489.]); Du et al. (2007[Du, M., Zou, R.-Q., Zhong, R.-Q. & Xu, Q. (2007). Inorg. Chim. Acta, 360, 3442-3447.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C2O4)(NO3)2(C7H9N3)2(H2O)2][Cu2(C2O4)(NO3)2(C7H9N3)2(CH4O)2]

  • Mr = 1319.04

  • Triclinic, [P \overline 1]

  • a = 9.8358 (9) Å

  • b = 12.3773 (10) Å

  • c = 12.7136 (10) Å

  • α = 103.704 (4)°

  • β = 112.573 (4)°

  • γ = 107.821 (4)°

  • V = 1245.15 (18) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.79 mm−1

  • T = 173 (2) K

  • 0.03 × 0.02 × 0.02 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 11826 measured reflections

  • 4872 independent reflections

  • 3644 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.112

  • S = 1.06

  • 4872 reflections

  • 380 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 1.966 (4)
Cu1—O1 1.986 (3)
Cu1—N2 1.991 (4)
Cu1—O2 2.000 (3)
Cu1—O3 2.252 (4)
Cu1—O4 2.610 (4)
Cu2—N5 1.955 (4)
Cu2—O7 1.966 (3)
Cu2—O8 1.981 (3)
Cu2—N6 1.994 (4)
Cu2—O9 2.337 (3)
Cu2—O10 2.541 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H18⋯O11i 0.96 (2) 2.11 (3) 3.048 (7) 164 (5)
O3—H18⋯O12i 0.96 (2) 2.30 (4) 3.084 (6) 138 (5)
O3—H18⋯N8i 0.96 (2) 2.53 (2) 3.471 (6) 167 (5)
O3—H19⋯O9ii 0.95 (2) 1.85 (2) 2.777 (5) 165 (5)
N3—H20⋯O1 0.95 (2) 2.53 (7) 3.014 (6) 112 (5)
N3—H21⋯O12 0.97 (2) 2.44 (7) 3.150 (7) 130 (7)
N7—H22⋯O6 0.96 (2) 2.35 (4) 3.131 (6) 138 (5)
N7—H23⋯N3 0.95 (2) 2.43 (5) 3.196 (7) 138 (5)
N7—H23⋯O7 0.95 (2) 2.59 (6) 3.091 (5) 113 (5)
O9—H24⋯O6iii 0.84 1.89 2.731 (5) 174
O9—H24⋯N4iii 0.84 2.57 3.367 (6) 158
O9—H24⋯O5iii 0.84 2.56 3.171 (6) 130
Symmetry codes: (i) -x+1, -y, -z; (ii) x-1, y, z; (iii) -x+1, -y-1, -z-1.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The molecular structure of the title compound, (I), (Fig. 1) contains two centrosymmetric binuclear CuII complexes (A and B) with the same Schiff base ligand. The coordination spheres around CuII in both A and B are slightly distorted octahedra (Table 1), with the coordination plane of each CuII formed by the N2O2donor atoms of the Schiff base N2 and the oxalate O2. The axial positions in A are occupied by an O—NO2 ion and a water molecule whereas in B these positions are occupied by a O-NO2 ion and a CH3OH molecule. The in-plane Cu—O distances are in the range 1.966 (3)–2.000 (3) Å with Cu—N distances 1.955 (4)–1.994 (4) Å, which are slightly larger than distances observed in other CuII coordination complexes of the same Schiff base ligand (Kelly et al <i\>., 2005). The elongation of the Cu—O—NO2 and Cu—O(water) or Cu—O(methanol) axial bonds [2.610 (4) and 2.251 (4) Å in A and 2.541 (4) and 2.338 (3) Å in B] clearly indicate the usual Jahn Teller distortion of the CuII as has been found previously (Bulut et al <i\>., 2005; Moreno et al <i\>., 2007; Du et al <i\>., 2007). The basal bond angles O–Cu–O and N–Cu–N are less then 90° [N1–Cu1–N2 = 80.63 (18) ° and N5–Cu2–N6 = 81.50 (17) °; O1–Cu1–O2 = 84.01 (13) ° and O7–Cu2–O8 = 85.09 (17) °] whereas the O–Cu–N angles are largely superior to 90° [N1–Cu1–O2 = 98.76 (16) ° and N2–Cu1–O1 =95.46 (16) ° in A; N5–Cu2–O8 = 95.29 (15) ° and N6–Cu2–O7 =97.93 (15) ° in B]. The axial bonds angles O(water)–Cu1–O—NO2 and O(methanol)–Cu2–O—NO2 are also less than the ideal value of 180° [168.34 (14) ° in A and 173.96 (12) ° in B]. A network of hydrogren bonds (Table 2) completes the structure.

Related literature top

For related structures: see Kelly et al. (2005); Bulut et al. (2005); Moreno et al. (2007); Du et al. (2007).

Experimental top

To a mixture of 0.324 g (1.0 mmol) of the ligand and 50 ml of methanol was added dropwise a solution of 0.463 g (2.0 mmol) of copper nitrate dihydrate in 10 ml of methanol. The resulting mixture was stirred under reflux for 120 min. After cooling the solution was left for slow evaporation and the title compound was obtained in good yield (0.620 g; 94.00°). IR (cm-1,KBr): 1655, 1625, 1603, 1585, 1484, 1375, 1327, 1030, 829, 783, 699. Analysis calculated for C34H48N16O24Cu4: C 30.96, H 3.67, N 16.99 °; found: C 30.94, H 3.69, N 16.95 °. Gren prisms of (I) were obtained from slow evaporation of a dimethylformamide solution.

Refinement top

All water H atoms and amine H atoms of the bidentate Schiff base ligand were located from the difference fourier map and refined. The water O—H and amine N—H distances were restrained to be 0.96 Å, with s.u's of 0.02 Å. Others H atoms were placed geometrically and refined with a riding model. Uiso(H) for H was assigned as 1.2 Ueq of the attached C or N atoms (1.5 for methyl C atoms).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Nonius, 1998); data reduction: DENZO (Nonius, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) (H atoms are omitted for clarity). Displacement ellipsoids are plotted at the 50% probability level. Symmetry codes: (i) -x, -y-1, -z-1; (ii) 2-x, -y, -z.
[Figure 2] Fig. 2. Part of the packing in (I) showing hydrogen bonds as broken lines.
µ-oxalato-κ4O1,O2:O1',O2'- bis(aqua(nitrato-κO){[1-(2-pyridyl-κN)ethylidene]hydrazine- κN}copper(II))–µ-oxalato- κ4O1,O2:O1',O2'- bis((methanol-κO)(nitrato-κO){[1-(2-pyridyl- κN)ethylidene]hydrazine-κN}copper(II)) (1/1) top
Crystal data top
[Cu2(C2O4)(NO3)2(C7H9N3)2(H2O)2] [Cu2(C2O4)(NO3)2(C7H9N3)2(CH4O)2]Z = 1
Mr = 1319.04F(000) = 672
Triclinic, P1Dx = 1.759 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8358 (9) ÅCell parameters from 3872 reflections
b = 12.3773 (10) Åθ = 1.0–26.0°
c = 12.7136 (10) ŵ = 1.79 mm1
α = 103.704 (4)°T = 173 K
β = 112.573 (4)°Prism, green
γ = 107.821 (4)°0.03 × 0.02 × 0.02 mm
V = 1245.15 (18) Å3
Data collection top
Nonius KappaCCD
diffractometer
3644 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.057
Graphite monochromatorθmax = 26.0°, θmin = 1.9°
π [IS PI CORRECT?] scansh = 1211
11826 measured reflectionsk = 1415
4872 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: difmap and geom
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0157P)2 + 3.8674P]
where P = (Fo2 + 2Fc2)/3
4872 reflections(Δ/σ)max = 0.009
380 parametersΔρmax = 0.92 e Å3
6 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Cu2(C2O4)(NO3)2(C7H9N3)2(H2O)2] [Cu2(C2O4)(NO3)2(C7H9N3)2(CH4O)2]γ = 107.821 (4)°
Mr = 1319.04V = 1245.15 (18) Å3
Triclinic, P1Z = 1
a = 9.8358 (9) ÅMo Kα radiation
b = 12.3773 (10) ŵ = 1.79 mm1
c = 12.7136 (10) ÅT = 173 K
α = 103.704 (4)°0.03 × 0.02 × 0.02 mm
β = 112.573 (4)°
Data collection top
Nonius KappaCCD
diffractometer
3644 reflections with I > 2σ(I)
11826 measured reflectionsRint = 0.057
4872 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0596 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.92 e Å3
4872 reflectionsΔρmin = 0.54 e Å3
380 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.16109 (7)0.43205 (5)0.26049 (5)0.02519 (16)
Cu20.80107 (7)0.09303 (5)0.23584 (5)0.02536 (16)
O10.1705 (4)0.3628 (3)0.3847 (3)0.0256 (7)
O20.0358 (4)0.5775 (3)0.4088 (3)0.0256 (7)
O30.0280 (5)0.3375 (4)0.1957 (4)0.0411 (9)
O40.3402 (5)0.5415 (4)0.2903 (3)0.0421 (9)
O50.2179 (6)0.7368 (4)0.4051 (4)0.0650 (13)
O60.2292 (5)0.6055 (3)0.4905 (3)0.0406 (9)
O70.8412 (4)0.1491 (3)0.0993 (3)0.0260 (7)
O80.9916 (4)0.0660 (3)0.1073 (3)0.0264 (7)
O90.9512 (4)0.1775 (3)0.3019 (3)0.0342 (8)
H240.89650.24130.36860.08 (3)*
O100.6195 (5)0.0053 (4)0.1877 (3)0.0470 (10)
O110.7199 (6)0.1888 (4)0.0798 (5)0.0727 (15)
O120.7466 (6)0.0644 (4)0.0110 (4)0.0639 (13)
N10.1741 (5)0.4997 (4)0.1337 (4)0.0303 (10)
N20.3849 (5)0.3083 (4)0.1229 (4)0.0306 (10)
N30.4829 (6)0.2153 (5)0.1376 (5)0.0483 (13)
N40.2618 (5)0.6290 (4)0.3950 (4)0.0343 (10)
N50.7526 (5)0.0355 (4)0.3705 (4)0.0287 (9)
N60.5987 (5)0.2449 (4)0.3691 (3)0.0277 (9)
N70.5443 (6)0.3515 (4)0.3500 (4)0.0345 (10)
N80.6948 (6)0.0835 (5)0.0856 (4)0.0415 (12)
C10.0535 (8)0.5935 (5)0.1446 (5)0.0396 (13)
H10.04750.63680.22080.048*
C20.0702 (9)0.6314 (5)0.0462 (6)0.0503 (16)
H20.01780.69880.05450.060*
C30.2192 (8)0.5670 (5)0.0630 (5)0.0472 (15)
H30.23530.59100.13080.057*
C40.3432 (8)0.4695 (6)0.0739 (5)0.0468 (15)
H40.44560.42560.14900.056*
C50.3192 (7)0.4341 (5)0.0259 (4)0.0316 (12)
C60.4383 (6)0.3281 (5)0.0245 (5)0.0362 (13)
C70.6073 (7)0.2464 (6)0.0880 (5)0.0503 (16)
H7A0.68820.22260.06060.076*
H7B0.63540.29210.13980.076*
H7C0.60760.17180.13660.076*
C80.0597 (6)0.4386 (4)0.4928 (4)0.0221 (10)
C90.8353 (7)0.0747 (5)0.3624 (5)0.0346 (12)
H90.92930.13360.28510.042*
C100.7900 (7)0.1081 (5)0.4626 (5)0.0425 (14)
H100.85120.18840.45480.051*
C110.6536 (7)0.0212 (6)0.5740 (5)0.0414 (14)
H110.62010.04180.64420.050*
C120.5649 (7)0.0957 (5)0.5847 (5)0.0374 (13)
H120.46990.15490.66130.045*
C130.6171 (6)0.1254 (5)0.4813 (4)0.0292 (11)
C140.5375 (6)0.2435 (5)0.4771 (4)0.0288 (11)
C150.3982 (6)0.3556 (5)0.5918 (5)0.0392 (13)
H15A0.42340.42670.59710.059*
H15B0.38370.33850.66590.059*
H15C0.29690.37440.58710.059*
C160.9575 (5)0.0615 (4)0.0021 (4)0.0217 (10)
C171.0924 (8)0.0986 (6)0.2984 (6)0.0484 (15)
H17A1.06150.05650.35350.073*
H17B1.14300.14760.32630.073*
H17C1.17080.03680.21310.073*
H180.107 (6)0.277 (4)0.112 (3)0.058 (19)*
H190.001 (7)0.277 (4)0.220 (5)0.050 (17)*
H200.418 (8)0.186 (6)0.190 (5)0.09 (3)*
H210.570 (7)0.154 (6)0.055 (4)0.12 (3)*
H220.437 (4)0.406 (4)0.420 (4)0.055 (18)*
H230.559 (8)0.332 (6)0.268 (3)0.07 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0265 (3)0.0263 (3)0.0162 (3)0.0107 (3)0.0062 (3)0.0068 (3)
Cu20.0265 (3)0.0248 (3)0.0155 (3)0.0102 (3)0.0045 (3)0.0052 (2)
O10.0230 (18)0.0232 (17)0.0179 (17)0.0062 (15)0.0039 (15)0.0045 (14)
O20.0258 (18)0.0257 (18)0.0199 (17)0.0103 (15)0.0074 (15)0.0088 (14)
O30.056 (3)0.041 (2)0.042 (2)0.033 (2)0.028 (2)0.020 (2)
O40.042 (2)0.048 (2)0.024 (2)0.024 (2)0.0072 (18)0.0050 (18)
O50.096 (4)0.041 (3)0.067 (3)0.034 (3)0.045 (3)0.023 (2)
O60.042 (2)0.043 (2)0.027 (2)0.0173 (19)0.0132 (18)0.0070 (17)
O70.0223 (18)0.0228 (17)0.0191 (17)0.0053 (15)0.0038 (15)0.0042 (14)
O80.0283 (19)0.0267 (18)0.0164 (16)0.0106 (16)0.0054 (15)0.0082 (14)
O90.035 (2)0.038 (2)0.026 (2)0.0173 (18)0.0145 (17)0.0090 (18)
O100.041 (2)0.052 (3)0.029 (2)0.021 (2)0.0076 (19)0.0044 (19)
O110.095 (4)0.042 (3)0.098 (4)0.040 (3)0.057 (4)0.025 (3)
O120.071 (3)0.078 (3)0.027 (2)0.039 (3)0.012 (2)0.010 (2)
N10.031 (2)0.035 (2)0.025 (2)0.017 (2)0.013 (2)0.0117 (19)
N20.027 (2)0.034 (2)0.023 (2)0.012 (2)0.011 (2)0.0039 (19)
N30.034 (3)0.044 (3)0.042 (3)0.001 (3)0.015 (3)0.010 (3)
N40.034 (3)0.034 (3)0.040 (3)0.022 (2)0.018 (2)0.013 (2)
N50.034 (2)0.032 (2)0.022 (2)0.019 (2)0.012 (2)0.0122 (19)
N60.025 (2)0.031 (2)0.020 (2)0.013 (2)0.0076 (19)0.0025 (18)
N70.033 (3)0.027 (2)0.032 (3)0.006 (2)0.014 (2)0.008 (2)
N80.038 (3)0.045 (3)0.040 (3)0.026 (2)0.017 (2)0.007 (2)
C10.052 (4)0.041 (3)0.035 (3)0.028 (3)0.023 (3)0.017 (3)
C20.069 (5)0.035 (3)0.052 (4)0.019 (3)0.033 (4)0.026 (3)
C30.067 (4)0.040 (3)0.036 (3)0.023 (3)0.022 (3)0.025 (3)
C40.051 (4)0.057 (4)0.029 (3)0.032 (3)0.011 (3)0.016 (3)
C50.038 (3)0.043 (3)0.018 (2)0.029 (3)0.011 (2)0.009 (2)
C60.028 (3)0.043 (3)0.023 (3)0.017 (3)0.008 (2)0.002 (2)
C70.034 (3)0.066 (4)0.035 (3)0.015 (3)0.011 (3)0.014 (3)
C80.019 (2)0.024 (2)0.017 (2)0.010 (2)0.006 (2)0.005 (2)
C90.042 (3)0.043 (3)0.025 (3)0.025 (3)0.015 (3)0.018 (2)
C100.047 (4)0.043 (3)0.046 (3)0.021 (3)0.025 (3)0.028 (3)
C110.043 (3)0.064 (4)0.034 (3)0.031 (3)0.021 (3)0.032 (3)
C120.034 (3)0.053 (4)0.026 (3)0.022 (3)0.013 (3)0.018 (3)
C130.024 (3)0.044 (3)0.019 (2)0.021 (2)0.007 (2)0.010 (2)
C140.023 (3)0.032 (3)0.022 (3)0.012 (2)0.007 (2)0.002 (2)
C150.030 (3)0.046 (3)0.023 (3)0.012 (3)0.007 (2)0.003 (2)
C160.020 (2)0.021 (2)0.021 (2)0.010 (2)0.007 (2)0.005 (2)
C170.051 (4)0.046 (4)0.052 (4)0.017 (3)0.031 (3)0.021 (3)
Geometric parameters (Å, º) top
Cu1—N11.966 (4)N7—H220.96 (2)
Cu1—O11.986 (3)N7—H230.95 (2)
Cu1—N21.991 (4)C1—C21.406 (8)
Cu1—O22.000 (3)C1—H10.9500
Cu1—O32.252 (4)C2—C31.382 (9)
Cu1—O42.610 (4)C2—H20.9500
Cu2—N51.955 (4)C3—C41.362 (8)
Cu2—O71.966 (3)C3—H30.9500
Cu2—O81.981 (3)C4—C51.397 (7)
Cu2—N61.994 (4)C4—H40.9500
Cu2—O92.337 (3)C5—C61.458 (8)
Cu2—O102.541 (4)C6—C71.514 (7)
O1—C81.254 (5)C7—H7A0.9800
O2—C8i1.258 (5)C7—H7B0.9800
O3—H180.96 (2)C7—H7C0.9800
O3—H190.95 (2)C8—O2i1.258 (5)
O4—N41.248 (5)C8—C8i1.527 (9)
O5—N41.227 (6)C9—C101.386 (7)
O6—N41.260 (5)C9—H90.9500
O7—C161.262 (5)C10—C111.378 (8)
O8—C16ii1.258 (5)C10—H100.9500
O9—C171.409 (6)C11—C121.384 (8)
O9—H240.8400C11—H110.9500
O10—N81.237 (5)C12—C131.398 (7)
O11—N81.228 (6)C12—H120.9500
O12—N81.247 (6)C13—C141.457 (7)
N1—C11.315 (7)C14—C151.508 (7)
N1—C51.356 (6)C15—H15A0.9800
N2—C61.273 (7)C15—H15B0.9800
N2—N31.360 (6)C15—H15C0.9800
N3—H200.95 (2)C16—O8ii1.258 (5)
N3—H210.97 (2)C16—C16ii1.520 (9)
N5—C91.313 (7)C17—H17A0.9800
N5—C131.381 (6)C17—H17B0.9800
N6—C141.277 (6)C17—H17C0.9800
N6—N71.381 (6)
N1—Cu1—O1174.12 (15)O11—N8—O10120.4 (5)
N1—Cu1—N280.65 (18)O11—N8—O12120.7 (5)
O1—Cu1—N295.44 (16)O10—N8—O12118.9 (5)
N1—Cu1—O298.76 (16)N1—C1—C2121.7 (6)
O1—Cu1—O284.01 (13)N1—C1—H1119.2
N2—Cu1—O2166.68 (14)C2—C1—H1119.2
N1—Cu1—O386.33 (15)C3—C2—C1117.6 (6)
O1—Cu1—O398.48 (13)C3—C2—H2121.2
N2—Cu1—O395.43 (16)C1—C2—H2121.2
O2—Cu1—O397.82 (14)C4—C3—C2120.4 (5)
N1—Cu1—O483.01 (14)C4—C3—H3119.8
O1—Cu1—O491.90 (12)C2—C3—H3119.8
N2—Cu1—O478.20 (14)C3—C4—C5119.7 (6)
O2—Cu1—O488.50 (12)C3—C4—H4120.1
O3—Cu1—O4168.33 (13)C5—C4—H4120.1
N5—Cu2—O7177.14 (15)N1—C5—C4119.5 (5)
N5—Cu2—O895.30 (15)N1—C5—C6115.2 (4)
O7—Cu2—O885.09 (13)C4—C5—C6125.3 (5)
N5—Cu2—N681.51 (17)N2—C6—C5114.2 (4)
O7—Cu2—N697.92 (15)N2—C6—C7123.9 (5)
O8—Cu2—N6175.14 (15)C5—C6—C7121.8 (5)
N5—Cu2—O989.35 (14)C6—C7—H7A109.5
O7—Cu2—O993.43 (13)C6—C7—H7B109.5
O8—Cu2—O995.95 (13)H7A—C7—H7B109.5
N6—Cu2—O987.70 (14)C6—C7—H7C109.5
N5—Cu2—O1085.40 (14)H7A—C7—H7C109.5
O7—Cu2—O1091.78 (13)H7B—C7—H7C109.5
O8—Cu2—O1087.50 (13)O1—C8—O2i126.0 (4)
N6—Cu2—O1088.58 (14)O1—C8—C8i117.4 (5)
O9—Cu2—O10173.97 (12)O2i—C8—C8i116.6 (5)
C8—O1—Cu1111.0 (3)N5—C9—C10122.3 (5)
C8i—O2—Cu1110.9 (3)N5—C9—H9118.9
Cu1—O3—H18106 (4)C10—C9—H9118.9
Cu1—O3—H19126 (3)C11—C10—C9118.0 (5)
H18—O3—H1992 (5)C11—C10—H10121.0
N4—O4—Cu1110.5 (3)C9—C10—H10121.0
C16—O7—Cu2110.2 (3)C10—C11—C12120.7 (5)
C16ii—O8—Cu2110.3 (3)C10—C11—H11119.7
C17—O9—Cu2119.5 (3)C12—C11—H11119.7
C17—O9—H24109.5C11—C12—C13119.1 (5)
Cu2—O9—H24116.3C11—C12—H12120.4
N8—O10—Cu2113.3 (3)C13—C12—H12120.4
C1—N1—C5121.1 (5)N5—C13—C12118.7 (5)
C1—N1—Cu1125.4 (4)N5—C13—C14115.4 (4)
C5—N1—Cu1113.4 (3)C12—C13—C14125.9 (5)
C6—N2—N3121.3 (5)N6—C14—C13114.4 (4)
C6—N2—Cu1116.4 (4)N6—C14—C15123.1 (5)
N3—N2—Cu1122.0 (3)C13—C14—C15122.5 (4)
N2—N3—H20110 (5)C14—C15—H15A109.5
N2—N3—H21108 (5)C14—C15—H15B109.5
H20—N3—H21116 (7)H15A—C15—H15B109.5
O5—N4—O4120.6 (5)C14—C15—H15C109.5
O5—N4—O6120.2 (5)H15A—C15—H15C109.5
O4—N4—O6119.2 (4)H15B—C15—H15C109.5
C9—N5—C13121.2 (4)O8ii—C16—O7125.8 (4)
C9—N5—Cu2126.3 (3)O8ii—C16—C16ii116.7 (5)
C13—N5—Cu2112.6 (3)O7—C16—C16ii117.6 (5)
C14—N6—N7121.9 (4)O9—C17—H17A109.5
C14—N6—Cu2115.9 (4)O9—C17—H17B109.5
N7—N6—Cu2121.5 (3)H17A—C17—H17B109.5
N6—N7—H22106 (4)O9—C17—H17C109.5
N6—N7—H23111 (4)H17A—C17—H17C109.5
H22—N7—H23119 (5)H17B—C17—H17C109.5
Symmetry codes: (i) x, y1, z1; (ii) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H18···O11iii0.96 (2)2.11 (3)3.048 (7)164 (5)
O3—H18···O12iii0.96 (2)2.30 (4)3.084 (6)138 (5)
O3—H18···N8iii0.96 (2)2.53 (2)3.471 (6)167 (5)
O3—H19···O9iv0.95 (2)1.85 (2)2.777 (5)165 (5)
N3—H20···O10.95 (2)2.53 (7)3.014 (6)112 (5)
N3—H21···O120.97 (2)2.44 (7)3.150 (7)130 (7)
N7—H22···O60.96 (2)2.35 (4)3.131 (6)138 (5)
N7—H23···N30.95 (2)2.43 (5)3.196 (7)138 (5)
N7—H23···O70.95 (2)2.59 (6)3.091 (5)113 (5)
O9—H24···O6v0.841.892.731 (5)174
O9—H24···N4v0.842.573.367 (6)158
O9—H24···O5v0.842.563.171 (6)130
Symmetry codes: (iii) x+1, y, z; (iv) x1, y, z; (v) x+1, y1, z1.

Experimental details

Crystal data
Chemical formula[Cu2(C2O4)(NO3)2(C7H9N3)2(H2O)2] [Cu2(C2O4)(NO3)2(C7H9N3)2(CH4O)2]
Mr1319.04
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)9.8358 (9), 12.3773 (10), 12.7136 (10)
α, β, γ (°)103.704 (4), 112.573 (4), 107.821 (4)
V3)1245.15 (18)
Z1
Radiation typeMo Kα
µ (mm1)1.79
Crystal size (mm)0.03 × 0.02 × 0.02
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11826, 4872, 3644
Rint0.057
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.112, 1.07
No. of reflections4872
No. of parameters380
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.92, 0.54

Computer programs: COLLECT (Nonius, 1998), DENZO (Nonius, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Selected bond lengths (Å) top
Cu1—N11.966 (4)Cu2—N51.955 (4)
Cu1—O11.986 (3)Cu2—O71.966 (3)
Cu1—N21.991 (4)Cu2—O81.981 (3)
Cu1—O22.000 (3)Cu2—N61.994 (4)
Cu1—O32.252 (4)Cu2—O92.337 (3)
Cu1—O42.610 (4)Cu2—O102.541 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H18···O11i0.96 (2)2.11 (3)3.048 (7)164 (5)
O3—H18···O12i0.96 (2)2.30 (4)3.084 (6)138 (5)
O3—H18···N8i0.96 (2)2.53 (2)3.471 (6)167 (5)
O3—H19···O9ii0.95 (2)1.85 (2)2.777 (5)165 (5)
N3—H20···O10.95 (2)2.53 (7)3.014 (6)112 (5)
N3—H21···O120.97 (2)2.44 (7)3.150 (7)130 (7)
N7—H22···O60.96 (2)2.35 (4)3.131 (6)138 (5)
N7—H23···N30.95 (2)2.43 (5)3.196 (7)138 (5)
N7—H23···O70.95 (2)2.59 (6)3.091 (5)113 (5)
O9—H24···O6iii0.841.892.731 (5)174
O9—H24···N4iii0.842.573.367 (6)158
O9—H24···O5iii0.842.563.171 (6)130
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y1, z1.
 

Acknowledgements

The authors thank the Agence Universitaire de la Francophonie for financial support (AUF-PSCI No.6314PS804).

References

First citationBulut, A., İçbudak, H., Sezer, G. & Kazak, C. (2005). Acta Cryst. C61, m228–m230.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDu, M., Zou, R.-Q., Zhong, R.-Q. & Xu, Q. (2007). Inorg. Chim. Acta, 360, 3442–3447.  Web of Science CSD CrossRef CAS Google Scholar
First citationKelly, T. L., Milway, V. A., Grove, H., Niel, V., Abedin, T. S. M., Thompson, L. K., Zhao, L., Harvey, R. G., Miller, D. O., Leech, M., Goeta, A. E. & Howard, J. A. K. (2005). Polyhedron, 24, 807–821.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoreno, Y., Salgado, Y., Garland, M. T. & Baggio, R. (2007). Acta Cryst. C63, m487–m489.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1124-m1125
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds