metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1215-m1216

catena-Poly[[aqua­(pyrazino[2,3-f][1,10]phenanthroline-κ2N8,N9)cobalt(II)]-μ-pyrazine-2,3-di­carboxyl­ato-κ3N1O2:O3]

aDepartment of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China
*Correspondence e-mail: guangbochejl@yahoo.com

(Received 5 August 2008; accepted 23 August 2008; online 30 August 2008)

In the title compound, [Co(C6H2N2O4)(C14H8N4)(H2O)]n, the Co atom is bonded to one N,N′-bidentate pyrazino[2,3-f][1,10]phenanthroline (Pyphen) ligand, one N,O-bidentate pyrazine-2,3-dicarboxyl­ate (PZDC) dianion and one water mol­ecule in a distorted octa­hedral mer-CoN3O3 geometry. The CoII atoms are bridged by the PZDC dianions, forming an infinite one-dimensional chain running along the b axis. Adjacent chains pack together through ππ stacking inter­actions [centroid–centroid separations = 3.498 (4) and 3.528 (4) Å], and O—H⋯O and O—H⋯N hydrogen bonds involving the water mol­ecule complete the structure.

Related literature

For related structures, see: Che et al. (2008[Che, G.-B., Liu, C.-B., Liu, B., Wang, Q.-W. & Xu, Z.-L. (2008). CrystEngComm, 10, 184-191.]); Liu et al. (2008[Liu, C.-B., Che, G.-B., Wang, Q.-W. & Xu, Z.-L. (2008). Chin. J. Inorg. Chem. 24, 835-838.]). For the synthesis of the ligand, see: Che et al. (2006[Che, G.-B., Li, W.-L., Kong, Z.-G., Su, Z.-S., Chu, B., Li, B., Zhang, Z.-Q., Hu, Z.-Z. & Chi, H.-J. (2006). Synth. Commun. 36, 2519-2524.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C6H2N2O4)(C14H8N4)(H2O)]

  • Mr = 475.29

  • Triclinic, [P \overline 1]

  • a = 6.8430 (14) Å

  • b = 7.4455 (15) Å

  • c = 17.454 (4) Å

  • α = 93.64 (3)°

  • β = 95.99 (3)°

  • γ = 97.61 (3)°

  • V = 873.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 292 (2) K

  • 0.41 × 0.33 × 0.19 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.672, Tmax = 0.823

  • 7576 measured reflections

  • 3434 independent reflections

  • 1541 reflections with I > 2σ(I)

  • Rint = 0.114

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.161

  • S = 0.92

  • 3434 reflections

  • 297 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Selected bond lengths (Å)

Co—N1 2.116 (5)
Co—N2 2.124 (5)
Co—N5 2.135 (5)
Co—O3i 2.050 (5)
Co—O1W 2.110 (5)
Co—O1 2.125 (5)
Symmetry code: (i) x, y-1, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—HW1A⋯O4ii 0.95 (7) 1.76 (7) 2.680 (7) 164 (6)
O1W—HW1B⋯N6iii 0.78 (7) 2.15 (7) 2.851 (8) 149 (7)
Symmetry codes: (ii) x-1, y-1, z; (iii) -x+1, -y+1, -z+2.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our ongoing studies of supramolecular architectures containing pyrazino[2,3-f][1,10]phenanthroline (Pyphen) (Che, Liu et al., 2008; Liu et al., 2008), we selected pyrazine-2,3-dicarboxylic acid (H2PZDC) as a linker and Pyphen as a secondary ligandin combination with Co2+ ions, forming the title compound, (I), a new coordination polymer, which is reported here.

In compound (I), each Co atom is six-coordinated by three N atoms from one Pyphen ligand and one PZDC2- ligand, and three O atoms from two PZDC2- ligands and one water molecule in a slightly distorted octahedral geometry (Fig. 1) with O1W, N1, N2 and N5 forming the equatorial plane, and O1 and O3 in the axial positions (Table 1). One carboxylate oxygen atom and pyrazine nitrogen atom of PZDC2- chelate one Co(II) ion, while the other carboxylate oxygen atom is coordinated to another Co(II) ion in a monodentate fashion, forming an infinite one-dimensional chain running along the b axis (Fig. 2).

Adjacent chains pack together through π-π stacking interactions between the Pyphen ligands at a centroid separation of 3.498 (4) Å and between the PZDC2- ligands from adjacent one-dimensional chains at centroid separation 3.528 (4)Å, resulting in a three-dimensional supramolecular structure (Fig. 3).

Finally, O—H···O and O—H···N hydrogen bonds involving the water molecules and the O4 and N6 atoms of the PZDC2- dianion acceptors complete the structure of (I) (Table 2).

Related literature top

For related structures, see: Che et al. (2008); Liu et al. (2008). For the synthesis of the ligand, see: Che et al. (2006).

Experimental top

The Pyphen ligand was synthesized according to the literature method (Che et al., 2006). A mixture of Pyphen, H2PZDC, Co(NO3)2 and water in a molar ratio of 1:1:1:5000 was sealed in a Teflon-lined autoclave and heated to 433 K for 3 d. Upon cooling and opening the bomb, yellow blocks of (I) were obtained (76% yield based on Co).

Refinement top

All H atoms on C atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding, with Uiso(H)= 1.2Ueq(C). The hydrogen atoms of water molecules were located from difference Fourier maps and their positions and Uiso values were refined freely.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), expanded to show the metal coordination sphere. Displacement ellipsoids are drawn at the 30% probability level (arbitrary spheres for the H atoms). [Symmetry code: (i) x, y - 1, z.]
[Figure 2] Fig. 2. View of one-dimensional chain structure of (I). H atoms have been omitted.
[Figure 3] Fig. 3. View of three-dimensional superamolecular structure of (I) built up via π-π interactions. H atoms have been omitted.
catena-Poly[[aqua(pyrazino[2,3-f][1,10]phenanthroline-κ2N8,N9) cobalt(II)]-µ-pyrazine-2,3-dicarboxylato-κ3N1O2:O3] top
Crystal data top
[Co(C6H2N2O4)(C14H8N4)(H2O)]Z = 2
Mr = 475.29F(000) = 482
Triclinic, P1Dx = 1.806 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8430 (14) ÅCell parameters from 2411 reflections
b = 7.4455 (15) Åθ = 2.4–26.0°
c = 17.454 (4) ŵ = 1.04 mm1
α = 93.64 (3)°T = 292 K
β = 95.99 (3)°Block, yellow
γ = 97.61 (3)°0.41 × 0.33 × 0.19 mm
V = 873.9 (3) Å3
Data collection top
Bruker SMART CCD
diffractometer
3434 independent reflections
Radiation source: fine-focus sealed tube1541 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.114
ω scansθmax = 26.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 88
Tmin = 0.672, Tmax = 0.823k = 99
7576 measured reflectionsl = 2021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: difmap and geom
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 0.92 w = 1/[σ2(Fo2) + (0.0488P)2]
where P = (Fo2 + 2Fc2)/3
3434 reflections(Δ/σ)max < 0.001
297 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Co(C6H2N2O4)(C14H8N4)(H2O)]γ = 97.61 (3)°
Mr = 475.29V = 873.9 (3) Å3
Triclinic, P1Z = 2
a = 6.8430 (14) ÅMo Kα radiation
b = 7.4455 (15) ŵ = 1.04 mm1
c = 17.454 (4) ÅT = 292 K
α = 93.64 (3)°0.41 × 0.33 × 0.19 mm
β = 95.99 (3)°
Data collection top
Bruker SMART CCD
diffractometer
3434 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1541 reflections with I > 2σ(I)
Tmin = 0.672, Tmax = 0.823Rint = 0.114
7576 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 0.92Δρmax = 0.45 e Å3
3434 reflectionsΔρmin = 0.65 e Å3
297 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1297 (9)0.2248 (9)0.7468 (4)0.0382 (19)
H10.06680.21190.79120.046*
C20.0341 (10)0.3449 (9)0.6867 (4)0.042 (2)
H20.08540.41600.69180.050*
C30.1202 (10)0.3567 (9)0.6187 (4)0.0378 (18)
H30.05540.43050.57610.045*
C40.3067 (10)0.2560 (9)0.6148 (4)0.0334 (17)
C50.4113 (10)0.2614 (9)0.5466 (4)0.0309 (17)
C60.4200 (11)0.3667 (10)0.4217 (4)0.047 (2)
H60.36200.43520.37670.057*
C70.6080 (12)0.2729 (10)0.4227 (4)0.046 (2)
H70.67230.28170.37850.056*
C80.6015 (10)0.1635 (9)0.5474 (4)0.0377 (19)
C90.6942 (9)0.0530 (9)0.6161 (4)0.0307 (17)
C100.8851 (10)0.0455 (9)0.6205 (4)0.0368 (18)
H100.95840.04320.57850.044*
C110.9615 (10)0.1464 (9)0.6892 (4)0.0383 (19)
H111.08590.21620.69390.046*
C120.8503 (10)0.1414 (9)0.7502 (4)0.0390 (19)
H120.90550.20660.79630.047*
C130.5930 (9)0.0467 (8)0.6809 (4)0.0306 (17)
C140.3934 (9)0.1466 (8)0.6793 (4)0.0283 (16)
C150.6273 (9)0.4436 (8)0.8808 (3)0.0243 (15)
C160.7009 (9)0.6013 (9)0.9285 (4)0.0287 (16)
C170.7670 (9)0.4280 (10)1.0288 (4)0.0352 (18)
H170.81130.41791.08040.042*
C180.7034 (9)0.2695 (9)0.9810 (4)0.0314 (17)
H180.71190.15681.00020.038*
C190.5404 (10)0.4446 (10)0.7980 (4)0.0346 (18)
C200.7100 (11)0.7927 (9)0.9014 (4)0.0329 (17)
N10.3064 (8)0.1266 (7)0.7451 (3)0.0311 (14)
N20.6678 (8)0.0493 (7)0.7479 (3)0.0328 (14)
N30.3191 (8)0.3632 (7)0.4820 (3)0.0376 (15)
N40.7025 (8)0.1691 (8)0.4849 (3)0.0386 (15)
N50.6314 (7)0.2789 (7)0.9087 (3)0.0292 (14)
N60.7668 (7)0.5927 (7)1.0039 (3)0.0321 (14)
O10.4150 (7)0.3020 (6)0.7750 (2)0.0389 (12)
O20.5959 (7)0.5679 (7)0.7600 (3)0.0494 (14)
O1W0.2264 (8)0.0860 (8)0.8973 (3)0.0411 (14)
O30.5474 (7)0.8538 (6)0.8915 (3)0.0368 (12)
O40.8788 (7)0.8715 (7)0.8956 (3)0.0536 (15)
Co0.46559 (14)0.06529 (13)0.83165 (5)0.0332 (3)
HW1A0.113 (11)0.005 (10)0.905 (4)0.06 (3)*
HW1B0.200 (10)0.182 (10)0.910 (4)0.05 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.029 (4)0.047 (5)0.037 (5)0.004 (4)0.011 (3)0.000 (4)
C20.040 (4)0.046 (5)0.034 (5)0.016 (4)0.010 (4)0.001 (4)
C30.038 (4)0.037 (5)0.034 (5)0.001 (4)0.004 (4)0.006 (4)
C40.034 (4)0.027 (4)0.038 (4)0.001 (3)0.004 (3)0.002 (3)
C50.040 (4)0.032 (4)0.021 (4)0.008 (3)0.001 (3)0.004 (3)
C60.051 (5)0.064 (6)0.025 (4)0.002 (4)0.009 (4)0.008 (4)
C70.059 (6)0.051 (6)0.032 (5)0.014 (4)0.012 (4)0.001 (4)
C80.036 (4)0.030 (4)0.053 (5)0.008 (4)0.024 (4)0.011 (4)
C90.031 (4)0.036 (5)0.024 (4)0.003 (3)0.004 (3)0.001 (3)
C100.032 (4)0.034 (5)0.046 (5)0.006 (3)0.009 (4)0.005 (4)
C110.032 (4)0.039 (5)0.044 (5)0.003 (3)0.016 (4)0.008 (4)
C120.039 (5)0.038 (5)0.040 (5)0.003 (4)0.002 (4)0.011 (4)
C130.038 (4)0.022 (4)0.030 (4)0.001 (3)0.003 (3)0.000 (3)
C140.034 (4)0.015 (4)0.034 (4)0.001 (3)0.000 (3)0.002 (3)
C150.030 (4)0.020 (4)0.025 (4)0.007 (3)0.004 (3)0.005 (3)
C160.025 (4)0.030 (4)0.031 (4)0.001 (3)0.008 (3)0.003 (3)
C170.039 (4)0.039 (5)0.027 (4)0.004 (4)0.001 (3)0.005 (4)
C180.033 (4)0.026 (4)0.038 (5)0.004 (3)0.012 (3)0.012 (3)
C190.039 (4)0.032 (5)0.035 (5)0.006 (4)0.013 (4)0.001 (4)
C200.036 (4)0.030 (5)0.031 (4)0.005 (4)0.010 (4)0.001 (3)
N10.030 (3)0.026 (3)0.037 (4)0.002 (3)0.006 (3)0.000 (3)
N20.035 (3)0.030 (3)0.032 (4)0.006 (3)0.009 (3)0.000 (3)
N30.044 (4)0.038 (4)0.029 (4)0.004 (3)0.003 (3)0.001 (3)
N40.041 (4)0.045 (4)0.032 (4)0.006 (3)0.013 (3)0.004 (3)
N50.026 (3)0.035 (4)0.030 (4)0.007 (3)0.009 (3)0.011 (3)
N60.028 (3)0.029 (4)0.038 (4)0.003 (3)0.011 (3)0.002 (3)
O10.050 (3)0.032 (3)0.030 (3)0.003 (2)0.003 (2)0.001 (2)
O20.063 (4)0.041 (4)0.043 (3)0.002 (3)0.008 (3)0.007 (3)
O1W0.035 (3)0.030 (4)0.055 (4)0.009 (3)0.015 (3)0.009 (3)
O30.036 (3)0.033 (3)0.045 (3)0.006 (2)0.014 (2)0.009 (2)
O40.042 (3)0.050 (4)0.064 (4)0.017 (3)0.009 (3)0.009 (3)
Co0.0347 (6)0.0307 (6)0.0323 (6)0.0037 (4)0.0069 (4)0.0004 (4)
Geometric parameters (Å, º) top
C1—N11.332 (7)C13—N21.345 (8)
C1—C21.383 (9)C13—C141.463 (9)
C1—H10.9300C14—N11.357 (7)
C2—C31.381 (8)C15—N51.351 (7)
C2—H20.9300C15—C161.399 (8)
C3—C41.403 (9)C15—C191.504 (9)
C3—H30.9300C16—N61.353 (8)
C4—C141.378 (8)C16—C201.525 (9)
C4—C51.453 (9)C17—N61.328 (8)
C5—N31.364 (8)C17—C181.393 (8)
C5—C81.403 (9)C17—H170.9300
C6—N31.318 (8)C18—N51.315 (8)
C6—C71.378 (9)C18—H180.9300
C6—H60.9300C19—O21.211 (7)
C7—N41.345 (8)C19—O11.288 (7)
C7—H70.9300C20—O41.242 (7)
C8—N41.353 (8)C20—O31.257 (8)
C8—C91.446 (9)Co—N12.116 (5)
C9—C131.389 (8)Co—N22.124 (5)
C9—C101.403 (9)Co—N52.135 (5)
C10—C111.389 (9)Co—O3i2.050 (5)
C10—H100.9300Co—O1W2.110 (5)
C11—C121.370 (8)Co—O12.125 (5)
C11—H110.9300O1W—HW1A0.95 (7)
C12—N21.338 (8)O1W—HW1B0.78 (7)
C12—H120.9300O3—Coii2.050 (5)
N1—C1—C2124.0 (7)N6—C16—C20115.1 (6)
N1—C1—H1118.0C15—C16—C20123.7 (6)
C2—C1—H1118.0N6—C17—C18122.7 (6)
C3—C2—C1118.5 (6)N6—C17—H17118.6
C3—C2—H2120.7C18—C17—H17118.6
C1—C2—H2120.7N5—C18—C17120.2 (6)
C2—C3—C4119.1 (6)N5—C18—H18119.9
C2—C3—H3120.5C17—C18—H18119.9
C4—C3—H3120.5O2—C19—O1127.2 (7)
C14—C4—C3117.7 (6)O2—C19—C15120.0 (7)
C14—C4—C5119.0 (6)O1—C19—C15112.7 (6)
C3—C4—C5123.4 (6)O4—C20—O3128.2 (7)
N3—C5—C8121.2 (6)O4—C20—C16115.6 (7)
N3—C5—C4118.2 (6)O3—C20—C16116.1 (6)
C8—C5—C4120.6 (6)C1—N1—C14116.6 (6)
N3—C6—C7122.6 (7)C1—N1—Co127.8 (5)
N3—C6—H6118.7C14—N1—Co115.5 (4)
C7—C6—H6118.7C12—N2—C13116.6 (6)
N4—C7—C6122.8 (7)C12—N2—Co127.5 (5)
N4—C7—H7118.6C13—N2—Co115.3 (4)
C6—C7—H7118.6C6—N3—C5116.3 (6)
N4—C8—C5121.5 (7)C7—N4—C8115.6 (6)
N4—C8—C9118.3 (6)C18—N5—C15119.2 (6)
C5—C8—C9120.2 (6)C18—N5—Co127.6 (5)
C13—C9—C10118.4 (6)C15—N5—Co112.2 (4)
C13—C9—C8119.1 (6)C17—N6—C16116.7 (6)
C10—C9—C8122.6 (6)C19—O1—Co114.9 (4)
C11—C10—C9118.1 (6)Co—O1W—HW1A134 (4)
C11—C10—H10121.0Co—O1W—HW1B120 (6)
C9—C10—H10121.0HW1A—O1W—HW1B104 (7)
C12—C11—C10118.9 (7)C20—O3—Coii131.4 (4)
C12—C11—H11120.6O3i—Co—O1W91.3 (2)
C10—C11—H11120.6O3i—Co—N188.77 (19)
N2—C12—C11124.5 (7)O1W—Co—N196.0 (2)
N2—C12—H12117.7O3i—Co—N296.21 (19)
C11—C12—H12117.7O1W—Co—N2169.4 (2)
N2—C13—C9123.6 (6)N1—Co—N276.8 (2)
N2—C13—C14115.9 (6)O3i—Co—O1173.06 (19)
C9—C13—C14120.5 (6)O1W—Co—O191.9 (2)
N1—C14—C4123.9 (6)N1—Co—O196.98 (19)
N1—C14—C13115.5 (6)N2—Co—O181.41 (19)
C4—C14—C13120.6 (6)O3i—Co—N596.8 (2)
N5—C15—C16119.9 (6)O1W—Co—N587.2 (2)
N5—C15—C19116.4 (6)N1—Co—N5173.5 (2)
C16—C15—C19123.7 (6)N2—Co—N599.2 (2)
N6—C16—C15121.2 (6)O1—Co—N577.22 (19)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—HW1A···O4iii0.95 (7)1.76 (7)2.680 (7)164 (6)
O1W—HW1B···N6iv0.78 (7)2.15 (7)2.851 (8)149 (7)
Symmetry codes: (iii) x1, y1, z; (iv) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Co(C6H2N2O4)(C14H8N4)(H2O)]
Mr475.29
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)6.8430 (14), 7.4455 (15), 17.454 (4)
α, β, γ (°)93.64 (3), 95.99 (3), 97.61 (3)
V3)873.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.41 × 0.33 × 0.19
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.672, 0.823
No. of measured, independent and
observed [I > 2σ(I)] reflections
7576, 3434, 1541
Rint0.114
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.161, 0.92
No. of reflections3434
No. of parameters297
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.65

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co—N12.116 (5)Co—O3i2.050 (5)
Co—N22.124 (5)Co—O1W2.110 (5)
Co—N52.135 (5)Co—O12.125 (5)
Symmetry code: (i) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—HW1A···O4ii0.95 (7)1.76 (7)2.680 (7)164 (6)
O1W—HW1B···N6iii0.78 (7)2.15 (7)2.851 (8)149 (7)
Symmetry codes: (ii) x1, y1, z; (iii) x+1, y+1, z+2.
 

Acknowledgements

The authors thank the Doctoral Foundation of Jilin Normal University (Nos. 2006006 and 2007009) and the Subject and Base Construction Foundation of Jilin Normal University (No. 2006041).

References

First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChe, G.-B., Li, W.-L., Kong, Z.-G., Su, Z.-S., Chu, B., Li, B., Zhang, Z.-Q., Hu, Z.-Z. & Chi, H.-J. (2006). Synth. Commun. 36, 2519–2524.  Web of Science CrossRef CAS Google Scholar
First citationChe, G.-B., Liu, C.-B., Liu, B., Wang, Q.-W. & Xu, Z.-L. (2008). CrystEngComm, 10, 184–191.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, C.-B., Che, G.-B., Wang, Q.-W. & Xu, Z.-L. (2008). Chin. J. Inorg. Chem. 24, 835–838.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1215-m1216
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds