metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1189-m1190

Di­chlorido(4,4′-di-tert-butyl-2,2′-bi­pyridine-κ2N,N′)gold(III) tetra­chlorido­aurate(III) aceto­nitrile solvate

aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, bChemistry Department, Shahid Beheshti University, Evin, Tehran 1983963113, Iran, cDepartment of Chemistry, Loughborough University, Leicestershire LE11 3TU, England, and dDepartment of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 7 August 2008; accepted 8 August 2008; online 20 August 2008)

In the title compound, [AuCl2(C9H12N)2][AuCl4]·C2H3N, there is a mirror plane passing through Au and the central C—C bond of the bipyridyl ligand in the cation, and through Au and two Cl atoms of the anion. A cis-AuCl2N2 square-planar geometry for the cation and a square-planar AuCl4 geometry for the anion result. The two C atoms and the N atom of the acetonitrile mol­ecule all have m site symmetries. In the crystal structure, weak C—H⋯Cl inter­actions may help to establish the packing.

Related literature

For related structures, see: Abbate et al. (2000[Abbate, F., Orioli, P., Bruni, B., Marcon, G. & Messori, L. (2000). Inorg. Chim. Acta, 311, 1-5.]); Adams & Strähle (1982[Adams, H. N. & Strähle, J. (1982). Z. Anorg. Allg. Chem. 485, 65-80.]); Bjernemose et al. (2004[Bjernemose, J. K., Raithby, P. R. & Toftlund, H. (2004). Acta Cryst. E60, m1719-m1721.]); Hayoun et al. (2006[Hayoun, R., Zhong, D. K., Rheingold, A. L. & Doerrer, L. H. (2006). Inorg. Chem. 45, 6120-6122.]); McInnes et al. (1995[McInnes, E. J. L., Welch, A. J. & Yellowlees, L. J. (1995). Acta Cryst. C51, 2023-2025.]).

[Scheme 1]

Experimental

Crystal data
  • [AuCl2(C9H12N)2][AuCl4]·C2H3N

  • Mr = 916.09

  • Monoclinic, P 21 /m

  • a = 6.7880 (9) Å

  • b = 14.2270 (19) Å

  • c = 14.1330 (19) Å

  • β = 97.151 (2)°

  • V = 1354.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 11.43 mm−1

  • T = 150 (2) K

  • 0.14 × 0.10 × 0.01 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.298, Tmax = 0.894

  • 14949 measured reflections

  • 3888 independent reflections

  • 2860 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.079

  • S = 1.01

  • 3888 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 1.59 e Å−3

  • Δρmin = −1.24 e Å−3

Table 1
Selected geometric parameters (Å, °)

Au1—Cl1 2.2590 (17)
Au1—N1 2.020 (4)
Au2—Cl2 2.271 (2)
Au2—Cl3 2.2675 (16)
Au2—Cl4 2.311 (2)
N2—C11—C10 179.5 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cl3i 0.93 2.66 3.561 (6) 162
C3—H3⋯Cl1ii 0.93 2.64 3.231 (6) 122
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [x, -y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Several AuIII complexes, with formula, [AuCl2(N—N)], such as [AuCl2(bipy)][BF4], (II), (McInnes et al., 1995), [AuCl2(bipy)](NO3), (III), (Bjernemose et al., 2004), [AuCl2(bipy)][AuBr4], (IV), (Hayoun et al., 2006) and [AuCl2(phen)]Cl.H2O, (V), (Abbate et al., 2000) [where bipy is 2,2'-bipyridine and phen is 1,10-phenanthroline] have been synthesized and characterized by single-crystal X-ray diffraction methods.

Other AuIII complexes, with formula, [AuCl2L2], such as [AuCl2(py)2][AuCl4], (VI) and [AuCl2(py)2]Cl.H2O, (VII), (Adams & Strähle 1982) [where py is pyridine] have also bee prepared and characterized. We report herein the synthesis and crystal structure of the title compound, (I).

The asymmetric unit of (I) (Fig. 1) contains one half-cation, one half-anion and one half-acetonitrile molecule; the whole assemblage is symmetric according to a mirror plane. Both Au ions have square-planar coordination (Table 1) and the individual bond lengths and angles are in good agreement with the corresponding values in (II), (III), (IV), (V), (VI) and (VII).

In the crystal of (I), weak intermolecular C—H···Cl hydrogen bonds (Table 2) link the molecules to form a supramolecular structure (Fig. 2 and Fig. 3).

Related literature top

For related structures, see: Abbate et al. (2000); Adams & Strähle (1982); Bjernemose et al. (2004); Hayoun et al. (2006); McInnes et al. (1995).

Experimental top

A solution of 4,4'-di-tert-butyl-2,2'-bipyridine (0.15 g, 0.56 mmol) in acetonitrile (40 ml) was added to a solution of HAuCl4.3H2O, (0.22 g, 0.56 mmol) in EtOH (50 ml) and the resulting yellow solution was stirred for 10 min at 313 K. Then, it was left to evaporate slowly at room temperature. After one week, yellow laths and prisms of (I) were isolated (yield 0.38 g; 74.0%).

Refinement top

All H atoms were positioned geometrically (C—H = 0.93-0.96Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I) with displacement ellipsoids for non-H atoms drawn at the 30% probability level and H atoms omitted for clarity. The symmetry codes a and b both refer to (x, 1/2 - y, z).
[Figure 2] Fig. 2. A view of the packing and the hydrogen bonding (dashed lines) of (I) down the a axis in the unit cell.
[Figure 3] Fig. 3. View of the unit-cell packing of (I) down the c axis.
Dichlorido(4,4'-di-tert-butyl-2,2'-bipyridine- κ2N,N')gold(III) tetrachloroaurate(III) acetonitrile solvate top
Crystal data top
[AuCl2(C9H12N)2][AuCl4]·C2H3NF(000) = 856
Mr = 916.09Dx = 2.247 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybCell parameters from 2450 reflections
a = 6.7880 (9) Åθ = 2.9–24.8°
b = 14.2270 (19) ŵ = 11.43 mm1
c = 14.1330 (19) ÅT = 150 K
β = 97.151 (2)°Lath, yellow
V = 1354.3 (3) Å30.14 × 0.10 × 0.01 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
3888 independent reflections
Radiation source: sealed tube2860 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ϕ and ω scansθmax = 29.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 99
Tmin = 0.298, Tmax = 0.894k = 1919
14949 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0318P)2]
where P = (Fo2 + 2Fc2)/3
3888 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 1.60 e Å3
0 restraintsΔρmin = 1.24 e Å3
Crystal data top
[AuCl2(C9H12N)2][AuCl4]·C2H3NV = 1354.3 (3) Å3
Mr = 916.09Z = 2
Monoclinic, P21/mMo Kα radiation
a = 6.7880 (9) ŵ = 11.43 mm1
b = 14.2270 (19) ÅT = 150 K
c = 14.1330 (19) Å0.14 × 0.10 × 0.01 mm
β = 97.151 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3888 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2860 reflections with I > 2σ(I)
Tmin = 0.298, Tmax = 0.894Rint = 0.060
14949 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.01Δρmax = 1.60 e Å3
3888 reflectionsΔρmin = 1.24 e Å3
155 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Au10.23789 (4)0.250000.04727 (2)0.0241 (1)
Cl10.2075 (2)0.13933 (12)0.16278 (11)0.0366 (5)
N10.2670 (6)0.3421 (3)0.0624 (3)0.0238 (14)
C10.3143 (8)0.3571 (4)0.2320 (4)0.0258 (17)
C20.2920 (7)0.3000 (4)0.1509 (4)0.0222 (16)
C30.2636 (8)0.4365 (4)0.0544 (4)0.0286 (17)
C40.2861 (8)0.4940 (4)0.1338 (4)0.0303 (17)
C50.3113 (8)0.4559 (4)0.2252 (4)0.0277 (17)
C60.3361 (8)0.5158 (4)0.3150 (4)0.0287 (17)
C70.5416 (9)0.4930 (4)0.3701 (4)0.0345 (19)
C80.1694 (9)0.4913 (4)0.3758 (4)0.0333 (19)
C90.3254 (9)0.6207 (4)0.2926 (5)0.035 (2)
N20.3784 (17)0.250000.4696 (8)0.066 (4)
C100.104 (2)0.250000.5775 (11)0.087 (6)
C110.2608 (17)0.250000.5153 (9)0.049 (4)
Au20.79109 (4)0.250000.14539 (2)0.0258 (1)
Cl20.8353 (4)0.250000.30734 (16)0.0402 (8)
Cl30.7908 (2)0.40938 (11)0.14566 (12)0.0363 (5)
Cl40.7455 (3)0.250000.01937 (17)0.0364 (7)
H10.331400.329200.292000.0310*
H30.245700.463600.006000.0340*
H40.284300.558900.126100.0360*
H7A0.642200.501100.328700.0520*
H7B0.542900.429200.392200.0520*
H7C0.567400.534600.423700.0520*
H8A0.183000.529500.432200.0500*
H8B0.178900.426100.393600.0500*
H8C0.042600.502900.339500.0500*
H9A0.431800.637500.257100.0520*
H9B0.337200.655700.351100.0520*
H9C0.200600.634800.255600.0520*
H10A0.073200.186400.593200.1300*0.500
H10B0.012700.279700.545300.1300*0.500
H10C0.148200.283900.635000.1300*0.500
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.0226 (2)0.0279 (2)0.0216 (2)0.00000.0016 (1)0.0000
Cl10.0483 (9)0.0351 (8)0.0257 (8)0.0000 (7)0.0023 (7)0.0050 (7)
N10.023 (2)0.024 (2)0.024 (3)0.0009 (19)0.0014 (19)0.003 (2)
C10.023 (3)0.025 (3)0.029 (3)0.002 (2)0.002 (2)0.004 (2)
C20.014 (2)0.038 (3)0.015 (3)0.000 (2)0.003 (2)0.001 (2)
C30.033 (3)0.029 (3)0.024 (3)0.001 (3)0.004 (2)0.002 (3)
C40.032 (3)0.025 (3)0.033 (3)0.001 (2)0.000 (3)0.000 (3)
C50.021 (3)0.032 (3)0.031 (3)0.001 (2)0.007 (2)0.001 (3)
C60.029 (3)0.024 (3)0.032 (3)0.005 (2)0.000 (3)0.002 (3)
C70.036 (3)0.036 (4)0.030 (3)0.002 (3)0.002 (3)0.006 (3)
C80.034 (3)0.035 (4)0.031 (3)0.002 (3)0.004 (3)0.007 (3)
C90.036 (3)0.035 (4)0.032 (4)0.001 (3)0.001 (3)0.003 (3)
N20.081 (8)0.053 (6)0.068 (7)0.00000.020 (6)0.0000
C100.109 (12)0.079 (10)0.080 (10)0.00000.043 (9)0.0000
C110.061 (7)0.035 (6)0.051 (7)0.00000.012 (6)0.0000
Au20.0194 (2)0.0261 (2)0.0318 (2)0.00000.0033 (1)0.0000
Cl20.0509 (14)0.0399 (13)0.0290 (12)0.00000.0018 (10)0.0000
Cl30.0365 (8)0.0275 (8)0.0448 (10)0.0009 (6)0.0046 (7)0.0040 (7)
Cl40.0272 (10)0.0439 (13)0.0377 (12)0.00000.0022 (9)0.0000
Geometric parameters (Å, º) top
Au1—Cl12.2590 (17)C1—H10.9300
Au1—N12.020 (4)C3—H30.9300
Au1—Cl1i2.2590 (17)C4—H40.9300
Au1—N1i2.020 (4)C7—H7B0.9600
Au2—Cl22.271 (2)C7—H7A0.9600
Au2—Cl32.2675 (16)C7—H7C0.9600
Au2—Cl42.311 (2)C8—H8A0.9600
Au2—Cl3i2.2675 (16)C8—H8C0.9600
N1—C31.348 (7)C8—H8B0.9600
N1—C21.378 (7)C9—H9B0.9600
N2—C111.088 (17)C9—H9C0.9600
C1—C51.409 (8)C9—H9A0.9600
C1—C21.398 (8)C10—C111.462 (19)
C2—C2i1.423 (8)C10—H10Bi0.9600
C3—C41.382 (8)C10—H10Ci0.9600
C4—C51.392 (8)C10—H10Ai0.9600
C5—C61.521 (8)C10—H10A0.9600
C6—C81.544 (8)C10—H10B0.9600
C6—C91.526 (8)C10—H10C0.9600
C6—C71.545 (8)
Cl1—Au1—N1176.24 (13)H7A—C7—H7C109.00
Cl1—Au1—Cl1i88.38 (6)C6—C7—H7C109.00
Cl1—Au1—N1i95.38 (13)H7A—C7—H7B109.00
Cl1i—Au1—N195.38 (13)H7B—C7—H7C109.00
N1—Au1—N1i80.86 (17)C6—C8—H8C110.00
Cl1i—Au1—N1i176.24 (13)C6—C8—H8A109.00
Cl2—Au2—Cl3i89.91 (4)C6—C8—H8B109.00
Cl2—Au2—Cl389.91 (4)H8A—C8—H8B109.00
Cl2—Au2—Cl4179.90 (8)H8A—C8—H8C109.00
Cl3i—Au2—Cl490.10 (4)H8B—C8—H8C109.00
Cl3—Au2—Cl490.10 (4)H9A—C9—H9B109.00
Cl3—Au2—Cl3i179.77 (6)H9A—C9—H9C110.00
Au1—N1—C2113.8 (3)H9B—C9—H9C110.00
Au1—N1—C3125.7 (4)C6—C9—H9A109.00
C2—N1—C3120.5 (5)C6—C9—H9B109.00
C2—C1—C5121.7 (5)C6—C9—H9C109.00
C1—C2—C2i125.5 (5)N2—C11—C10179.5 (14)
N1—C2—C2i115.8 (5)C11—C10—H10Ci110.00
N1—C2—C1118.7 (5)C11—C10—H10A110.00
N1—C3—C4121.5 (5)C11—C10—H10B110.00
C3—C4—C5120.8 (5)C11—C10—H10C110.00
C1—C5—C6120.2 (5)C11—C10—H10Ai110.00
C1—C5—C4116.8 (5)C11—C10—H10Bi110.00
C4—C5—C6123.0 (5)H10Ai—C10—H10B60.00
C8—C6—C9108.5 (5)H10B—C10—H10Bi52.00
C5—C6—C7107.6 (4)H10B—C10—H10Ci141.00
C5—C6—C8109.0 (5)H10Ai—C10—H10C52.00
C5—C6—C9112.2 (5)H10Bi—C10—H10C141.00
C7—C6—C8110.5 (5)H10C—C10—H10Ci60.00
C7—C6—C9109.1 (5)H10Ai—C10—H10Bi109.00
C5—C1—H1119.00H10Ai—C10—H10Ci109.00
C2—C1—H1119.00H10Bi—C10—H10Ci109.00
N1—C3—H3119.00H10A—C10—H10B109.00
C4—C3—H3119.00H10A—C10—H10C109.00
C5—C4—H4120.00H10A—C10—H10Ai141.00
C3—C4—H4120.00H10A—C10—H10Bi60.00
C6—C7—H7B109.00H10A—C10—H10Ci52.00
C6—C7—H7A109.00H10B—C10—H10C109.00
Cl1i—Au1—N1—C2179.5 (3)N1—C2—C2i—N1i0.0 (6)
Cl1i—Au1—N1—C30.5 (4)N1—C2—C2i—C1i179.8 (5)
N1i—Au1—N1—C20.5 (3)C1—C2—C2i—N1i179.8 (5)
N1i—Au1—N1—C3179.6 (4)C1—C2—C2i—C1i0.0 (8)
Au1—N1—C2—C1179.8 (4)N1—C3—C4—C50.6 (8)
Au1—N1—C2—C2i0.4 (5)C3—C4—C5—C10.6 (8)
C3—N1—C2—C10.2 (7)C3—C4—C5—C6179.8 (5)
C3—N1—C2—C2i179.6 (5)C1—C5—C6—C760.9 (6)
Au1—N1—C3—C4179.6 (4)C1—C5—C6—C858.9 (7)
C2—N1—C3—C40.4 (8)C1—C5—C6—C9179.1 (5)
C5—C1—C2—N10.2 (8)C4—C5—C6—C7118.7 (6)
C5—C1—C2—C2i179.6 (5)C4—C5—C6—C8121.4 (6)
C2—C1—C5—C40.3 (8)C4—C5—C6—C91.3 (8)
C2—C1—C5—C6180.0 (5)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cl3ii0.932.663.561 (6)162
C3—H3···Cl1i0.932.643.231 (6)122
Symmetry codes: (i) x, y+1/2, z; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[AuCl2(C9H12N)2][AuCl4]·C2H3N
Mr916.09
Crystal system, space groupMonoclinic, P21/m
Temperature (K)150
a, b, c (Å)6.7880 (9), 14.2270 (19), 14.1330 (19)
β (°) 97.151 (2)
V3)1354.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)11.43
Crystal size (mm)0.14 × 0.10 × 0.01
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.298, 0.894
No. of measured, independent and
observed [I > 2σ(I)] reflections
14949, 3888, 2860
Rint0.060
(sin θ/λ)max1)0.692
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.079, 1.01
No. of reflections3888
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.60, 1.24

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Au1—Cl12.2590 (17)Au2—Cl32.2675 (16)
Au1—N12.020 (4)Au2—Cl42.311 (2)
Au2—Cl22.271 (2)
N2—C11—C10179.5 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cl3i0.932.663.561 (6)162
C3—H3···Cl1ii0.932.643.231 (6)122
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1/2, z.
 

Acknowledgements

We are grateful to Shahid Beheshti University and Islamic Azad University, North Tehran Branch, for financial support.

References

First citationAbbate, F., Orioli, P., Bruni, B., Marcon, G. & Messori, L. (2000). Inorg. Chim. Acta, 311, 1–5.  Web of Science CSD CrossRef CAS Google Scholar
First citationAdams, H. N. & Strähle, J. (1982). Z. Anorg. Allg. Chem. 485, 65–80.  CSD CrossRef CAS Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBjernemose, J. K., Raithby, P. R. & Toftlund, H. (2004). Acta Cryst. E60, m1719–m1721.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHayoun, R., Zhong, D. K., Rheingold, A. L. & Doerrer, L. H. (2006). Inorg. Chem. 45, 6120–6122.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMcInnes, E. J. L., Welch, A. J. & Yellowlees, L. J. (1995). Acta Cryst. C51, 2023–2025.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1189-m1190
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds