organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Bis(4-fluoro­phen­yl)-3-aza­bi­cyclo­[3.3.1]nonan-9-one

aDivision of Image Science and Information Engineering, Pukyong National University, Busan 608 739, Republic of Korea, and bDepartment of Chemistry, IIT Madras, Chennai, Tamilnadu, India
*Correspondence e-mail: ytjeong@pknu.ac.kr

(Received 15 July 2008; accepted 1 August 2008; online 6 August 2008)

In the title compound, C20H19F2NO, a crystallographic mirror plane bis­ects the mol­ecule, passing through the N, O and two C atoms of the central ring system. The mol­ecule exists in a twin-chair conformation with equatorial dispositions of the 4-fluoro­phenyl groups on both sides of the secondary amino groups; the dihedral angle between the aromatic ring planes is 28.67 (3)°.

Related literature

For chemical background, see: Buxton & Roberts (1996[Buxton, S. R. & Roberts, S. M. (1996). Guide to Organic Stereochemistry. London: Longman.]); Evans & Seddon (1997[Evans, T. A. & Seddon, K. R. (1997). Chem. Commun. pp. 2023-2024.]); Ramachandran et al. (2007[Ramachandran, R., Parthiban, P., Doddi, A., Ramkumar, V. & Kabilan, S. (2007). Acta Cryst. E63, o4559.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19F2NO

  • Mr = 327.36

  • Orthorhombic, P n m a

  • a = 7.6153 (3) Å

  • b = 21.1392 (9) Å

  • c = 10.0878 (4) Å

  • V = 1623.95 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 (2) K

  • 0.35 × 0.32 × 0.30 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.967, Tmax = 0.971

  • 11360 measured reflections

  • 2064 independent reflections

  • 1596 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.141

  • S = 0.91

  • 2064 reflections

  • 118 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97..

Supporting information


Comment top

Fluorine substituted organic compounds are very impotant due to the significance of C—F bonds in some bioorganic systems (e.g. Evans & Seddon, 1997). The intermolecular and intramolecular hydrogen bonds involving fluorine atom have attracted much attention in various aspects (e.g. Ramachandran et al., 2007). Moreover, the biological activities mainly depend on the stereochemistry of the synthesized compound (e.g. Buxton & Roberts, 1996). Hence, realising the importance of the investigation of the conformation, stereochemistry and the nature of bondings in the synthesized title fluorine substituted heterocycle, (I), we have carried out single-crystal X-ray diffraction studies.

An analysis of torsion angles, asymmetry parameters and least-squares plane calculation shows that the piperidine ring adopts a near ideal chair conformation with the deviation of ring atoms N1 and C5 from the C1/C1i/C2/C2i (i = x, 1/2-y, z) plane by -0.670 (3)Å and 0.693 (3)Å respectively, QT = 0.6064 (13) Å. The cyclohexane ring deviate from the ideal chair conformation by the deviation of ring atoms C4 and C5 from the C2/C2i/C3/C3i plane by 0.522 (4)Å and 0.734 (3)Å respectively, QT = 0.5681 (14)Å (Cremer & Pople, 1975).

Compound (I) has a crystallographic mirror plane, which bisects the molecule passing through N1, C4, C5 and O1 of the central ring (Fig. 1) and exists in twin-chair conformation with equatorial orientations of the para fluoro phenyl groups on the heterocycle with the torsion angle of C5—C2—C1—C6 is 178.41 (6)°. The aryl groups are orientated at an angle of 28.67 (3)° to each other.

Related literature top

For chemical background, see: Buxton & Roberts (1996); Evans & Seddon (1997); Ramachandran et al. (2007). For ring puckering paramaters, see: Cremer & Pople (1975).

Experimental top

A mixture of cyclohexanone (0.05 mol) and para fluorobenzaldehyde (0.1 mol) was added to a warm solution of ammonium acetate (0.075 mol) in 50 ml of absolute ethanol. The mixture was very gently warmed on a hot plate till the yellow color formed during the mixing of the reactants and allowed to stir till the formation of the product. Thus, the formed azabicyclononane was separated by filtration and washed with a 1:5 v/v ethanol-ether mixture till the solid became colorless. Then, recrystallization of the compound from ethanol afforded colorless blocks of (I).

Refinement top

The nitrogen H atom was located in a difference Fourier map and refined isotropically. Other hydrogen atoms were fixed geometrically (C—H = 0.93-0.97Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with non-hydrogen atoms represented as 30% probability ellipsoids.
2,4-Bis(4-fluorophenyl)-3-azabicyclo[3.3.1]nonan-9-one top
Crystal data top
C20H19F2NOF(000) = 688
Mr = 327.36Dx = 1.339 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 4451 reflections
a = 7.6153 (3) Åθ = 3.4–28.0°
b = 21.1392 (9) ŵ = 0.10 mm1
c = 10.0878 (4) ÅT = 298 K
V = 1623.95 (11) Å3Block, colourless
Z = 40.35 × 0.32 × 0.30 mm
Data collection top
Bruker APEXII CCD
diffractometer
2064 independent reflections
Radiation source: fine-focus sealed tube1596 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 810
Tmin = 0.967, Tmax = 0.971k = 2828
11360 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 0.91 w = 1/[σ2(Fo2) + (0.0897P)2 + 0.3733P]
where P = (Fo2 + 2Fc2)/3
2064 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C20H19F2NOV = 1623.95 (11) Å3
Mr = 327.36Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 7.6153 (3) ŵ = 0.10 mm1
b = 21.1392 (9) ÅT = 298 K
c = 10.0878 (4) Å0.35 × 0.32 × 0.30 mm
Data collection top
Bruker APEXII CCD
diffractometer
2064 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1596 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.971Rint = 0.020
11360 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 0.91Δρmax = 0.22 e Å3
2064 reflectionsΔρmin = 0.19 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.92315 (17)0.30735 (5)0.39201 (12)0.0391 (3)
H10.88390.30550.29960.047*
C20.75726 (16)0.30901 (5)0.48153 (14)0.0421 (3)
H20.68640.34600.45760.051*
C30.79266 (19)0.31054 (6)0.63140 (13)0.0473 (3)
H3A0.87010.34580.65080.057*
H3B0.68270.31810.67730.057*
C40.8751 (3)0.25000.68562 (18)0.0492 (4)
H4A0.99930.25000.66440.059*
H4B0.86420.25000.78140.059*
C50.6527 (2)0.25000.45348 (18)0.0435 (4)
C61.03437 (17)0.36590 (5)0.40791 (12)0.0400 (3)
C70.9916 (2)0.41937 (6)0.33533 (16)0.0543 (4)
H70.89760.41790.27660.065*
C81.0856 (2)0.47481 (7)0.34848 (19)0.0666 (5)
H81.05500.51070.30030.080*
C91.2238 (2)0.47573 (7)0.4334 (2)0.0643 (5)
C101.2733 (2)0.42414 (8)0.50616 (19)0.0641 (4)
H101.36880.42610.56340.077*
C111.1771 (2)0.36882 (7)0.49220 (15)0.0519 (4)
H111.20910.33310.54040.062*
F11.31755 (17)0.53023 (5)0.44594 (17)0.1030 (5)
H1111.121 (3)0.25000.369 (2)0.047 (5)*
N11.0241 (2)0.25000.41923 (15)0.0384 (3)
O10.50237 (19)0.25000.41536 (17)0.0626 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0441 (7)0.0372 (6)0.0359 (6)0.0013 (5)0.0009 (5)0.0021 (4)
C20.0395 (6)0.0368 (6)0.0500 (7)0.0045 (5)0.0010 (5)0.0018 (5)
C30.0493 (7)0.0465 (7)0.0461 (7)0.0017 (6)0.0077 (6)0.0072 (5)
C40.0529 (10)0.0585 (10)0.0361 (9)0.0000.0003 (8)0.000
C50.0384 (9)0.0483 (9)0.0437 (9)0.0000.0027 (7)0.000
C60.0440 (7)0.0352 (5)0.0406 (6)0.0016 (5)0.0073 (5)0.0021 (4)
C70.0567 (8)0.0455 (7)0.0605 (8)0.0048 (6)0.0044 (7)0.0137 (6)
C80.0694 (10)0.0390 (7)0.0915 (12)0.0051 (7)0.0242 (10)0.0157 (7)
C90.0586 (9)0.0382 (7)0.0961 (13)0.0091 (6)0.0292 (9)0.0104 (7)
C100.0558 (9)0.0579 (9)0.0787 (11)0.0105 (7)0.0011 (8)0.0110 (8)
C110.0529 (8)0.0455 (7)0.0572 (8)0.0038 (6)0.0029 (6)0.0043 (6)
F10.0834 (8)0.0474 (6)0.1782 (14)0.0225 (5)0.0323 (8)0.0170 (6)
N10.0377 (8)0.0341 (7)0.0434 (8)0.0000.0057 (6)0.000
O10.0421 (8)0.0693 (10)0.0763 (11)0.0000.0159 (7)0.000
Geometric parameters (Å, º) top
C1—N11.4613 (14)C5—C2i1.5067 (15)
C1—C61.5083 (16)C6—C111.381 (2)
C1—C21.5533 (18)C6—C71.3856 (17)
C1—H10.9800C7—C81.380 (2)
C2—C51.5067 (15)C7—H70.9300
C2—C31.536 (2)C8—C91.357 (3)
C2—H20.9800C8—H80.9300
C3—C41.5266 (17)C9—F11.3613 (17)
C3—H3A0.9700C9—C101.367 (3)
C3—H3B0.9700C10—C111.387 (2)
C4—C3i1.5266 (17)C10—H100.9300
C4—H4A0.9700C11—H110.9300
C4—H4B0.9700N1—C1i1.4613 (14)
C5—O11.208 (2)N1—H1110.89 (2)
N1—C1—C6111.44 (10)O1—C5—C2124.12 (7)
N1—C1—C2109.70 (10)O1—C5—C2i124.12 (7)
C6—C1—C2112.11 (9)C2—C5—C2i111.76 (14)
N1—C1—H1107.8C11—C6—C7118.28 (12)
C6—C1—H1107.8C11—C6—C1122.96 (11)
C2—C1—H1107.8C7—C6—C1118.76 (12)
C5—C2—C3107.16 (11)C8—C7—C6121.34 (15)
C5—C2—C1107.58 (11)C8—C7—H7119.3
C3—C2—C1115.47 (11)C6—C7—H7119.3
C5—C2—H2108.8C9—C8—C7118.37 (14)
C3—C2—H2108.8C9—C8—H8120.8
C1—C2—H2108.8C7—C8—H8120.8
C4—C3—C2114.02 (11)C8—C9—F1118.51 (16)
C4—C3—H3A108.7C8—C9—C10122.75 (14)
C2—C3—H3A108.7F1—C9—C10118.74 (18)
C4—C3—H3B108.7C9—C10—C11118.19 (16)
C2—C3—H3B108.7C9—C10—H10120.9
H3A—C3—H3B107.6C11—C10—H10120.9
C3i—C4—C3113.91 (16)C6—C11—C10121.05 (14)
C3i—C4—H4A108.8C6—C11—H11119.5
C3—C4—H4A108.8C10—C11—H11119.5
C3i—C4—H4B108.8C1i—N1—C1112.11 (14)
C3—C4—H4B108.8C1i—N1—H111109.1 (7)
H4A—C4—H4B107.7C1—N1—H111109.1 (7)
N1—C1—C2—C558.02 (14)C2—C1—C6—C784.10 (15)
C6—C1—C2—C5177.61 (10)C11—C6—C7—C81.5 (2)
N1—C1—C2—C361.57 (13)C1—C6—C7—C8178.21 (13)
C6—C1—C2—C362.80 (13)C6—C7—C8—C90.9 (2)
C5—C2—C3—C452.64 (16)C7—C8—C9—F1179.55 (15)
C1—C2—C3—C467.17 (15)C7—C8—C9—C100.0 (3)
C2—C3—C4—C3i43.3 (2)C8—C9—C10—C110.2 (3)
C3—C2—C5—O1113.4 (2)F1—C9—C10—C11179.77 (15)
C1—C2—C5—O1121.84 (19)C7—C6—C11—C101.3 (2)
C3—C2—C5—C2i65.39 (17)C1—C6—C11—C10178.44 (14)
C1—C2—C5—C2i59.35 (18)C9—C10—C11—C60.4 (2)
N1—C1—C6—C1127.77 (17)C6—C1—N1—C1i174.53 (8)
C2—C1—C6—C1195.62 (15)C2—C1—N1—C1i60.72 (16)
N1—C1—C6—C7152.51 (13)
Symmetry code: (i) x, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC20H19F2NO
Mr327.36
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)298
a, b, c (Å)7.6153 (3), 21.1392 (9), 10.0878 (4)
V3)1623.95 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.32 × 0.30
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.967, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
11360, 2064, 1596
Rint0.020
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.141, 0.91
No. of reflections2064
No. of parameters118
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.19

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

This research was supported by the second stage of the BK 21 program and Pukyong National University under the 2008 Postdoc program.

References

First citationBruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuxton, S. R. & Roberts, S. M. (1996). Guide to Organic Stereochemistry. London: Longman.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEvans, T. A. & Seddon, K. R. (1997). Chem. Commun. pp. 2023–2024.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRamachandran, R., Parthiban, P., Doddi, A., Ramkumar, V. & Kabilan, S. (2007). Acta Cryst. E63, o4559.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds