organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Di­methyl-1-(2-pyridylcarbon­yl)-5-[(2-pyridylcarbon­yl)hydrazino]-2-pyrazoline methanol hemisolvate

aDepartment of Chemistry, Dezhou University, Dezhou 253023, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: lidacheng@lcu.edu.cn

(Received 11 August 2008; accepted 25 August 2008; online 30 August 2008)

The title compound, C17H18N6O2·0.5CH3OH, exists in the double keto form and adopts a highly puckered geometry, stabilized by intra­molecular N—H⋯O and N—H⋯N hydrogen bonds. Inter­molecular N—H⋯N hydrogen bonds and ππ stacking inter­actions [centroid–centroid separation = 3.654 (1) Å] assemble the mol­ecules into chains running in the [111] direction. The methanol solvent mol­ecule is disordered over two sites related by inversion and forms a bifurcated O—H⋯(N,O) hydrogen bond.

Related literature

Two manganese metallocrowns with N-acyl-3-hydr­oxy-2-naphthalenecarbohydrazide ligands were synthesized by Dou et al. (2006[Dou, J. M., Liu, M. L., Li, D. C. & Wang, D. Q. (2006). Eur. J. Inorg. Chem. 23, 4866-4871.]). The 1-benzoyl-3,5-dimethyl-5-(1-benzoyl­hydrazido)pyrazoline ligand and two pyrazolone derivatives were synthesized by Liu et al. (2004[Liu, L., Jia, D. Z. & Yu, K. B. (2004). Chin. J. Struct. Chem. 23, 112-118.]) and Mukhopadhyay & Pal (2004[Mukhopadhyay, A. & Pal, S. (2004). Polyhedron, 23, 1997-2004.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N6O2·0.5CH4O

  • Mr = 354.40

  • Triclinic, [P \overline 1]

  • a = 9.0111 (12) Å

  • b = 10.6406 (17) Å

  • c = 10.814 (2) Å

  • α = 78.221 (1)°

  • β = 66.414 (1)°

  • γ = 86.477 (2)°

  • V = 930.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 (2) K

  • 0.53 × 0.48 × 0.46 mm

Data collection
  • Bruker SMART1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.955, Tmax = 0.960

  • 4781 measured reflections

  • 3189 independent reflections

  • 2189 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.216

  • S = 1.00

  • 3189 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N6 0.88 2.30 2.667 (3) 105
N3—H3⋯N4i 0.88 2.50 3.136 (3) 130
N4—H4⋯O1 0.88 2.59 3.167 (3) 124
N4—H4⋯O2 0.88 2.33 2.727 (3) 108
O3—H3A⋯O2 0.82 2.56 2.932 (9) 109
O3—H3A⋯N4 0.82 2.62 3.361 (9) 151
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

After assembling successfully two azametallacrowns based on N-acyl-3-hydroxy-2-naphthalenecarbohydrazide (Dou et al., 2006), and as an extension of our work on the structures of aroylhydrazine derivatives, the title compound, (I), was synthesized and characterized.

In compound (I), the C6—O1 and C12—O2 distances are 1.225 (3) Å, 1.227 (3)Å respectively, indicating that the molecule of (I) exists in the double keto form (Liu et al., 2004), and the distances of N(1)—N(2), C(3)—N(1) and C(1)—N(2) are 1.399 (3) Å, 1.492 (3)Å and 1.266 (3)Å (Table 1), which are in agreement with these of analogous compounds (Mukhopadhyay & Pal, 2004). The title molecule is chiral: in the arbitrarily chosen asymmetric unit, C3 has R configuration, but crystal symmetry generates a racemic mixture.

The three rings in (I), 2-picoloyl ring (A), pyrazoline ring (B) and 2-picoloylhydrazido ring (C), make dihedral angles of 65.5 (2)(A/B), 56.4 (1)(B/C) and 95.5 (1)° (A/C) respectively, showing the whole molecule exhibits highly puckered geometry.

There is intramolecular N4—H4···O1 hydrogen bond, which further stabilizes the molecular configuration (Fig. 1, Table 1), whereas double intermolecular N3—H3···N4 hydrogen bonds link molecules into centrosymmetric dimers. The dimers are assembled into chains along [111] through intermolecular ππ interactions between pyridine rings with a centrosymmetric-centrosymmetric distance of 3.654 (1)Å [Cg is a centroid of N6/C13—C17; symmetry code: (ii) -x, 1 - y, 1 - z] (Fig. 2).

Related literature top

Two manganese metallacrowns with N-acyl-3-hydroxy- 2-naphthalenecarbohydrazide ligand were synthesized by Dou et al. (2006). The 1-benzoyl-3,5-dimethyl-5-(1-benzoylhydrazido)pyrazoline ligand and two pyrazolone derivatives were synthesized by Liu et al. (2004) and Mukhopadhyay & Pal (2004).

Experimental top

2-Picoloylhydrazine (0.548 g, 4 mmol) and ice acetic acid (0.48 g, 8 mmol) were added to a mixture of methanol/glycol (25 ml, 3:2), then 0.21 ml of acetylacetone (0.205 g, 2.05 mmol) was added and reacted for 3 h at 323–333 K. The solution was cooled to room temperature. After the solution was allowed to stand for three weeks, colourless blocks of (I) were obtained. When recrystallised from pure methanol, the same compound arises. Yield: 0.591 g, 81.5%. m.p.: 585–587 K. Anal. for C17.5H20N6O2.5: Calc. C, 59.25; H, 5.64; N, 23.70; Found: C, 59.21; H, 5.48; N, 23.38%.

Refinement top

The methanol solvent molecule is disordered over two adjacent sites related by inversion.

All the H atoms were placed in idealized positions (C-H = 0.93-0.97Å, N-H = 0.88Å, O-H = 0.82Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C).

The highest difference peak is 0.80Å from C2.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids for the non-hydrogen atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of (I); symmetry code: (i) 1 - x, 1 - y, -z; (ii) -x, 1 - y, 1 - z.
3,5-Dimethyl-1-(2-pyridylcarbonyl)-5-[(2-pyridylcarbonyl)hydrazino]-2- pyrazoline methanol hemisolvate top
Crystal data top
C17H18N6O2·0.5CH4OZ = 2
Mr = 354.40F(000) = 374
Triclinic, P1Dx = 1.266 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0111 (12) ÅCell parameters from 1800 reflections
b = 10.6406 (17) Åθ = 2.5–24.8°
c = 10.814 (2) ŵ = 0.09 mm1
α = 78.221 (1)°T = 298 K
β = 66.414 (1)°Block, colourless
γ = 86.477 (2)°0.53 × 0.48 × 0.46 mm
V = 930.0 (2) Å3
Data collection top
Bruker SMART1000 CCD
diffractometer
3189 independent reflections
Radiation source: fine-focus sealed tube2189 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.955, Tmax = 0.960k = 127
4781 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.216H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.139P)2 + 0.2337P]
where P = (Fo2 + 2Fc2)/3
3189 reflections(Δ/σ)max = 0.001
245 parametersΔρmax = 0.84 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C17H18N6O2·0.5CH4Oγ = 86.477 (2)°
Mr = 354.40V = 930.0 (2) Å3
Triclinic, P1Z = 2
a = 9.0111 (12) ÅMo Kα radiation
b = 10.6406 (17) ŵ = 0.09 mm1
c = 10.814 (2) ÅT = 298 K
α = 78.221 (1)°0.53 × 0.48 × 0.46 mm
β = 66.414 (1)°
Data collection top
Bruker SMART1000 CCD
diffractometer
3189 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2189 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.960Rint = 0.023
4781 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.216H-atom parameters constrained
S = 1.00Δρmax = 0.84 e Å3
3189 reflectionsΔρmin = 0.20 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.4874 (3)0.8072 (2)0.1320 (2)0.0433 (6)
N20.3319 (3)0.8492 (2)0.1473 (2)0.0466 (6)
N30.4382 (3)0.5456 (2)0.1581 (2)0.0433 (6)
H30.36880.51910.12980.052*
N40.5844 (3)0.6043 (2)0.0554 (2)0.0430 (6)
H40.65720.60460.09050.052*
N50.4085 (4)0.9947 (2)0.3280 (3)0.0636 (8)
N60.1726 (3)0.4050 (2)0.3258 (2)0.0508 (6)
O10.6856 (3)0.7836 (2)0.2105 (2)0.0618 (6)
O20.5370 (3)0.5115 (2)0.3232 (2)0.0665 (7)
O30.8469 (9)0.4142 (7)0.1517 (8)0.123 (2)0.50
H3A0.77090.43290.12840.185*0.50
C10.3048 (3)0.8290 (3)0.0467 (3)0.0457 (7)
C20.4392 (4)0.7663 (3)0.0514 (3)0.0493 (7)
H2A0.48320.82170.14160.059*
H2B0.40260.68590.05990.059*
C30.5665 (3)0.7430 (2)0.0119 (3)0.0425 (6)
C40.1544 (4)0.8701 (4)0.0264 (4)0.0692 (9)
H4A0.08450.90900.10130.104*
H4B0.10010.79670.02320.104*
H4C0.18130.93110.05860.104*
C50.7302 (4)0.8002 (3)0.0844 (3)0.0545 (8)
H5A0.72090.89060.11390.082*
H5B0.77180.75980.16310.082*
H5C0.80270.78660.03790.082*
C60.5483 (3)0.8179 (3)0.2250 (3)0.0441 (7)
C70.4413 (3)0.8700 (3)0.3491 (3)0.0461 (7)
C80.3925 (4)0.7926 (3)0.4769 (3)0.0554 (8)
H80.42030.70660.48740.066*
C90.3014 (5)0.8454 (4)0.5893 (3)0.0711 (10)
H90.26400.79510.67740.085*
C100.2671 (5)0.9717 (4)0.5696 (4)0.0780 (11)
H100.20661.00940.64440.094*
C110.3214 (5)1.0429 (4)0.4402 (4)0.0750 (10)
H110.29691.12950.42870.090*
C120.4278 (3)0.4976 (2)0.2862 (3)0.0423 (6)
C130.2742 (3)0.4273 (2)0.3813 (3)0.0407 (6)
C140.2423 (4)0.3888 (3)0.5204 (3)0.0510 (7)
H140.31640.40580.55520.061*
C150.0991 (4)0.3252 (3)0.6047 (3)0.0587 (8)
H150.07360.29880.69850.070*
C160.0062 (4)0.3010 (3)0.5495 (3)0.0639 (9)
H160.10350.25670.60480.077*
C170.0339 (4)0.3432 (3)0.4113 (3)0.0618 (8)
H170.03970.32780.37520.074*
C200.9726 (6)0.5000 (5)0.0745 (5)0.0401 (12)0.50
H20A1.06220.47790.10240.048*0.50
H20B0.93840.58540.09110.048*0.50
H20C1.00000.50000.00000.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0482 (13)0.0436 (13)0.0418 (12)0.0024 (10)0.0199 (10)0.0125 (10)
N20.0497 (14)0.0456 (13)0.0477 (13)0.0048 (10)0.0211 (11)0.0134 (10)
N30.0463 (13)0.0437 (13)0.0415 (12)0.0045 (10)0.0194 (10)0.0062 (10)
N40.0471 (13)0.0415 (13)0.0398 (12)0.0012 (10)0.0173 (10)0.0064 (9)
N50.090 (2)0.0486 (15)0.0555 (15)0.0058 (13)0.0304 (15)0.0154 (12)
N60.0494 (14)0.0605 (15)0.0429 (13)0.0054 (11)0.0184 (11)0.0088 (11)
O10.0585 (14)0.0762 (15)0.0609 (13)0.0051 (11)0.0320 (11)0.0193 (11)
O20.0690 (14)0.0827 (16)0.0538 (12)0.0232 (12)0.0345 (11)0.0024 (11)
O30.113 (5)0.134 (6)0.111 (5)0.005 (4)0.041 (4)0.007 (4)
C10.0533 (16)0.0413 (15)0.0450 (15)0.0001 (12)0.0241 (13)0.0042 (12)
C20.0630 (18)0.0496 (16)0.0419 (15)0.0019 (13)0.0281 (14)0.0079 (12)
C30.0530 (16)0.0407 (15)0.0357 (13)0.0007 (12)0.0186 (12)0.0094 (11)
C40.065 (2)0.077 (2)0.074 (2)0.0058 (17)0.0385 (19)0.0120 (18)
C50.0588 (18)0.0510 (17)0.0454 (16)0.0047 (14)0.0119 (14)0.0077 (13)
C60.0533 (17)0.0404 (15)0.0443 (15)0.0027 (12)0.0254 (13)0.0069 (12)
C70.0574 (17)0.0432 (16)0.0478 (16)0.0011 (12)0.0292 (14)0.0125 (12)
C80.0680 (19)0.0529 (17)0.0497 (17)0.0040 (14)0.0277 (15)0.0092 (14)
C90.084 (2)0.080 (3)0.0473 (18)0.0121 (19)0.0231 (18)0.0111 (17)
C100.093 (3)0.084 (3)0.059 (2)0.007 (2)0.024 (2)0.036 (2)
C110.100 (3)0.061 (2)0.067 (2)0.0109 (19)0.030 (2)0.0286 (18)
C120.0486 (15)0.0418 (15)0.0406 (14)0.0003 (11)0.0209 (13)0.0101 (12)
C130.0461 (15)0.0403 (14)0.0384 (14)0.0033 (11)0.0183 (12)0.0108 (11)
C140.0580 (18)0.0562 (18)0.0411 (15)0.0010 (14)0.0223 (14)0.0089 (13)
C150.0604 (19)0.066 (2)0.0420 (16)0.0015 (15)0.0142 (15)0.0052 (14)
C160.0520 (18)0.074 (2)0.0525 (18)0.0037 (15)0.0081 (15)0.0099 (16)
C170.0517 (18)0.078 (2)0.0546 (18)0.0080 (15)0.0206 (16)0.0092 (16)
C200.025 (2)0.060 (3)0.033 (2)0.003 (2)0.015 (2)0.001 (2)
Geometric parameters (Å, º) top
N1—C61.350 (3)C4—H4C0.9600
N1—N21.399 (3)C5—H5A0.9600
N1—C31.492 (3)C5—H5B0.9600
N2—C11.266 (3)C5—H5C0.9600
N3—C121.343 (3)C6—C71.497 (4)
N3—N41.417 (3)C7—C81.369 (4)
N3—H30.8800C8—C91.375 (5)
N4—C31.473 (3)C8—H80.9300
N4—H40.8802C9—C101.354 (5)
N5—C71.336 (4)C9—H90.9300
N5—C111.339 (4)C10—C111.355 (5)
N6—C171.333 (4)C10—H100.9300
N6—C131.334 (3)C11—H110.9300
O1—C61.225 (3)C12—C131.486 (4)
O2—C121.227 (3)C13—C141.388 (4)
O3—C201.368 (9)C14—C151.367 (4)
O3—H3A0.8200C14—H140.9300
C1—C21.483 (4)C15—C161.367 (5)
C1—C41.484 (4)C15—H150.9300
C2—C31.539 (4)C16—C171.371 (5)
C2—H2A0.9700C16—H160.9300
C2—H2B0.9700C17—H170.9300
C3—C51.501 (4)C20—H20A0.9700
C4—H4A0.9600C20—H20B0.9700
C4—H4B0.9600C20—H20C0.7426
C6—N1—N2121.2 (2)O1—C6—C7120.7 (2)
C6—N1—C3125.9 (2)N1—C6—C7118.0 (2)
N2—N1—C3112.7 (2)N5—C7—C8123.5 (3)
C1—N2—N1108.6 (2)N5—C7—C6116.5 (2)
C12—N3—N4120.4 (2)C8—C7—C6119.7 (3)
C12—N3—H3119.6C7—C8—C9118.2 (3)
N4—N3—H3117.0C7—C8—H8120.9
N3—N4—C3111.8 (2)C9—C8—H8120.9
N3—N4—H4110.0C10—C9—C8118.9 (3)
C3—N4—H4101.3C10—C9—H9120.5
C7—N5—C11116.4 (3)C8—C9—H9120.5
C17—N6—C13116.6 (2)C9—C10—C11119.5 (3)
C20—O3—H3A109.5C9—C10—H10120.2
N2—C1—C2114.1 (2)C11—C10—H10120.2
N2—C1—C4122.5 (3)N5—C11—C10123.4 (3)
C2—C1—C4123.3 (3)N5—C11—H11118.3
C1—C2—C3104.4 (2)C10—C11—H11118.3
C1—C2—H2A110.9O2—C12—N3122.5 (3)
C3—C2—H2A110.9O2—C12—C13122.0 (2)
C1—C2—H2B110.9N3—C12—C13115.5 (2)
C3—C2—H2B110.9N6—C13—C14123.4 (3)
H2A—C2—H2B108.9N6—C13—C12116.6 (2)
N4—C3—N1111.9 (2)C14—C13—C12120.1 (2)
N4—C3—C5108.3 (2)C15—C14—C13118.3 (3)
N1—C3—C5113.0 (2)C15—C14—H14120.9
N4—C3—C2110.5 (2)C13—C14—H14120.9
N1—C3—C299.8 (2)C14—C15—C16119.1 (3)
C5—C3—C2113.2 (2)C14—C15—H15120.4
C1—C4—H4A109.5C16—C15—H15120.4
C1—C4—H4B109.5C15—C16—C17119.0 (3)
H4A—C4—H4B109.5C15—C16—H16120.5
C1—C4—H4C109.5C17—C16—H16120.5
H4A—C4—H4C109.5N6—C17—C16123.6 (3)
H4B—C4—H4C109.5N6—C17—H17118.2
C3—C5—H5A109.5C16—C17—H17118.2
C3—C5—H5B109.5O3—C20—H20A109.4
H5A—C5—H5B109.5O3—C20—H20B109.4
C3—C5—H5C109.5H20A—C20—H20B108.0
H5A—C5—H5C109.5O3—C20—H20C111.3
H5B—C5—H5C109.5H20A—C20—H20C109.4
O1—C6—N1121.3 (3)H20B—C20—H20C109.4
C6—N1—N2—C1179.7 (2)O1—C6—C7—N5111.1 (3)
C3—N1—N2—C14.8 (3)N1—C6—C7—N570.4 (3)
C12—N3—N4—C3113.3 (3)O1—C6—C7—C864.1 (4)
N1—N2—C1—C21.4 (3)N1—C6—C7—C8114.4 (3)
N1—N2—C1—C4176.0 (3)N5—C7—C8—C91.7 (5)
N2—C1—C2—C32.2 (3)C6—C7—C8—C9176.6 (3)
C4—C1—C2—C3179.6 (3)C7—C8—C9—C101.6 (5)
N3—N4—C3—N148.5 (3)C8—C9—C10—C110.7 (6)
N3—N4—C3—C5173.7 (2)C7—N5—C11—C100.2 (6)
N3—N4—C3—C261.7 (3)C9—C10—C11—N50.2 (6)
C6—N1—C3—N464.0 (3)N4—N3—C12—O26.3 (4)
N2—N1—C3—N4111.2 (2)N4—N3—C12—C13174.3 (2)
C6—N1—C3—C558.5 (3)C17—N6—C13—C140.4 (4)
N2—N1—C3—C5126.3 (2)C17—N6—C13—C12179.3 (3)
C6—N1—C3—C2179.0 (2)O2—C12—C13—N6172.3 (3)
N2—N1—C3—C25.7 (3)N3—C12—C13—N68.3 (4)
C1—C2—C3—N4113.4 (2)O2—C12—C13—C148.0 (4)
C1—C2—C3—N14.5 (3)N3—C12—C13—C14171.4 (2)
C1—C2—C3—C5124.8 (2)N6—C13—C14—C150.2 (4)
N2—N1—C6—O1178.5 (2)C12—C13—C14—C15179.5 (3)
C3—N1—C6—O16.6 (4)C13—C14—C15—C160.5 (5)
N2—N1—C6—C73.0 (4)C14—C15—C16—C171.1 (5)
C3—N1—C6—C7171.8 (2)C13—N6—C17—C161.0 (5)
C11—N5—C7—C80.8 (5)C15—C16—C17—N61.3 (5)
C11—N5—C7—C6175.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N60.882.302.667 (3)105
N3—H3···N4i0.882.503.136 (3)130
N4—H4···O10.882.593.167 (3)124
N4—H4···O20.882.332.727 (3)108
O3—H3A···O20.822.562.932 (9)109
O3—H3A···N40.822.623.361 (9)151
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H18N6O2·0.5CH4O
Mr354.40
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.0111 (12), 10.6406 (17), 10.814 (2)
α, β, γ (°)78.221 (1), 66.414 (1), 86.477 (2)
V3)930.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.53 × 0.48 × 0.46
Data collection
DiffractometerBruker SMART1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.955, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
4781, 3189, 2189
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.216, 1.00
No. of reflections3189
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.84, 0.20

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N60.882.302.667 (3)105
N3—H3···N4i0.882.503.136 (3)130
N4—H4···O10.882.593.167 (3)124
N4—H4···O20.882.332.727 (3)108
O3—H3A···O20.822.562.932 (9)109
O3—H3A···N40.822.623.361 (9)151
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The authors acknowledge the support of the National Natural Science Foundation of China (20671048).

References

First citationDou, J. M., Liu, M. L., Li, D. C. & Wang, D. Q. (2006). Eur. J. Inorg. Chem. 23, 4866–4871.  Web of Science CSD CrossRef Google Scholar
First citationLiu, L., Jia, D. Z. & Yu, K. B. (2004). Chin. J. Struct. Chem. 23, 112–118.  CAS Google Scholar
First citationMukhopadhyay, A. & Pal, S. (2004). Polyhedron, 23, 1997–2004.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds