metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1108-m1109

Hexa­kis­(1H-imidazole-κN3)nickel(II) tri­aqua­tris­(1H-imidazole-κN3)nickel(II) bis­­(naphthalene-1,4-di­carboxyl­ate)

aDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn

(Received 17 July 2008; accepted 30 July 2008; online 6 August 2008)

The crystal structure of the title compound, [Ni(C3H4N2)6][Ni(C3H4N2)3(H2O)3](C12H6O4)2, contains uncoordinated naphthalene­dicarboxyl­ate dianions and two kinds of NiII complex cations, both assuming distorted octa­hedral geometries. One NiII ion is located on an inversion center and is coordinated by six imidazole mol­ecules, while the other NiII ion is located on a twofold rotation axis and is coordinated by three water mol­ecules and three imidazole mol­ecules in a mer-NiN3O3 arrangement. The naphthalene­dicarboxyl­ate dianion links both NiII complex cations via O—H⋯O and N—H⋯O hydrogen bonding, but no ππ stacking is observed between aromatic rings in the crystal structure. One imidazole ligand is equally disordered over two sites about a twofold rotation axis; one N atom and one water O atom have site symmetry 2.

Related literature

For general background, see: Su & Xu (2004[Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223-229.]); Xu et al. (2007[Xu, D.-J., Zhang, B.-Y., Su, J.-R. & Nie, J.-J. (2007). Acta Cryst. C63, m622-m624.]). For related structures, see: Derissen et al. (1979[Derissen, J. L., Timmermans, C. & Schoone, J. C. (1979). Cryst. Struct. Commun. 8, 533-536.]); Li et al. (2008[Li, J.-H., Nie, J.-J. & Xu, D.-J. (2008). Acta Cryst. E64, m729.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C3H4N2)6][Ni(C3H4N2)3(H2O)3](C12H6O4)2

  • Mr = 1212.54

  • Orthorhombic, P c c n

  • a = 29.301 (7) Å

  • b = 9.297 (2) Å

  • c = 20.381 (5) Å

  • V = 5552 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 294 (2) K

  • 0.22 × 0.15 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.866, Tmax = 0.925

  • 33285 measured reflections

  • 4984 independent reflections

  • 2653 reflections with I > 2σ(I)

  • Rint = 0.128

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.140

  • S = 1.01

  • 4984 reflections

  • 367 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 0.95 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N1 2.104 (3)
Ni1—N3 2.120 (4)
Ni1—N5 2.128 (4)
Ni2—O1W 2.140 (3)
Ni2—O2W 2.025 (4)
Ni2—N7 2.108 (4)
Ni2—N9 2.048 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O1 0.92 1.87 2.779 (4) 167
O1W—H1B⋯O3i 0.85 2.04 2.884 (4) 172
O2W—H2A⋯O2 0.84 1.80 2.633 (5) 170
N2—H2N⋯O1 0.86 1.87 2.724 (5) 174
N4—H4N⋯O4ii 0.86 1.90 2.759 (5) 177
N6—H6N⋯O4iii 0.86 1.98 2.834 (5) 177
N8—H8N⋯O3iv 0.86 2.04 2.876 (5) 165
N10—H10A⋯O2v 0.86 1.87 2.638 (8) 149
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y, -z+1; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) [-x+{\script{3\over 2}}, y, z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of our ongoing investigation on the nature of π-π stacking (Su & Xu, 2004; Xu et al., 2007), the title compound, (I), incorporating naphthalenedicarboxylate dianions, has recently been prepared in the laboratory and its crystal structure is reported here.

The crystal structure contains uncoordinated naphthalenedicarboxylate dianions and two independent NiII complex cations (Fig. 1). Both NiII complexes assume distorted octahedral geometry. The Ni1 atom is located in an inversion center and coordinated by six imidazole ligands, while the Ni2 atom is located on a twofold axis and coordinated by three water and three imidazole ligands. In the Ni2-containing complex cation, the O2W and N9 atoms are also located on the twofold axis, but the other atoms of the disordered N9-imidazole ring do not lie on the twofold axis and the N9-imidazole ring is tilted to the twofold axis by an angle of 11.9 (5)°, similar to 14.2 (3)° found in the MnII analogue (Li et al., 2008). The coordination bond distances (Table 1) are significantly shorter than those found in the MnII analogue (Li et al., 2008).

The uncoordinated naphthalenedicarboxylate dianion links with both NiII complex cations via O—H···O and N—H···O hydrogen bonding (Fig. 1 and Table 2). Two carboxyl groups are twisted with respect to the naphthalene ring system by dihedral angles of 56.4 (5)° and 50.4 (5)°, which are larger than those found in the structure of free naphthalenedicarboxylic acid (ca 40°; Derissen et al., 1979). No π-π stacking is observed between aromatic rings in the crystal structure.

Related literature top

For general background, see: Su & Xu (2004); Xu et al. (2007). For related structures, see: Derissen et al. (1979); Li et al. (2008).

Experimental top

A water-ethanol solution (16 ml, 1:3 v/v) of naphthalene-1,4-dicarboxyllic acid (0.108 g, 0.5 mmol) and sodium carbonate (0.053 g, 0.5 mmol) was refluxed for 0.5 h, then nickel chloride hexahydrate (0.118 g, 0.5 mmol) was added to the above solution. The reaction mixture was refluxed for a further 6.5 h, then imidazole (0.102 g, 1.5 mmol) was added to the above solution and the reaction mixture was refluxed for another 0.5 h. After cooling to room temperature the solution was filtered. Green prisms of (I) were obtained from the filtrate after 4 d.

Refinement top

The N9-containing imidazole molecule is disordered over two sites, close to a twofold rotation axis, but N9 atom is located on the twofold axis and is not disordered. The disordered components were refined with a half site occupancy and bond-length restraints were used to stabilise the refinement.

The water H atoms were located in a difference Fourier map and refined as riding in as-found relative positions with Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.93 Å and N—H = 0.86 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C,N). The highest peak in the final difference Fourier map is 0.10 Å from N9.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement (arbitrary spheres for H atoms). One of the disordered imidazole components has been omitted for clarify. Dashed lines indicate hydrogen bonding [symmetry codes: (i) -x + 3/2, -y + 3/2, z; (ii) -x + 3/2, -y + 1/2, z + 1].
Hexakis(1H-imidazole-κN3)nickel(II) triaquatris(1H-imidazole-κN3)nickel(II) bis(naphthalene-1,4-dicarboxylate) top
Crystal data top
[Ni(C3H4N2)6][Ni(C3H4N2)3(H2O)3](C12H6O4)2F(000) = 2520
Mr = 1212.54Dx = 1.451 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 5668 reflections
a = 29.301 (7) Åθ = 2.2–24.5°
b = 9.297 (2) ŵ = 0.75 mm1
c = 20.381 (5) ÅT = 294 K
V = 5552 (2) Å3Prism, green
Z = 40.22 × 0.15 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4984 independent reflections
Radiation source: fine-focus sealed tube2653 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.128
Detector resolution: 10.0 pixels mm-1θmax = 25.2°, θmin = 1.4°
ω scansh = 3434
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 911
Tmin = 0.866, Tmax = 0.925l = 2423
33285 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0559P)2]
where P = (Fo2 + 2Fc2)/3
4984 reflections(Δ/σ)max < 0.001
367 parametersΔρmax = 0.95 e Å3
5 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Ni(C3H4N2)6][Ni(C3H4N2)3(H2O)3](C12H6O4)2V = 5552 (2) Å3
Mr = 1212.54Z = 4
Orthorhombic, PccnMo Kα radiation
a = 29.301 (7) ŵ = 0.75 mm1
b = 9.297 (2) ÅT = 294 K
c = 20.381 (5) Å0.22 × 0.15 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4984 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2653 reflections with I > 2σ(I)
Tmin = 0.866, Tmax = 0.925Rint = 0.128
33285 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0565 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.01Δρmax = 0.95 e Å3
4984 reflectionsΔρmin = 0.47 e Å3
367 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.50000.00000.50000.0358 (2)
Ni20.75000.75000.54570 (4)0.0380 (2)
N10.53093 (12)0.2040 (4)0.50465 (18)0.0392 (9)
N20.58307 (14)0.3703 (4)0.4922 (2)0.0586 (12)
H2N0.60580.41670.47590.070*
N30.54557 (13)0.0704 (4)0.57414 (17)0.0417 (10)
N40.58361 (13)0.2193 (4)0.63876 (19)0.0505 (11)
H4N0.59210.29800.65730.061*
N50.45162 (13)0.0630 (4)0.57239 (18)0.0399 (9)
N60.41513 (15)0.0694 (4)0.6666 (2)0.0570 (12)
H6N0.40910.05760.70750.068*
N70.72172 (12)0.9585 (4)0.54389 (19)0.0449 (10)
N80.69577 (14)1.1727 (4)0.5723 (2)0.0612 (12)
H8N0.68781.24410.59660.073*
O10.65246 (12)0.5137 (4)0.43190 (15)0.0622 (10)
O20.69666 (14)0.6205 (4)0.36079 (17)0.0887 (14)
O30.65981 (12)0.0720 (3)0.13293 (16)0.0598 (10)
O40.60816 (11)0.0274 (3)0.19982 (15)0.0556 (9)
O1W0.68332 (10)0.6562 (3)0.54323 (13)0.0447 (8)
H1A0.67410.62170.50280.067*
H1B0.67800.59350.57240.067*
O2W0.75000.75000.44632 (18)0.0498 (12)
H2A0.73420.69890.42070.075*
C10.56657 (18)0.2458 (6)0.4712 (2)0.0546 (14)
H10.57900.19390.43650.066*
C20.5574 (2)0.4100 (6)0.5438 (3)0.0690 (17)
H20.56100.49130.56980.083*
C30.52539 (18)0.3080 (5)0.5499 (3)0.0598 (15)
H30.50230.30890.58120.072*
C40.54989 (17)0.2028 (5)0.5955 (2)0.0494 (13)
H40.53120.27800.58180.059*
C50.60167 (18)0.0877 (6)0.6475 (3)0.0652 (16)
H50.62560.06370.67550.078*
C60.57841 (17)0.0030 (5)0.6078 (2)0.0547 (14)
H60.58400.10110.60400.066*
C70.45366 (17)0.0319 (5)0.6357 (2)0.0501 (13)
H70.47860.01060.65610.060*
C80.38765 (19)0.1290 (6)0.6211 (3)0.0700 (17)
H80.35870.16670.62820.084*
C90.40963 (19)0.1237 (6)0.5646 (3)0.0635 (15)
H90.39800.15680.52480.076*
C100.71259 (18)1.0466 (5)0.5928 (3)0.0603 (15)
H100.71731.02360.63670.072*
C110.6937 (2)1.1662 (6)0.5064 (3)0.0779 (18)
H110.68321.23780.47830.093*
C120.7098 (2)1.0357 (6)0.4888 (3)0.0743 (18)
H120.71241.00280.44590.089*
C200.65761 (16)0.4155 (5)0.3246 (2)0.0409 (12)
C210.69215 (17)0.3443 (5)0.2948 (2)0.0571 (14)
H210.72210.36750.30570.069*
C220.68420 (16)0.2359 (5)0.2477 (2)0.0541 (14)
H220.70900.19110.22780.065*
C230.64133 (15)0.1953 (5)0.2307 (2)0.0395 (11)
C240.60336 (14)0.2706 (5)0.25953 (19)0.0360 (11)
C250.55749 (15)0.2431 (5)0.2410 (2)0.0443 (12)
H250.55140.17090.21070.053*
C260.52247 (17)0.3195 (5)0.2666 (2)0.0511 (13)
H260.49270.29740.25440.061*
C270.53041 (17)0.4317 (5)0.3111 (2)0.0525 (14)
H270.50610.48490.32760.063*
C280.57430 (17)0.4625 (5)0.3302 (2)0.0493 (13)
H280.57940.53660.35990.059*
C290.61186 (15)0.3837 (4)0.3056 (2)0.0376 (11)
C300.66958 (17)0.5248 (5)0.3766 (2)0.0478 (13)
C310.63586 (17)0.0716 (5)0.1832 (2)0.0447 (12)
N90.75000.75000.6462 (3)0.0595 (12)
N100.7702 (3)0.7153 (9)0.7485 (3)0.0595 (12)0.50
H10A0.78720.71280.78290.071*0.50
C130.7844 (2)0.7501 (13)0.6881 (3)0.0595 (12)0.50
H130.81440.77150.67710.071*0.50
C140.7248 (3)0.6846 (11)0.7474 (4)0.0595 (12)0.50
H140.70620.65500.78180.071*0.50
C150.7135 (2)0.7078 (13)0.6836 (4)0.0595 (12)0.50
H150.68410.69630.66710.071*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0416 (5)0.0306 (5)0.0353 (4)0.0021 (4)0.0028 (4)0.0023 (4)
Ni20.0463 (5)0.0360 (5)0.0316 (5)0.0068 (4)0.0000.000
N10.042 (2)0.033 (2)0.043 (2)0.0010 (18)0.002 (2)0.0025 (19)
N20.065 (3)0.048 (3)0.063 (3)0.020 (2)0.006 (2)0.006 (2)
N30.052 (3)0.031 (2)0.042 (2)0.001 (2)0.001 (2)0.0034 (19)
N40.053 (3)0.046 (3)0.052 (3)0.010 (2)0.007 (2)0.012 (2)
N50.045 (3)0.033 (2)0.041 (2)0.0024 (19)0.0020 (19)0.0027 (18)
N60.063 (3)0.064 (3)0.044 (3)0.002 (2)0.016 (2)0.004 (2)
N70.048 (2)0.040 (2)0.046 (3)0.0051 (19)0.002 (2)0.001 (2)
N80.062 (3)0.039 (3)0.082 (4)0.001 (2)0.006 (3)0.002 (3)
O10.084 (3)0.066 (3)0.0359 (19)0.031 (2)0.0086 (19)0.0142 (18)
O20.118 (3)0.101 (3)0.047 (2)0.069 (3)0.004 (2)0.013 (2)
O30.084 (3)0.052 (2)0.043 (2)0.0058 (19)0.022 (2)0.0143 (17)
O40.070 (2)0.045 (2)0.052 (2)0.0141 (18)0.0050 (18)0.0095 (17)
O1W0.053 (2)0.047 (2)0.0348 (18)0.0090 (15)0.0016 (15)0.0027 (15)
O2W0.068 (3)0.054 (3)0.028 (2)0.027 (2)0.0000.000
C10.069 (4)0.046 (3)0.048 (3)0.013 (3)0.009 (3)0.010 (3)
C20.083 (4)0.043 (3)0.081 (5)0.013 (3)0.004 (4)0.018 (3)
C30.059 (4)0.041 (3)0.080 (4)0.000 (3)0.015 (3)0.011 (3)
C40.053 (3)0.043 (3)0.053 (3)0.003 (2)0.007 (3)0.007 (3)
C50.069 (4)0.051 (4)0.076 (4)0.004 (3)0.032 (3)0.001 (3)
C60.060 (3)0.032 (3)0.073 (4)0.003 (3)0.019 (3)0.004 (3)
C70.054 (3)0.057 (3)0.039 (3)0.001 (3)0.004 (3)0.007 (3)
C80.059 (4)0.084 (5)0.067 (4)0.028 (3)0.022 (3)0.003 (3)
C90.062 (4)0.070 (4)0.058 (4)0.018 (3)0.003 (3)0.010 (3)
C100.085 (4)0.039 (3)0.057 (4)0.000 (3)0.005 (3)0.007 (3)
C110.093 (5)0.064 (4)0.077 (5)0.026 (3)0.008 (4)0.013 (4)
C120.106 (5)0.057 (4)0.060 (4)0.029 (3)0.012 (3)0.007 (3)
C200.049 (3)0.038 (3)0.037 (3)0.007 (2)0.000 (2)0.007 (2)
C210.043 (3)0.070 (4)0.058 (3)0.015 (3)0.003 (3)0.023 (3)
C220.041 (3)0.062 (4)0.059 (3)0.002 (3)0.008 (3)0.018 (3)
C230.040 (3)0.046 (3)0.033 (3)0.005 (2)0.001 (2)0.007 (2)
C240.038 (3)0.041 (3)0.029 (2)0.001 (2)0.001 (2)0.001 (2)
C250.044 (3)0.048 (3)0.041 (3)0.003 (3)0.007 (2)0.004 (2)
C260.042 (3)0.060 (3)0.052 (3)0.001 (3)0.004 (3)0.003 (3)
C270.048 (3)0.050 (3)0.059 (4)0.019 (3)0.003 (3)0.003 (3)
C280.057 (3)0.048 (3)0.043 (3)0.004 (3)0.001 (3)0.002 (2)
C290.043 (3)0.034 (3)0.036 (3)0.001 (2)0.002 (2)0.000 (2)
C300.056 (3)0.048 (3)0.040 (3)0.013 (3)0.000 (3)0.008 (2)
C310.057 (3)0.037 (3)0.040 (3)0.001 (3)0.011 (3)0.010 (2)
N90.078 (3)0.062 (3)0.039 (2)0.005 (3)0.0000.000
N100.078 (3)0.062 (3)0.039 (2)0.005 (3)0.0000.000
C130.078 (3)0.062 (3)0.039 (2)0.005 (3)0.0000.000
C140.078 (3)0.062 (3)0.039 (2)0.005 (3)0.0000.000
C150.078 (3)0.062 (3)0.039 (2)0.005 (3)0.0000.000
Geometric parameters (Å, º) top
Ni1—N12.104 (3)C4—H40.9300
Ni1—N1i2.104 (3)C5—C61.353 (6)
Ni1—N32.120 (4)C5—H50.9300
Ni1—N3i2.120 (4)C6—H60.9300
Ni1—N52.128 (4)C7—H70.9300
Ni1—N5i2.128 (4)C8—C91.321 (6)
Ni2—O1Wii2.140 (3)C8—H80.9300
Ni2—O1W2.140 (3)C9—H90.9300
Ni2—O2W2.025 (4)C10—H100.9300
Ni2—N7ii2.108 (4)C11—C121.349 (7)
Ni2—N72.108 (4)C11—H110.9300
Ni2—N9ii2.048 (5)C12—H120.9300
Ni2—N92.048 (5)C20—C211.353 (6)
N1—C11.306 (5)C20—C291.426 (6)
N1—C31.346 (6)C20—C301.510 (6)
N2—C11.325 (6)C21—C221.411 (6)
N2—C21.345 (6)C21—H210.9300
N2—H2N0.8600C22—C231.357 (6)
N3—C41.312 (5)C22—H220.9300
N3—C61.365 (5)C23—C241.440 (6)
N4—C41.333 (5)C23—C311.511 (6)
N4—C51.344 (6)C24—C251.419 (6)
N4—H4N0.8600C24—C291.432 (5)
N5—C71.323 (5)C25—C261.352 (6)
N5—C91.363 (6)C25—H250.9300
N6—C71.339 (5)C26—C271.402 (6)
N6—C81.347 (6)C26—H260.9300
N6—H6N0.8600C27—C281.374 (6)
N7—C101.317 (6)C27—H270.9300
N7—C121.377 (6)C28—C291.414 (6)
N8—C101.338 (6)C28—H280.9300
N8—C111.347 (6)N9—N9ii0.000 (10)
N8—H8N0.8600N9—C131.3201 (11)
O1—C301.238 (5)N9—C13ii1.3201 (11)
O2—C301.235 (5)N9—C15ii1.3703 (11)
O3—C311.243 (5)N9—C151.3703 (11)
O4—C311.272 (5)N10—C131.3399 (11)
O1W—H1A0.9247N10—C141.3603 (11)
O1W—H1B0.8470N10—H10A0.8600
O2W—H2A0.8443C13—H130.9300
C1—H10.9300C14—C151.3599 (11)
C2—C31.338 (7)C14—C14ii1.912 (16)
C2—H20.9300C14—H140.9300
C3—H30.9300C15—H150.9300
N1—Ni1—N1i180.0C5—C6—H6124.9
N1—Ni1—N388.56 (14)N3—C6—H6124.9
N1i—Ni1—N391.44 (14)N5—C7—N6111.3 (4)
N1—Ni1—N3i91.44 (14)N5—C7—H7124.3
N1i—Ni1—N3i88.56 (14)N6—C7—H7124.3
N3—Ni1—N3i180.0C9—C8—N6107.1 (5)
N1—Ni1—N590.44 (14)C9—C8—H8126.5
N1i—Ni1—N589.56 (14)N6—C8—H8126.5
N3—Ni1—N590.59 (14)C8—C9—N5110.7 (5)
N3i—Ni1—N589.41 (14)C8—C9—H9124.7
N1—Ni1—N5i89.56 (14)N5—C9—H9124.7
N1i—Ni1—N5i90.44 (14)N7—C10—N8112.6 (5)
N3—Ni1—N5i89.41 (14)N7—C10—H10123.7
N3i—Ni1—N5i90.59 (14)N8—C10—H10123.7
N5—Ni1—N5i180.0N8—C11—C12106.8 (5)
O2W—Ni2—N9180.0N8—C11—H11126.6
O2W—Ni2—N7ii89.00 (11)C12—C11—H11126.6
N9ii—Ni2—N7ii91.00 (11)C11—C12—N7109.9 (5)
O2W—Ni2—N789.00 (11)C11—C12—H12125.0
N9—Ni2—N791.00 (11)N7—C12—H12125.0
N7ii—Ni2—N7178.0 (2)C21—C20—C29118.7 (4)
O2W—Ni2—O1Wii88.65 (8)C21—C20—C30118.1 (4)
N9—Ni2—O1Wii91.35 (8)C29—C20—C30123.2 (4)
N7ii—Ni2—O1Wii90.87 (12)C20—C21—C22122.1 (4)
N7—Ni2—O1Wii89.08 (12)C20—C21—H21119.0
O2W—Ni2—O1W88.65 (8)C22—C21—H21119.0
N9—Ni2—O1W91.35 (8)C23—C22—C21121.7 (4)
N7ii—Ni2—O1W89.08 (12)C23—C22—H22119.2
N7—Ni2—O1W90.87 (12)C21—C22—H22119.2
O1Wii—Ni2—O1W177.31 (15)C22—C23—C24118.4 (4)
C1—N1—C3103.9 (4)C22—C23—C31118.3 (4)
C1—N1—Ni1126.1 (3)C24—C23—C31123.3 (4)
C3—N1—Ni1128.8 (3)C25—C24—C29118.1 (4)
C1—N2—C2106.7 (4)C25—C24—C23122.4 (4)
C1—N2—H2N126.7C29—C24—C23119.4 (4)
C2—N2—H2N126.7C26—C25—C24121.5 (4)
C4—N3—C6103.5 (4)C26—C25—H25119.3
C4—N3—Ni1126.0 (3)C24—C25—H25119.3
C6—N3—Ni1130.4 (3)C25—C26—C27120.9 (5)
C4—N4—C5106.0 (4)C25—C26—H26119.5
C4—N4—H4N127.0C27—C26—H26119.5
C5—N4—H4N127.0C28—C27—C26119.6 (5)
C7—N5—C9104.2 (4)C28—C27—H27120.2
C7—N5—Ni1125.8 (3)C26—C27—H27120.2
C9—N5—Ni1129.3 (3)C27—C28—C29121.4 (4)
C7—N6—C8106.7 (4)C27—C28—H28119.3
C7—N6—H6N126.6C29—C28—H28119.3
C8—N6—H6N126.6C28—C29—C20121.9 (4)
C10—N7—C12103.9 (4)C28—C29—C24118.5 (4)
C10—N7—Ni2129.7 (3)C20—C29—C24119.5 (4)
C12—N7—Ni2126.4 (3)O2—C30—O1123.9 (4)
C10—N8—C11106.7 (5)O2—C30—C20116.8 (4)
C10—N8—H8N126.6O1—C30—C20119.3 (4)
C11—N8—H8N126.6O3—C31—O4125.6 (4)
Ni2—O1W—H1A115.3O3—C31—C23117.7 (4)
Ni2—O1W—H1B115.5O4—C31—C23116.6 (4)
H1A—O1W—H1B109.4C13—N9—C15103.6 (6)
Ni2—O2W—H2A128.2C13—N9—Ni2130.3 (4)
N1—C1—N2112.6 (4)C15—N9—Ni2123.8 (4)
N1—C1—H1123.7C13—N10—C14109.8 (8)
N2—C1—H1123.7C13—N10—H10A125.1
C3—C2—N2105.7 (5)C14—N10—H10A125.1
C3—C2—H2127.2N9—C13—N10111.0 (7)
N2—C2—H2127.2N9—C13—H13124.5
C2—C3—N1111.2 (5)N10—C13—H13124.5
C2—C3—H3124.4C15—C14—N10102.8 (8)
N1—C3—H3124.4C15—C14—C14ii95.0 (5)
N3—C4—N4113.5 (4)C15—C14—H14128.6
N3—C4—H4123.2N10—C14—H14128.6
N4—C4—H4123.2C14ii—C14—H14129.9
N4—C5—C6106.8 (5)C14—C15—N9112.8 (7)
N4—C5—H5126.6C14—C15—H15123.6
C6—C5—H5126.6N9—C15—H15123.6
C5—C6—N3110.1 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x+3/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O10.921.872.779 (4)167
O1W—H1B···O3iii0.852.042.884 (4)172
O2W—H2A···O20.841.802.633 (5)170
N2—H2N···O10.861.872.724 (5)174
N4—H4N···O4iv0.861.902.759 (5)177
N6—H6N···O4i0.861.982.834 (5)177
N8—H8N···O3v0.862.042.876 (5)165
N10—H10A···O2vi0.861.872.638 (8)149
Symmetry codes: (i) x+1, y, z+1; (iii) x, y+1/2, z+1/2; (iv) x, y1/2, z+1/2; (v) x, y+3/2, z+1/2; (vi) x+3/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C3H4N2)6][Ni(C3H4N2)3(H2O)3](C12H6O4)2
Mr1212.54
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)294
a, b, c (Å)29.301 (7), 9.297 (2), 20.381 (5)
V3)5552 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.22 × 0.15 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.866, 0.925
No. of measured, independent and
observed [I > 2σ(I)] reflections
33285, 4984, 2653
Rint0.128
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.140, 1.01
No. of reflections4984
No. of parameters367
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.95, 0.47

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Ni1—N12.104 (3)Ni2—O2W2.025 (4)
Ni1—N32.120 (4)Ni2—N72.108 (4)
Ni1—N52.128 (4)Ni2—N92.048 (5)
Ni2—O1W2.140 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O10.921.872.779 (4)167
O1W—H1B···O3i0.852.042.884 (4)172
O2W—H2A···O20.841.802.633 (5)170
N2—H2N···O10.861.872.724 (5)174
N4—H4N···O4ii0.861.902.759 (5)177
N6—H6N···O4iii0.861.982.834 (5)177
N8—H8N···O3iv0.862.042.876 (5)165
N10—H10A···O2v0.861.872.638 (8)149
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x+1, y, z+1; (iv) x, y+3/2, z+1/2; (v) x+3/2, y, z+1/2.
 

Acknowledgements

The work was supported by the ZIJIN project of Zhejiang University, China.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDerissen, J. L., Timmermans, C. & Schoone, J. C. (1979). Cryst. Struct. Commun. 8, 533–536.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, J.-H., Nie, J.-J. & Xu, D.-J. (2008). Acta Cryst. E64, m729.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223–229.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, D.-J., Zhang, B.-Y., Su, J.-R. & Nie, J.-J. (2007). Acta Cryst. C63, m622–m624.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1108-m1109
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds