metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1213-m1214

Tetra­ethyl­ammonium tri­carbonyl­chlorido(iso­quinoline-1-carboxyl­ato-κ2N,O)technetate(I)

aAnorganisch-Chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
*Correspondence e-mail: hws@bluewin.ch

(Received 15 August 2008; accepted 22 August 2008; online 30 August 2008)

The asymmetric unit of the title compound, (C8H20N)[Tc(C10H6NO2)Cl(CO)3], consists of two crystallographically independent technetium complexes related via a pseudo-inversion centre and two tetra­ethyl­ammonium cations. The Tc atoms have slightly distorted octa­hedral coordination geometries, and they are linked with the cations by inter­molecular C—H⋯O and C—H⋯Cl hydrogen-bonding contacts, forming two-dimensional columns, which lie approximately parallel to (001) in the crystal structure. The isochinolate (isoquinoline-1-carboxyl­ate) ligands link the columns by partial ππ stacking [centroid–centroid distance 4.3733 (11) Å], forming a three-dimensional network structure.

Related literature

For related literature, see: Alberto et al. (1995[Alberto, R., Schibli, R., Egli, A., Schubiger, P. A., Herrmann, W. A., Artus, G., Abram, U. & Kaden, T. A. (1995). J. Organomet. Chem. 493, 119-127.], 1996[Alberto, R., Schibli, R., Schubiger, P. A., Abram, U. & Kaden, T. A. (1996). Polyhedron, 15, 1079-1089.]); Waibel et al. (1999[Waibel, R., Alberto, R., Willuda, J., Finnern, R., Schibli, R., Stichelberger, A., Egli, A., Abram, U., Mach, J.-P., Plückthun, A. & Schubiger, P. A. (1999). Nat. Biotechnol. 17, 897-901.]); Rattat et al. (2001[Rattat, D., Schubiger, P. A., Berke, H. G., Schmalle, H. & Alberto, R. (2001). Cancer Biother. Radiopharm. 16, 339-343.]); Marsh (1995[Marsh, R. E. (1995). Acta Cryst. B51, 897-907.]); Marsh et al. (2002[Marsh, R. E., Kapon, M., Hu, S. & Herbstein, F. H. (2002). Acta Cryst. B58, 62-77.]); Desiraju et al. (1991[Desiraju, G. R., Calabrese, J. C. & Harlow, R. L. (1991). Acta Cryst. B47, 77-86.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Desiraju & Steiner, (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond, pp. 215-221. Oxford University Press.]); Bernstein et al. (1995[Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34 1555-1573.]); Steiner & Saenger, 1993[Steiner, T. & Saenger, W. (1993). J. Am. Chem. Soc. 115, 4540-4547.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H20N)[Tc(C10H6NO2)Cl(CO)3]

  • Mr = 520.80

  • Triclinic, [P \overline 1]

  • a = 11.7657 (14) Å

  • b = 12.7481 (14) Å

  • c = 17.1855 (18) Å

  • α = 102.878 (12)°

  • β = 109.624 (12)°

  • γ = 99.052 (13)°

  • V = 2290.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 193 (2) K

  • 0.77 × 0.48 × 0.19 mm

Data collection
  • Stoe IPDS diffractometer

  • Absorption correction: numerical (Coppens et al., 1965[Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.]) Tmin = 0.670, Tmax = 0.828

  • 29670 measured reflections

  • 12462 independent reflections

  • 9515 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.067

  • S = 1.00

  • 12462 reflections

  • 541 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −1.17 e Å−3

Table 1
Selected bond lengths (Å)

Tc1—C21 1.9045 (18)
Tc1—C31 1.913 (2)
Tc1—C11 1.916 (2)
Tc1—O41 2.1293 (12)
Tc1—N51 2.1778 (15)
Tc1—Cl1 2.4822 (6)
Tc2—C22 1.9060 (19)
Tc2—C32 1.907 (2)
Tc2—C12 1.913 (2)
Tc2—O42 2.1317 (12)
Tc2—N52 2.1714 (15)
Tc2—Cl2 2.4980 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C151—H15A⋯O51 0.99 2.38 3.328 (2) 161
C171—H17A⋯O31i 0.99 2.50 3.482 (3) 172
C191—H19B⋯O41 0.99 2.40 3.360 (2) 163
C192—H19C⋯O42ii 0.99 2.56 3.507 (2) 160
C192—H19C⋯O52ii 0.99 2.44 3.221 (2) 136
C202—H20E⋯Cl1iii 0.98 2.81 3.786 (3) 177
C221—H22A⋯Cl1iv 0.98 2.77 3.652 (2) 151
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x, y-1, z; (iv) x+1, y, z.

Data collection: IPDS Software (Stoe & Cie, 1997[Stoe & Cie (1997). IPDS Software and X-RED Stoe & Cie, Darmstadt, Germany.]); cell refinement: IPDS Software; data reduction: X-RED (Stoe & Cie, 1997[Stoe & Cie (1997). IPDS Software and X-RED Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON and PLUTON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The chemistry of technetium is well established for diagnostic purposes, where tricarbonyl Tc-99m and Tc-99m dicarbonyl-nitrosyl complexes are employed (Alberto et al., 1996; Rattat et al., 2001). The title compound, (I), is one of several synthesized using isochinolinic acid under a variety of ligands in order to study their coordination or complexation properties (Alberto et al. 1996). Clinical or biological test results are summarized in Waibel et al. (1999).

A careful check for missed symmetry in structures that crystallize in space group P1 with Z' = 2 is always good practice, as can be judged in two out of many critical articles: in his classic review, Marsh (1995) detected about 20 structures (described in space group P1 with Z = 4) which were shown to be better described by the monoclinic space groups No. 14 and 15; and some 60 space-group corrections have been reported (Marsh et al. 2002) of which four displayed the same missed symmetry. In (I), a pseudo-inversion centre (Fig. 1) and a pseudo-translation (Fig. 2) were found during the checking process using the programme PLATON (Spek 2003).

The independent Tc complexes are related by a non-crystallographic inversion centre located at (3/4, 3/4, 1/2) which is equivalent to a pseudotranslation t at (1/2, 1/2, 1) and is interpreted as a superstructure effect. The distribution of strong (h+k = 2n) and weak intensity reflections (h+k = 2n+1) in the (hk0) plane supports the view of a superlattice phenomenon (Fig. 2). Many homomolecular crystal structures were analysed with respect to non-crystallographic symmetry and superstructure effects, where only about 20 structures out of 1166 with Z = 4 showed local pseudo-centres of symmetry (Desiraju et al., 1991). The title compound belongs to a similar, heteromolecular class of structures with pseudoinversion centres, Z = 4 and with space group P1.

The pseudo-inversion related carbonyl atoms are found to point towards each other. The isochinolato ligands in both Tc complexes have bidentate coordination to the Tc atom via the aromatic amine N and carboxylate O atoms. This ligand, together with the two carbonyl ligands forms a distorted square planar environment around the Tc atom. The Cl atom and another carbonyl ligand are positioned trans to one another and complete the octahedral coordination geometry. The Tc coordination distances and angles are in comparable ranges, e. g. for Tc—CO (1.914 (7) - 1.927 (6) Å, Alberto et al. 1995) and 1.894 (3) - 1.912 (3) Å Alberto et al. 1996). Corresponding distances in the title complex vary between 1.905 (2) and 1.916 (2) Å, with an average value of 1.910 Å (Table 1).

The hydrogen bonding contacts in (I) can be described with the graph set descriptors D, C and R (Etter et al. 1990; Bernstein et al. 1995), with tetraethylammonium cations N1 and N2 as donor and the Tc complexes Tc1 and Tc2 as acceptor units. The tetraethylammonium donor group N1 is linked to acceptor atoms O31 (carbonyl), Cl1 and both carboxyl atoms O41, O51 of complex Tc1 to form weak intermolecular C—H···O and C—H···Cl hydrogen bonds (Desiraju & Steiner, 1999) with the graph set pattern D (Bernstein et al. 1995). Similar C—H···O and C—H···Cl hydrogen bond parameters (Table 2) were reported for tetrakis(pyridine) platinum(II) chloride trihydrate (Steiner & Saenger, 1993). The donor group of tetraethylammonium N2 is linked to both Tc complexes: Atom Cl1 is a bifurcated acceptor in complex Tc1, and the carboxylate group in complex Tc2 is an acceptor for the three-centre donor H19C in cation N2 (Table 2, Figure 3).

The hydrogen bonding contacts C151—H15A···O51 and C191—H19B···O41 represent a ring motif R22(8), whereas C171—H17A···O31 and C221—H22A···Cl1 are linked to form a chain motif C22(10). The contact C192—H19C···O52 can be seen as a simple motif D, or, together with the much weaker contact C192—H19C···O42 as a ring motif R21(4). The link C202—H20E···Cl1 may be considered as a very weak hydrogen bonding contact with motif D. The combination of the hydrogen bonding motifs form ladder-like columns with carbonyl and chloro units in the centre and isochinolato planes outside, the latter being able to form partial π···π stacking interactions between the independent rings C81 - C131 (Cg3) and N52, C42, C132, C82, C72, C62 (Cg6), with distances between centroids Cg3 and Cg6 = 4.3733 (11) Å, dihedral angle between ring planes = 6.83 °, and a slippage of 3.214 Å.

Related literature top

For related literature, see: Alberto et al. (1995, 1996); Waibel et al. (1999); Rattat et al. (2001); Marsh (1995); Marsh et al. (2002); Desiraju et al. (1991); Etter et al. (1990); Desiraju & Steiner, (1999); Bernstein et al. (1995); Steiner & Saenger, 1993).

Experimental top

Caution! Tc-99 is a weak β-emitter with a half life of 2.12 × 105 years. Although radiation from low amounts of material is absorbed completely by the glass walls, reactions should only be carried out in specially equipped laboratories and under well ventilated hoods to avoid contamination or ingestion. Synthesis of the adduct [NEt4]2[TcCl3(CO)3] was prepared as described previously (Alberto et al. 1996). [NEt4]2[TcCl3(CO)3] was dissolved in methanol and 1 equivalent of isoquinolinic acid added to the solution. Stirring at room temperatur for about 4 h resulted in the quantitative formation of the title compound as observed from HPLC monitoring. The colour of the solvent turned to yellow. Methanol was evaporated and the residue taken up in THF. Slow evaporation of the THF gave yellow plates of (I) of good x-ray quality.

Refinement top

The missing cusp of data (alert level A in the PLATON checkcif) is due to data collection by rotation around the spindle axis only. This was standard at the time when the data were collected (in 1998) on a Stoe IPDS1 image-plate system.

All the hydrogen atoms were geometrically placed (C—H = 0.95-0.99 Å) and refined as riding with Uiso(H) = 1.2(Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: IPDS Software (Stoe & Cie, 1997); cell refinement: IPDS Software (Stoe & Cie, 1997); data reduction: X-RED (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON and PLUTON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level (H atoms omitted for clarity).
[Figure 2] Fig. 2. A view of the independent molecules down [100] indicating the superstructure effect (translation t) along the b-axis.
[Figure 3] Fig. 3. A view down [010] of a section of (I) with intermolecular hydrogen bonding contacts of the columns indicated by dashed lines.
Tetraethylammonium tricarbonylchlorido(isoquinoline-1-carboxylato-κ2N,O)technetate(I) top
Crystal data top
(C8H20N)[Tc(C10H6NO2)Cl(CO)3]Z = 4
Mr = 520.80F(000) = 1064
Triclinic, P1Dx = 1.511 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.7657 (14) ÅCell parameters from 5000 reflections
b = 12.7481 (14) Åθ = 2.3–30.5°
c = 17.1855 (18) ŵ = 0.78 mm1
α = 102.878 (12)°T = 193 K
β = 109.624 (12)°Irregular plate, yellow
γ = 99.052 (13)°0.77 × 0.48 × 0.19 mm
V = 2290.0 (5) Å3
Data collection top
Stoe IPDS
diffractometer
12462 independent reflections
Radiation source: fine-focus sealed tube9515 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ rotation scanθmax = 30.3°, θmin = 2.9°
Absorption correction: numerical
(Coppens et al., 1965)
h = 1615
Tmin = 0.670, Tmax = 0.828k = 1717
29670 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.04P)2]
where P = (Fo2 + 2Fc2)/3
12462 reflections(Δ/σ)max = 0.003
541 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 1.17 e Å3
Crystal data top
(C8H20N)[Tc(C10H6NO2)Cl(CO)3]γ = 99.052 (13)°
Mr = 520.80V = 2290.0 (5) Å3
Triclinic, P1Z = 4
a = 11.7657 (14) ÅMo Kα radiation
b = 12.7481 (14) ŵ = 0.78 mm1
c = 17.1855 (18) ÅT = 193 K
α = 102.878 (12)°0.77 × 0.48 × 0.19 mm
β = 109.624 (12)°
Data collection top
Stoe IPDS
diffractometer
12462 independent reflections
Absorption correction: numerical
(Coppens et al., 1965)
9515 reflections with I > 2σ(I)
Tmin = 0.670, Tmax = 0.828Rint = 0.058
29670 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.00Δρmax = 0.54 e Å3
12462 reflectionsΔρmin = 1.17 e Å3
541 parameters
Special details top

Experimental. Due to the large crystal size a collimator of 0.80 mm diameter was used for the X-ray experiment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tc10.579938 (12)0.560390 (12)0.336924 (8)0.02087 (4)
Tc20.915007 (12)0.971138 (13)0.672618 (8)0.02372 (4)
Cl10.44939 (4)0.62682 (4)0.22082 (3)0.02909 (9)
Cl21.04216 (4)0.89237 (4)0.78263 (3)0.02847 (9)
C110.69463 (17)0.70442 (17)0.38802 (11)0.0301 (4)
O110.76137 (16)0.79139 (14)0.41766 (9)0.0480 (4)
C210.49644 (17)0.60941 (18)0.41044 (12)0.0333 (4)
O210.44378 (16)0.63781 (18)0.45294 (11)0.0629 (6)
C310.68419 (18)0.50959 (19)0.42515 (12)0.0344 (4)
O310.74654 (17)0.48412 (17)0.47975 (11)0.0562 (5)
O410.65007 (10)0.49125 (11)0.24332 (8)0.0247 (3)
O510.61395 (12)0.35498 (12)0.12502 (9)0.0332 (3)
C410.46026 (13)0.35068 (14)0.18788 (10)0.0182 (3)
N510.44924 (12)0.39932 (12)0.26145 (8)0.0193 (3)
C610.35027 (15)0.35543 (15)0.27899 (11)0.0233 (3)
H610.34480.39030.33210.028*
C710.25919 (15)0.26352 (15)0.22308 (11)0.0238 (3)
H710.19240.23440.23780.029*
C810.26467 (14)0.21165 (15)0.14299 (10)0.0215 (3)
C910.17206 (16)0.11541 (17)0.08350 (12)0.0299 (4)
H910.10460.08480.09700.036*
C1010.17987 (17)0.06671 (18)0.00664 (12)0.0344 (4)
H1010.11850.00160.03280.041*
C1110.27871 (17)0.11307 (17)0.01395 (12)0.0313 (4)
H1110.28100.08010.06860.038*
C1210.37207 (16)0.20468 (16)0.04271 (10)0.0252 (4)
H1210.43890.23330.02780.030*
C1310.36789 (14)0.25651 (14)0.12404 (10)0.0189 (3)
C1410.58280 (14)0.40184 (15)0.18218 (11)0.0216 (3)
C120.7925 (2)0.8320 (2)0.61471 (12)0.0460 (6)
O120.7211 (2)0.74774 (19)0.58124 (10)0.0817 (8)
C220.99797 (19)0.92389 (18)0.59816 (12)0.0347 (5)
O221.05157 (18)0.89761 (17)0.55594 (12)0.0606 (5)
C320.81724 (19)1.0325 (2)0.58993 (13)0.0408 (5)
O320.75712 (18)1.0651 (2)0.53876 (13)0.0663 (6)
O420.84573 (11)1.03714 (11)0.76777 (8)0.0273 (3)
O520.88396 (15)1.16706 (15)0.88951 (11)0.0542 (5)
C421.03499 (14)1.17919 (15)0.82419 (10)0.0213 (3)
N521.05141 (12)1.12656 (12)0.75407 (9)0.0207 (3)
C621.15557 (15)1.16634 (16)0.73994 (11)0.0247 (3)
H621.16541.12790.68940.030*
C721.24548 (15)1.25891 (16)0.79563 (12)0.0252 (4)
H721.31681.28410.78410.030*
C821.23181 (15)1.31745 (15)0.87097 (11)0.0233 (3)
C921.32207 (17)1.41574 (17)0.92933 (12)0.0312 (4)
H921.39391.44250.91880.037*
C1021.3058 (2)1.47170 (19)1.00045 (13)0.0392 (5)
H1021.36571.53821.03900.047*
C1121.2008 (2)1.4316 (2)1.01720 (13)0.0411 (5)
H1121.19191.47081.06780.049*
C1221.11075 (18)1.33701 (18)0.96199 (12)0.0332 (4)
H1221.04011.31180.97430.040*
C1321.12380 (15)1.27707 (16)0.88639 (11)0.0236 (3)
C1420.91312 (15)1.12532 (17)0.82997 (12)0.0273 (4)
N11.00717 (13)0.50091 (13)0.27668 (10)0.0278 (3)
C1510.91776 (17)0.45915 (18)0.18202 (13)0.0330 (4)
H15A0.83190.43640.17950.040*
H15B0.92140.52180.15690.040*
C1610.9424 (3)0.3628 (2)0.12612 (15)0.0511 (6)
H16A0.88070.34210.06670.077*
H16B0.93630.29910.14900.077*
H16C1.02630.38470.12650.077*
C1711.00937 (18)0.40781 (17)0.31826 (13)0.0327 (4)
H17A1.07200.43720.37840.039*
H17B1.03720.34900.28660.039*
C1810.8857 (2)0.3555 (2)0.32025 (16)0.0450 (5)
H18A0.89580.29660.34830.067*
H18B0.82330.32360.26100.067*
H18C0.85800.41240.35280.067*
C1910.96073 (18)0.59276 (18)0.32010 (14)0.0364 (5)
H19A0.96310.65240.29190.044*
H19B0.87250.56220.31000.044*
C2011.0336 (3)0.6438 (2)0.41647 (18)0.0641 (9)
H20A0.99780.70230.43880.096*
H20B1.12080.67590.42740.096*
H20C1.02930.58620.44560.096*
C2111.13983 (17)0.54488 (19)0.28542 (17)0.0437 (6)
H21A1.19550.56550.34720.052*
H21B1.16490.48400.25350.052*
C2211.1606 (2)0.6439 (2)0.2530 (2)0.0666 (9)
H22A1.24850.66630.26130.100*
H22B1.13860.70570.28520.100*
H22C1.10820.62410.19130.100*
N20.52263 (13)0.00906 (14)0.24769 (10)0.0265 (3)
C1520.5005 (2)0.11587 (19)0.29338 (14)0.0386 (5)
H15C0.48390.16200.25350.046*
H15D0.42460.09660.30550.046*
C1620.6065 (3)0.1853 (2)0.37740 (17)0.0603 (8)
H16D0.58380.25210.40190.091*
H16E0.68180.20690.36630.091*
H16F0.62220.14160.41840.091*
C1720.63615 (16)0.03339 (18)0.22472 (14)0.0323 (4)
H17C0.70940.07450.27860.039*
H17D0.65220.03820.20050.039*
C1820.6258 (2)0.0996 (2)0.16093 (17)0.0437 (5)
H18D0.70280.11100.15010.065*
H18E0.61260.17190.18480.065*
H18F0.55510.05890.10650.065*
C1920.40524 (17)0.0458 (2)0.16643 (13)0.0374 (5)
H19C0.33410.06300.18400.045*
H19D0.38910.00840.13340.045*
C2020.4084 (3)0.1512 (2)0.10697 (16)0.0547 (7)
H20D0.32910.18000.05680.082*
H20E0.42140.20680.13810.082*
H20F0.47680.13520.08750.082*
C2120.54784 (19)0.06576 (18)0.30546 (14)0.0347 (4)
H21C0.55310.13730.27150.042*
H21D0.63010.03080.35340.042*
C2220.4516 (3)0.0895 (3)0.34348 (19)0.0544 (6)
H22D0.47540.13790.38000.082*
H22E0.37010.12670.29670.082*
H22F0.44690.01950.37850.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tc10.01960 (6)0.02175 (8)0.01644 (6)0.00022 (5)0.00534 (5)0.00280 (5)
Tc20.02287 (7)0.02603 (9)0.01804 (6)0.00056 (5)0.00705 (5)0.00450 (5)
Cl10.0306 (2)0.0260 (2)0.02687 (19)0.00637 (16)0.00671 (16)0.00788 (16)
Cl20.0301 (2)0.0237 (2)0.0297 (2)0.00575 (15)0.01008 (16)0.00745 (17)
C110.0328 (9)0.0322 (11)0.0183 (7)0.0019 (7)0.0091 (7)0.0028 (7)
O110.0589 (10)0.0381 (10)0.0285 (7)0.0197 (7)0.0154 (7)0.0010 (6)
C210.0300 (9)0.0352 (12)0.0264 (8)0.0024 (7)0.0121 (7)0.0011 (8)
O210.0514 (10)0.0769 (14)0.0480 (9)0.0003 (9)0.0319 (8)0.0136 (9)
C310.0308 (9)0.0371 (12)0.0239 (8)0.0036 (7)0.0034 (7)0.0069 (8)
O310.0511 (10)0.0611 (13)0.0442 (9)0.0115 (8)0.0011 (8)0.0246 (9)
O410.0192 (5)0.0235 (7)0.0287 (6)0.0003 (4)0.0115 (5)0.0028 (5)
O510.0310 (6)0.0288 (8)0.0399 (7)0.0010 (5)0.0240 (6)0.0009 (6)
C410.0177 (6)0.0179 (8)0.0209 (7)0.0047 (5)0.0081 (5)0.0085 (6)
N510.0181 (6)0.0185 (7)0.0212 (6)0.0032 (5)0.0079 (5)0.0058 (5)
C610.0243 (7)0.0243 (9)0.0240 (7)0.0042 (6)0.0132 (6)0.0078 (7)
C710.0193 (7)0.0258 (10)0.0288 (8)0.0029 (6)0.0121 (6)0.0106 (7)
C810.0167 (7)0.0217 (9)0.0245 (7)0.0026 (6)0.0060 (6)0.0087 (6)
C910.0216 (8)0.0291 (11)0.0314 (9)0.0026 (6)0.0060 (7)0.0073 (7)
C1010.0275 (9)0.0313 (11)0.0277 (8)0.0028 (7)0.0004 (7)0.0001 (8)
C1110.0341 (9)0.0293 (11)0.0232 (8)0.0049 (7)0.0070 (7)0.0022 (7)
C1210.0264 (8)0.0263 (10)0.0213 (7)0.0050 (6)0.0092 (6)0.0051 (7)
C1310.0182 (7)0.0187 (9)0.0206 (7)0.0052 (5)0.0069 (5)0.0081 (6)
C1410.0202 (7)0.0203 (9)0.0275 (7)0.0053 (6)0.0118 (6)0.0092 (6)
C120.0496 (12)0.0523 (15)0.0166 (8)0.0203 (10)0.0094 (8)0.0014 (8)
O120.0981 (16)0.0747 (15)0.0267 (8)0.0562 (12)0.0153 (9)0.0035 (8)
C220.0405 (10)0.0305 (11)0.0290 (9)0.0006 (8)0.0171 (8)0.0008 (8)
O220.0698 (12)0.0578 (12)0.0545 (10)0.0054 (9)0.0429 (9)0.0048 (9)
C320.0316 (10)0.0588 (16)0.0328 (10)0.0070 (9)0.0120 (8)0.0188 (10)
O320.0552 (11)0.1014 (18)0.0556 (11)0.0295 (11)0.0165 (9)0.0495 (12)
O420.0217 (6)0.0298 (7)0.0297 (6)0.0014 (5)0.0132 (5)0.0057 (5)
O520.0441 (8)0.0552 (11)0.0542 (9)0.0112 (7)0.0374 (8)0.0134 (8)
C420.0205 (7)0.0222 (9)0.0242 (7)0.0056 (6)0.0104 (6)0.0095 (6)
N520.0211 (6)0.0192 (8)0.0251 (6)0.0055 (5)0.0119 (5)0.0080 (5)
C620.0268 (8)0.0222 (9)0.0313 (8)0.0072 (6)0.0175 (7)0.0094 (7)
C720.0230 (7)0.0247 (10)0.0348 (9)0.0068 (6)0.0157 (7)0.0143 (7)
C820.0217 (7)0.0229 (9)0.0253 (7)0.0039 (6)0.0065 (6)0.0122 (7)
C920.0276 (8)0.0305 (11)0.0295 (9)0.0008 (7)0.0053 (7)0.0122 (8)
C1020.0398 (11)0.0349 (12)0.0268 (9)0.0066 (8)0.0038 (8)0.0037 (8)
C1120.0482 (12)0.0400 (13)0.0254 (9)0.0003 (9)0.0139 (8)0.0005 (8)
C1220.0348 (9)0.0362 (12)0.0248 (8)0.0016 (8)0.0139 (7)0.0034 (8)
C1320.0233 (7)0.0257 (10)0.0227 (7)0.0054 (6)0.0090 (6)0.0090 (7)
C1420.0229 (8)0.0301 (10)0.0314 (8)0.0040 (6)0.0156 (7)0.0081 (7)
N10.0200 (6)0.0227 (8)0.0375 (8)0.0081 (5)0.0071 (6)0.0072 (6)
C1510.0270 (9)0.0347 (12)0.0353 (9)0.0060 (7)0.0084 (7)0.0136 (8)
C1610.0666 (16)0.0513 (16)0.0354 (11)0.0166 (12)0.0216 (11)0.0086 (10)
C1710.0367 (10)0.0262 (11)0.0335 (9)0.0137 (8)0.0089 (8)0.0088 (8)
C1810.0565 (14)0.0368 (13)0.0534 (13)0.0159 (10)0.0301 (11)0.0192 (11)
C1910.0290 (9)0.0262 (11)0.0492 (11)0.0130 (7)0.0104 (8)0.0050 (9)
C2010.0681 (17)0.0443 (16)0.0562 (15)0.0240 (13)0.0073 (13)0.0114 (13)
C2110.0189 (8)0.0355 (12)0.0734 (15)0.0099 (7)0.0139 (9)0.0137 (11)
C2210.0342 (12)0.0507 (17)0.130 (3)0.0111 (11)0.0415 (15)0.0396 (18)
N20.0226 (7)0.0250 (8)0.0322 (7)0.0090 (5)0.0091 (6)0.0093 (6)
C1520.0523 (12)0.0318 (12)0.0452 (11)0.0260 (9)0.0247 (10)0.0173 (9)
C1620.092 (2)0.0358 (15)0.0455 (13)0.0228 (13)0.0204 (13)0.0021 (11)
C1720.0224 (8)0.0306 (11)0.0472 (11)0.0112 (7)0.0141 (8)0.0138 (9)
C1820.0364 (11)0.0413 (14)0.0671 (15)0.0133 (9)0.0270 (10)0.0289 (11)
C1920.0217 (8)0.0470 (14)0.0375 (10)0.0022 (8)0.0065 (7)0.0133 (9)
C2020.0623 (16)0.0413 (15)0.0414 (12)0.0055 (11)0.0102 (11)0.0039 (11)
C2120.0404 (10)0.0274 (11)0.0404 (10)0.0141 (8)0.0147 (8)0.0153 (8)
C2220.0690 (17)0.0512 (17)0.0658 (16)0.0214 (13)0.0411 (14)0.0325 (13)
Geometric parameters (Å, º) top
Tc1—C211.9045 (18)C122—H1220.9500
Tc1—C311.913 (2)N1—C1711.515 (3)
Tc1—C111.916 (2)N1—C2111.517 (2)
Tc1—O412.1293 (12)N1—C1911.521 (2)
Tc1—N512.1778 (15)N1—C1511.525 (2)
Tc1—Cl12.4822 (6)C151—C1611.513 (3)
Tc2—C221.9060 (19)C151—H15A0.9900
Tc2—C321.907 (2)C151—H15B0.9900
Tc2—C121.913 (2)C161—H16A0.9800
Tc2—O422.1317 (12)C161—H16B0.9800
Tc2—N522.1714 (15)C161—H16C0.9800
Tc2—Cl22.4980 (6)C171—C1811.517 (3)
C11—O111.145 (2)C171—H17A0.9900
C21—O211.142 (2)C171—H17B0.9900
C31—O311.128 (3)C181—H18A0.9800
O41—C1411.286 (2)C181—H18B0.9800
O51—C1411.227 (2)C181—H18C0.9800
C41—N511.3363 (19)C191—C2011.514 (3)
C41—C1311.424 (2)C191—H19A0.9900
C41—C1411.530 (2)C191—H19B0.9900
N51—C611.366 (2)C201—H20A0.9800
C61—C711.362 (2)C201—H20B0.9800
C61—H610.9500C201—H20C0.9800
C71—C811.415 (2)C211—C2211.508 (4)
C71—H710.9500C211—H21A0.9900
C81—C911.418 (2)C211—H21B0.9900
C81—C1311.428 (2)C221—H22A0.9800
C91—C1011.368 (3)C221—H22B0.9800
C91—H910.9500C221—H22C0.9800
C101—C1111.407 (3)N2—C2121.516 (3)
C101—H1010.9500N2—C1521.520 (3)
C111—C1211.375 (2)N2—C1921.521 (2)
C111—H1110.9500N2—C1721.521 (2)
C121—C1311.427 (2)C152—C1621.515 (3)
C121—H1210.9500C152—H15C0.9900
C12—O121.142 (3)C152—H15D0.9900
C22—O221.141 (2)C162—H16D0.9800
C32—O321.133 (3)C162—H16E0.9800
O42—C1421.284 (2)C162—H16F0.9800
O52—C1421.224 (2)C172—C1821.512 (3)
C42—N521.333 (2)C172—H17C0.9900
C42—C1321.427 (2)C172—H17D0.9900
C42—C1421.534 (2)C182—H18D0.9800
N52—C621.370 (2)C182—H18E0.9800
C62—C721.361 (2)C182—H18F0.9800
C62—H620.9500C192—C2021.510 (3)
C72—C821.416 (2)C192—H19C0.9900
C72—H720.9500C192—H19D0.9900
C82—C921.418 (2)C202—H20D0.9800
C82—C1321.425 (2)C202—H20E0.9800
C92—C1021.360 (3)C202—H20F0.9800
C92—H920.9500C212—C2221.509 (3)
C102—C1121.405 (3)C212—H21C0.9900
C102—H1020.9500C212—H21D0.9900
C112—C1221.375 (3)C222—H22D0.9800
C112—H1120.9500C222—H22E0.9800
C122—C1321.423 (2)C222—H22F0.9800
C21—Tc1—C3189.43 (9)C211—N1—C191110.81 (16)
C21—Tc1—C1187.48 (8)C171—N1—C151111.09 (15)
C31—Tc1—C1189.41 (9)C211—N1—C151111.14 (17)
C21—Tc1—O41172.44 (6)C191—N1—C151105.93 (14)
C31—Tc1—O4194.13 (7)C161—C151—N1115.46 (17)
C11—Tc1—O4199.20 (6)C161—C151—H15A108.4
C21—Tc1—N5198.23 (7)N1—C151—H15A108.4
C31—Tc1—N5196.33 (7)C161—C151—H15B108.4
C11—Tc1—N51171.91 (6)N1—C151—H15B108.4
O41—Tc1—N5174.77 (5)H15A—C151—H15B107.5
C21—Tc1—Cl192.04 (7)C151—C161—H16A109.5
C31—Tc1—Cl1178.38 (6)C151—C161—H16B109.5
C11—Tc1—Cl189.97 (6)H16A—C161—H16B109.5
O41—Tc1—Cl184.49 (4)C151—C161—H16C109.5
N51—Tc1—Cl184.14 (4)H16A—C161—H16C109.5
C22—Tc2—C3290.02 (10)H16B—C161—H16C109.5
C22—Tc2—C1287.83 (9)N1—C171—C181115.07 (17)
C32—Tc2—C1288.76 (11)N1—C171—H17A108.5
C22—Tc2—O42172.46 (7)C181—C171—H17A108.5
C32—Tc2—O4293.54 (8)N1—C171—H17B108.5
C12—Tc2—O4298.88 (8)C181—C171—H17B108.5
C22—Tc2—N5298.15 (7)H17A—C171—H17B107.5
C32—Tc2—N5296.01 (9)C171—C181—H18A109.5
C12—Tc2—N52172.34 (7)C171—C181—H18B109.5
O42—Tc2—N5274.89 (5)H18A—C181—H18B109.5
C22—Tc2—Cl290.81 (7)C171—C181—H18C109.5
C32—Tc2—Cl2179.14 (7)H18A—C181—H18C109.5
C12—Tc2—Cl291.51 (8)H18B—C181—H18C109.5
O42—Tc2—Cl285.61 (4)C201—C191—N1115.09 (17)
N52—Tc2—Cl283.64 (4)C201—C191—H19A108.5
O11—C11—Tc1178.6 (2)N1—C191—H19A108.5
O21—C21—Tc1178.41 (18)C201—C191—H19B108.5
O31—C31—Tc1176.9 (2)N1—C191—H19B108.5
C141—O41—Tc1119.02 (10)H19A—C191—H19B107.5
N51—C41—C131121.89 (14)C191—C201—H20A109.5
N51—C41—C141113.66 (13)C191—C201—H20B109.5
C131—C41—C141124.37 (13)H20A—C201—H20B109.5
C41—N51—C61119.94 (14)C191—C201—H20C109.5
C41—N51—Tc1115.46 (11)H20A—C201—H20C109.5
C61—N51—Tc1123.96 (11)H20B—C201—H20C109.5
C71—C61—N51122.38 (15)C221—C211—N1115.40 (17)
C71—C61—H61118.8C221—C211—H21A108.4
N51—C61—H61118.8N1—C211—H21A108.4
C61—C71—C81119.62 (15)C221—C211—H21B108.4
C61—C71—H71120.2N1—C211—H21B108.4
C81—C71—H71120.2H21A—C211—H21B107.5
C71—C81—C91121.18 (15)C211—C221—H22A109.5
C71—C81—C131118.52 (14)C211—C221—H22B109.5
C91—C81—C131120.28 (15)H22A—C221—H22B109.5
C101—C91—C81119.97 (17)C211—C221—H22C109.5
C101—C91—H91120.0H22A—C221—H22C109.5
C81—C91—H91120.0H22B—C221—H22C109.5
C91—C101—C111120.04 (16)C212—N2—C152110.98 (15)
C91—C101—H101120.0C212—N2—C192111.54 (16)
C111—C101—H101120.0C152—N2—C192105.92 (15)
C121—C111—C101121.87 (17)C212—N2—C172106.74 (14)
C121—C111—H111119.1C152—N2—C172111.04 (16)
C101—C111—H111119.1C192—N2—C172110.70 (15)
C111—C121—C131119.52 (16)C162—C152—N2115.38 (18)
C111—C121—H121120.2C162—C152—H15C108.4
C131—C121—H121120.2N2—C152—H15C108.4
C41—C131—C121124.19 (14)C162—C152—H15D108.4
C41—C131—C81117.57 (14)N2—C152—H15D108.4
C121—C131—C81118.25 (14)H15C—C152—H15D107.5
O51—C141—O41124.48 (15)C152—C162—H16D109.5
O51—C141—C41120.41 (15)C152—C162—H16E109.5
O41—C141—C41115.00 (13)H16D—C162—H16E109.5
O12—C12—Tc2178.4 (3)C152—C162—H16F109.5
O22—C22—Tc2177.57 (18)H16D—C162—H16F109.5
O32—C32—Tc2177.4 (2)H16E—C162—H16F109.5
C142—O42—Tc2119.15 (10)C182—C172—N2115.37 (15)
N52—C42—C132121.81 (14)C182—C172—H17C108.4
N52—C42—C142113.73 (14)N2—C172—H17C108.4
C132—C42—C142124.46 (14)C182—C172—H17D108.4
C42—N52—C62120.06 (14)N2—C172—H17D108.4
C42—N52—Tc2116.62 (11)H17C—C172—H17D107.5
C62—N52—Tc2123.11 (11)C172—C182—H18D109.5
C72—C62—N52122.39 (15)C172—C182—H18E109.5
C72—C62—H62118.8H18D—C182—H18E109.5
N52—C62—H62118.8C172—C182—H18F109.5
C62—C72—C82119.44 (15)H18D—C182—H18F109.5
C62—C72—H72120.3H18E—C182—H18F109.5
C82—C72—H72120.3C202—C192—N2115.64 (18)
C72—C82—C92120.99 (16)C202—C192—H19C108.4
C72—C82—C132118.75 (15)N2—C192—H19C108.4
C92—C82—C132120.25 (16)C202—C192—H19D108.4
C102—C92—C82119.95 (18)N2—C192—H19D108.4
C102—C92—H92120.0H19C—C192—H19D107.4
C82—C92—H92120.0C192—C202—H20D109.5
C92—C102—C112120.34 (18)C192—C202—H20E109.5
C92—C102—H102119.8H20D—C202—H20E109.5
C112—C102—H102119.8C192—C202—H20F109.5
C122—C112—C102121.54 (18)H20D—C202—H20F109.5
C122—C112—H112119.2H20E—C202—H20F109.5
C102—C112—H112119.2C222—C212—N2114.95 (18)
C112—C122—C132119.69 (18)C222—C212—H21C108.5
C112—C122—H122120.2N2—C212—H21C108.5
C132—C122—H122120.2C222—C212—H21D108.5
C122—C132—C82118.21 (16)N2—C212—H21D108.5
C122—C132—C42124.23 (16)H21C—C212—H21D107.5
C82—C132—C42117.55 (15)C212—C222—H22D109.5
O52—C142—O42124.11 (16)C212—C222—H22E109.5
O52—C142—C42120.75 (16)H22D—C222—H22E109.5
O42—C142—C42115.12 (14)C212—C222—H22F109.5
C171—N1—C211106.53 (15)H22D—C222—H22F109.5
C171—N1—C191111.44 (16)H22E—C222—H22F109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C151—H15A···O510.992.383.328 (2)161
C171—H17A···O31i0.992.503.482 (3)172
C191—H19B···O410.992.403.360 (2)163
C192—H19C···O42ii0.992.563.507 (2)160
C192—H19C···O52ii0.992.443.221 (2)136
C202—H20E···Cl1iii0.982.813.786 (3)177
C221—H22A···Cl1iv0.982.773.652 (2)151
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y1, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula(C8H20N)[Tc(C10H6NO2)Cl(CO)3]
Mr520.80
Crystal system, space groupTriclinic, P1
Temperature (K)193
a, b, c (Å)11.7657 (14), 12.7481 (14), 17.1855 (18)
α, β, γ (°)102.878 (12), 109.624 (12), 99.052 (13)
V3)2290.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.78
Crystal size (mm)0.77 × 0.48 × 0.19
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correctionNumerical
(Coppens et al., 1965)
Tmin, Tmax0.670, 0.828
No. of measured, independent and
observed [I > 2σ(I)] reflections
29670, 12462, 9515
Rint0.058
(sin θ/λ)max1)0.711
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.067, 1.00
No. of reflections12462
No. of parameters541
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 1.17

Computer programs: IPDS Software (Stoe & Cie, 1997), X-RED (Stoe & Cie, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON and PLUTON (Spek, 2003).

Selected bond lengths (Å) top
Tc1—C211.9045 (18)Tc2—C221.9060 (19)
Tc1—C311.913 (2)Tc2—C321.907 (2)
Tc1—C111.916 (2)Tc2—C121.913 (2)
Tc1—O412.1293 (12)Tc2—O422.1317 (12)
Tc1—N512.1778 (15)Tc2—N522.1714 (15)
Tc1—Cl12.4822 (6)Tc2—Cl22.4980 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C151—H15A···O510.992.383.328 (2)161
C171—H17A···O31i0.992.503.482 (3)172
C191—H19B···O410.992.403.360 (2)163
C192—H19C···O42ii0.992.563.507 (2)160
C192—H19C···O52ii0.992.443.221 (2)136
C202—H20E···Cl1iii0.982.813.786 (3)177
C221—H22A···Cl1iv0.982.773.652 (2)151
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y1, z; (iv) x+1, y, z.
 

Acknowledgements

The authors thank the University of Zürich and the Swiss National Science Foundation for financial support.

References

First citationAlberto, R., Schibli, R., Egli, A., Schubiger, P. A., Herrmann, W. A., Artus, G., Abram, U. & Kaden, T. A. (1995). J. Organomet. Chem. 493, 119–127.  CrossRef CAS Web of Science Google Scholar
First citationAlberto, R., Schibli, R., Schubiger, P. A., Abram, U. & Kaden, T. A. (1996). Polyhedron, 15, 1079–1089.  CSD CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davies, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCoppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDesiraju, G. R., Calabrese, J. C. & Harlow, R. L. (1991). Acta Cryst. B47, 77–86.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond, pp. 215–221. Oxford University Press.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMarsh, R. E. (1995). Acta Cryst. B51, 897–907.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMarsh, R. E., Kapon, M., Hu, S. & Herbstein, F. H. (2002). Acta Cryst. B58, 62–77.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationRattat, D., Schubiger, P. A., Berke, H. G., Schmalle, H. & Alberto, R. (2001). Cancer Biother. Radiopharm. 16, 339–343.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. & Saenger, W. (1993). J. Am. Chem. Soc. 115, 4540–4547.  CrossRef CAS Web of Science Google Scholar
First citationStoe & Cie (1997). IPDS Software and X-RED Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWaibel, R., Alberto, R., Willuda, J., Finnern, R., Schibli, R., Stichelberger, A., Egli, A., Abram, U., Mach, J.-P., Plückthun, A. & Schubiger, P. A. (1999). Nat. Biotechnol. 17, 897–901.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1213-m1214
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds