metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1201-m1202

catena-Poly[[[(1-ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-di­hydro­quinoline-3-carboxyl­ato-κ2O3,O4)copper(II)]-μ-1-ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-di­hydro­quinoline-3-carboxyl­ato-κ3N7′:O3,O4] tetra­hydrate]

aThe First Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China, and bSchool of Chemistry and Life Science, Maoming University, Maoming 525000, People's Republic of China
*Correspondence e-mail: song_xueming@sina.com

(Received 16 August 2008; accepted 17 August 2008; online 23 August 2008)

In the title compound, {[Cu(C16H17FN3O3)2]·4H2O}n, the CuII atom is bonded to two O,O′-bidentate 1-ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydro­quinoline-3-carboxyl­ate (norf) monoanions and a symmetry-generated N-bonded norf anion, resulting in a distorted square-pyramidal coordination environ­ment with the N atom occupying the apical site. The bridging norf anion results in one-dimensional chains propogating along [010]. A network of O—H⋯O and N—H⋯O hydrogen bonds helps to establish the crystal structure.

Related literature

For the iron, zinc and cobalt complexes of the norf anion, see: Chen et al. (2001[Chen, Z.-F., Xiong, R.-G., Zhang, J., Chen, X.-T., Xue, Z.-L. & You, X.-Z. (2001). Inorg. Chem. 40, 4075-4077.]); Qu et al. (2003[Qu, Z.-R., Zhao, H., Xing, L.-X., Wang, X.-S., Chen, Z.-F., Yu, Z., Xiong, R.-G. & You, X.-Z. (2003). Eur. J. Inorg. Chem. pp. 2920-2923.]); An et al. (2007[An, Z., Xu, W. & Wang, R.-S. (2007). Acta Cryst. E63, m507-m508.]). For background on the medicinal uses of Hnorf, see: Mizuki et al. (1996[Mizuki, Y., Fujiwara, I. & Yamaguchi, T. (1996). J. Antimicrob. Chemother. 37, Suppl. A, 41-45.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C16H17FN3O3)2]·4H2O

  • Mr = 772.26

  • Triclinic, [P \overline 1]

  • a = 10.023 (2) Å

  • b = 11.708 (2) Å

  • c = 16.219 (3) Å

  • α = 97.22 (3)°

  • β = 107.05 (3)°

  • γ = 105.00 (3)°

  • V = 1715.2 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 296 (2) K

  • 0.43 × 0.28 × 0.22 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.749, Tmax = 0.859

  • 13404 measured reflections

  • 5960 independent reflections

  • 4481 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.191

  • S = 1.00

  • 5960 reflections

  • 492 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.90 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O3 1.936 (3)
Cu1—O1 1.939 (3)
Cu1—O4 1.944 (3)
Cu1—O5 1.953 (3)
Cu1—N6i 2.248 (3)
Symmetry code: (i) x, y-1, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O4W 0.83 (9) 2.08 (10) 2.735 (14) 136 (10)
O1W—H2W⋯O3Wii 0.83 (8) 1.78 (8) 2.580 (11) 163 (11)
O3W—H5W⋯O1Wi 0.88 (6) 2.17 (11) 2.580 (11) 108 (9)
O3W—H6W⋯O1 0.83 (8) 2.13 (8) 2.865 (8) 147 (9)
O4W—H8W⋯O1W 0.90 (9) 2.17 (11) 2.735 (14) 121 (10)
N6—H6A⋯O1Wiii 1.05 (3) 2.12 (4) 3.105 (12) 155 (3)
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z; (iii) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Norfloxacin (H-Norf,1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7- (1-piperazinyl)-3-quinoline carboxylic acid) is member of the class of quinolones that is used to treat infections (Mizuki et al. 1996). The zinc(II), iron(II) and cobalt(II) derivatives of norf have been reported (Chen. et al., 2001; Qu et al. 2003; An et al., 2007).

The title copper(II) derivative, (I), a one-dimensional coordination polymer in which the anion acts in a bridging mode, is reported here (Fig. 1).

The Cu(II) atom is coordinated (Table 1) by four oxygen atoms and one N atoms from three norfloxacin ligands (one monodentate-N and two O,O-bidentate) to form a one-dimensional coordination polymer (Fig. 2). A network of O—H···O and N—H···O hydrogen bonds (Table 2) helps to establish the packing.

Related literature top

For the iron, zinc and cobalt complexes of the norf anion, see: Chen et al. (2001); Qu et al. (2003); An et al. (2007). For background on the medicinal uses of Hnorf, see: Mizuki et al. (1996).

Experimental top

A mixture of Cu(CH3COO)2.H2O (0.05 g, 0.25 mmol), Hnorf( 0.16 g, 0.50 mmol), sodium hydroxide (0.02 g, 0.50 mmol) and water (12 ml) was stirred for 20 min in air. The mixture was then transferred to a 23 ml Teflon-lined hydrothermal bomb. The bomb was kept at 443 K for 96 h under autogenous pressure. After cooling, blue blocks of (I) were obtained from the reaction mixture.

Refinement top

The N- and O-bonded H atoms were located in difference maps and their positions were freely refined with a fixed Uiso value. This has led to some very short H···H intermolecular contacts and the positions of these H atoms should be regarded as less certain.

All the C-bonded H atoms were placed in calculated positions with C—H = 0.93Å and refined as riding with Uiso(H) = 1.2Ueq(carrier).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), expanded to show the coordination of the Cu atom, drawn with 30% probability displacement ellipsoids for the non-hydrogen atoms (arbitrary spheres for the H atoms). Symmetry code: (i) x, 1-y, z.
[Figure 2] Fig. 2. Part of the chain structure of (I).
catena-Poly[[[(1-ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4- dihydroquinoline-3-carboxylato-κ2O3,O4)copper(II)]-µ-1-ethyl-6-fluoro- 4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylato- κ3N7':O3,O4] tetrahydrate] top
Crystal data top
[Cu(C16H17FN3O3)2]·4H2OZ = 2
Mr = 772.26F(000) = 806
Triclinic, P1Dx = 1.495 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.023 (2) ÅCell parameters from 5960 reflections
b = 11.708 (2) Åθ = 3.1–25.1°
c = 16.219 (3) ŵ = 0.71 mm1
α = 97.22 (3)°T = 296 K
β = 107.05 (3)°Block, blue
γ = 105.00 (3)°0.43 × 0.28 × 0.22 mm
V = 1715.2 (6) Å3
Data collection top
Bruker APEXII CCD
diffractometer
5960 independent reflections
Radiation source: fine-focus sealed tube4481 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 25.1°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1111
Tmin = 0.749, Tmax = 0.859k = 1313
13404 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: difmap and geom
wR(F2) = 0.191H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.136P)2 + 1.0468P]
where P = (Fo2 + 2Fc2)/3
5960 reflections(Δ/σ)max < 0.001
492 parametersΔρmax = 1.90 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
[Cu(C16H17FN3O3)2]·4H2Oγ = 105.00 (3)°
Mr = 772.26V = 1715.2 (6) Å3
Triclinic, P1Z = 2
a = 10.023 (2) ÅMo Kα radiation
b = 11.708 (2) ŵ = 0.71 mm1
c = 16.219 (3) ÅT = 296 K
α = 97.22 (3)°0.43 × 0.28 × 0.22 mm
β = 107.05 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
5960 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4481 reflections with I > 2σ(I)
Tmin = 0.749, Tmax = 0.859Rint = 0.028
13404 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.191H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 1.90 e Å3
5960 reflectionsΔρmin = 0.72 e Å3
492 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.90729 (5)0.04270 (4)0.21869 (3)0.0338 (2)
C10.6975 (4)0.0019 (4)0.3152 (3)0.0439 (10)
C20.7856 (4)0.0629 (3)0.3706 (3)0.0373 (9)
C30.9119 (4)0.0878 (3)0.3593 (3)0.0342 (8)
C40.9788 (4)0.1560 (3)0.4170 (3)0.0362 (9)
C51.0984 (5)0.1904 (4)0.4073 (3)0.0436 (10)
H51.13680.16690.36420.052*
C61.1580 (5)0.2569 (5)0.4601 (3)0.0524 (11)
C71.1120 (5)0.2918 (4)0.5307 (3)0.0442 (10)
C80.9952 (5)0.2557 (4)0.5407 (3)0.0408 (9)
H80.96170.27480.58660.049*
C90.9262 (4)0.1917 (4)0.4842 (3)0.0377 (9)
C100.7405 (4)0.1000 (4)0.4376 (3)0.0424 (10)
H100.65900.08190.44480.051*
C110.7415 (5)0.1957 (5)0.5614 (3)0.0532 (12)
H11A0.68050.14590.56930.064*
H11B0.82030.18010.61720.064*
C120.6511 (7)0.3266 (6)0.5376 (5)0.0801 (18)
H12A0.57170.34220.48300.120*
H12B0.61220.34520.58350.120*
H12C0.71150.37630.53090.120*
C131.3388 (5)0.3119 (5)0.6269 (4)0.0571 (12)
H13A1.36260.24250.67420.068*
H13B1.38450.28510.58470.068*
C141.3980 (6)0.4084 (5)0.6642 (3)0.0574 (12)
H14A1.38190.47390.61570.069*
H14B1.50310.37380.69440.069*
C151.1717 (6)0.5018 (5)0.6819 (4)0.0594 (13)
H15A1.12670.52910.72440.071*
H15B1.14740.57150.63480.071*
C161.1055 (6)0.4098 (4)0.6437 (3)0.0505 (11)
H16A1.00110.44760.61240.061*
H16B1.11800.34420.69100.061*
C171.1846 (4)0.1672 (4)0.1965 (3)0.0349 (9)
C181.1248 (4)0.2682 (3)0.1721 (2)0.0320 (8)
C190.9742 (4)0.2613 (3)0.1532 (3)0.0327 (8)
C200.9356 (4)0.3645 (3)0.1262 (3)0.0319 (8)
C210.7879 (4)0.3613 (3)0.1007 (3)0.0338 (9)
H210.71490.29120.09730.041*
C220.7527 (4)0.4610 (3)0.0811 (3)0.0362 (9)
C230.8575 (4)0.5732 (3)0.0900 (3)0.0333 (8)
C241.0026 (4)0.5748 (3)0.1113 (3)0.0351 (9)
H241.07490.64560.11520.042*
C251.0414 (4)0.4703 (3)0.1269 (3)0.0331 (8)
C261.2212 (4)0.3712 (4)0.1661 (3)0.0383 (9)
H261.31800.37260.17670.046*
C271.3780 (7)0.6550 (5)0.2444 (5)0.0809 (19)
H27A1.30500.68090.26180.121*
H27B1.45520.72470.24590.121*
H27C1.41790.60880.28440.121*
C281.3088 (5)0.5775 (4)0.1518 (4)0.0493 (11)
H28A1.27170.62520.11120.059*
H28B1.38260.55110.13440.059*
C290.7251 (5)0.7081 (4)0.1276 (3)0.0423 (10)
H29A0.78850.74240.18850.051*
H29B0.64950.63620.12650.051*
C300.6551 (5)0.7987 (4)0.0915 (4)0.0526 (12)
H30A0.58730.76270.03170.063*
H30B0.60010.82120.12750.063*
C310.8498 (5)0.8720 (4)0.0359 (3)0.0469 (11)
H31A0.92400.94300.03440.056*
H31B0.78290.83600.02400.056*
C320.9225 (5)0.7818 (3)0.0719 (3)0.0387 (9)
H32A0.97560.75890.03480.046*
H32B0.99230.81880.13100.046*
F11.2644 (4)0.2977 (4)0.4433 (2)0.0794 (11)
F20.6077 (2)0.4524 (2)0.05141 (19)0.0529 (7)
N10.8050 (4)0.1605 (3)0.4935 (2)0.0412 (8)
N21.1767 (4)0.3611 (4)0.5827 (3)0.0474 (9)
N31.3301 (5)0.4575 (4)0.7252 (3)0.0611 (11)
H3B1.3751 (17)0.441 (4)0.7842 (7)0.073*
N41.1867 (3)0.4699 (3)0.1462 (2)0.0366 (7)
N50.8124 (4)0.6743 (3)0.0745 (2)0.0372 (8)
N60.7690 (4)0.9081 (3)0.0911 (2)0.0392 (8)
H6A0.723 (3)0.9747 (16)0.069 (3)0.047*
O10.7412 (3)0.0469 (3)0.2558 (2)0.0474 (7)
O20.5865 (4)0.0120 (4)0.3291 (3)0.0752 (12)
O30.9694 (3)0.0539 (3)0.3021 (2)0.0424 (7)
O41.1027 (3)0.0746 (2)0.2105 (2)0.0403 (7)
O50.8753 (3)0.1742 (2)0.1603 (2)0.0419 (7)
O61.3139 (3)0.1796 (3)0.2032 (3)0.0584 (9)
O1W0.4376 (13)0.9606 (8)0.0102 (6)0.182 (4)
O2W0.2803 (6)0.9249 (5)0.2713 (5)0.122 (2)
O3W0.5350 (6)0.1403 (7)0.1444 (4)0.109 (2)
O4W0.2705 (8)0.8303 (7)0.0935 (7)0.143 (3)
H1W0.365 (9)0.903 (8)0.006 (7)0.171*
H2W0.473 (12)1.008 (9)0.059 (4)0.171*
H3W0.309 (13)0.974 (7)0.319 (4)0.171*
H4W0.240 (11)0.855 (3)0.274 (6)0.171*
H5W0.472 (9)0.069 (4)0.138 (8)0.171*
H6W0.615 (5)0.143 (8)0.180 (6)0.171*
H7W0.351 (6)0.819 (10)0.100 (9)0.171*
H8W0.265 (11)0.888 (6)0.062 (8)0.171*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0306 (3)0.0301 (3)0.0431 (3)0.0152 (2)0.0094 (2)0.0124 (2)
C10.030 (2)0.045 (2)0.061 (3)0.0190 (18)0.0139 (19)0.016 (2)
C20.0310 (19)0.0345 (19)0.046 (2)0.0103 (16)0.0122 (17)0.0070 (17)
C30.0313 (18)0.0358 (19)0.035 (2)0.0104 (16)0.0111 (16)0.0074 (16)
C40.0335 (19)0.0365 (19)0.037 (2)0.0114 (17)0.0093 (16)0.0087 (16)
C50.044 (2)0.059 (3)0.041 (2)0.029 (2)0.0185 (18)0.022 (2)
C60.055 (3)0.071 (3)0.049 (3)0.037 (2)0.024 (2)0.026 (2)
C70.045 (2)0.054 (2)0.037 (2)0.021 (2)0.0110 (18)0.0162 (19)
C80.044 (2)0.046 (2)0.033 (2)0.0144 (19)0.0133 (17)0.0109 (17)
C90.038 (2)0.041 (2)0.033 (2)0.0136 (18)0.0114 (16)0.0066 (16)
C100.036 (2)0.043 (2)0.051 (3)0.0161 (18)0.0178 (19)0.0069 (19)
C110.055 (3)0.076 (3)0.043 (3)0.032 (3)0.026 (2)0.021 (2)
C120.066 (3)0.095 (4)0.082 (4)0.009 (3)0.036 (3)0.034 (4)
C130.054 (3)0.068 (3)0.055 (3)0.027 (2)0.014 (2)0.028 (2)
C140.061 (3)0.074 (3)0.044 (3)0.038 (3)0.012 (2)0.020 (2)
C150.077 (3)0.050 (3)0.051 (3)0.020 (3)0.017 (2)0.024 (2)
C160.061 (3)0.054 (3)0.043 (3)0.021 (2)0.020 (2)0.020 (2)
C170.0322 (19)0.040 (2)0.038 (2)0.0190 (17)0.0122 (16)0.0118 (16)
C180.0323 (18)0.0334 (18)0.032 (2)0.0159 (16)0.0085 (15)0.0082 (15)
C190.0359 (19)0.0289 (18)0.035 (2)0.0141 (16)0.0102 (16)0.0081 (15)
C200.0317 (18)0.0259 (17)0.035 (2)0.0099 (15)0.0067 (15)0.0056 (15)
C210.0264 (17)0.0283 (17)0.041 (2)0.0076 (15)0.0035 (15)0.0086 (15)
C220.0276 (18)0.0297 (18)0.047 (2)0.0131 (16)0.0036 (16)0.0061 (16)
C230.0366 (19)0.0266 (17)0.034 (2)0.0124 (16)0.0062 (16)0.0065 (15)
C240.036 (2)0.0296 (18)0.039 (2)0.0080 (16)0.0124 (16)0.0115 (16)
C250.0346 (19)0.0308 (18)0.033 (2)0.0119 (16)0.0090 (15)0.0082 (15)
C260.0303 (19)0.044 (2)0.045 (2)0.0176 (17)0.0122 (17)0.0162 (18)
C270.062 (3)0.056 (3)0.092 (5)0.004 (3)0.002 (3)0.017 (3)
C280.036 (2)0.043 (2)0.075 (3)0.0081 (19)0.027 (2)0.024 (2)
C290.040 (2)0.0281 (18)0.063 (3)0.0105 (17)0.023 (2)0.0081 (18)
C300.040 (2)0.029 (2)0.078 (4)0.0104 (19)0.009 (2)0.000 (2)
C310.069 (3)0.0309 (19)0.042 (2)0.018 (2)0.015 (2)0.0146 (17)
C320.047 (2)0.0285 (18)0.047 (2)0.0160 (17)0.0207 (19)0.0135 (17)
F10.090 (2)0.135 (3)0.077 (2)0.090 (2)0.0545 (19)0.067 (2)
F20.0305 (12)0.0325 (12)0.0806 (19)0.0100 (10)0.0026 (11)0.0106 (11)
N10.0374 (17)0.0491 (19)0.040 (2)0.0172 (16)0.0145 (15)0.0094 (16)
N20.051 (2)0.056 (2)0.042 (2)0.0260 (18)0.0144 (16)0.0198 (17)
N30.079 (3)0.065 (3)0.042 (2)0.034 (2)0.009 (2)0.022 (2)
N40.0315 (16)0.0362 (17)0.046 (2)0.0113 (14)0.0156 (14)0.0152 (14)
N50.0391 (17)0.0275 (15)0.046 (2)0.0146 (14)0.0110 (15)0.0127 (14)
N60.0406 (18)0.0275 (15)0.045 (2)0.0171 (14)0.0038 (15)0.0051 (14)
O10.0407 (15)0.0597 (18)0.0563 (19)0.0306 (14)0.0186 (14)0.0269 (15)
O20.051 (2)0.101 (3)0.114 (3)0.048 (2)0.048 (2)0.062 (3)
O30.0378 (14)0.0530 (17)0.0492 (18)0.0261 (13)0.0171 (13)0.0252 (14)
O40.0361 (14)0.0392 (15)0.0574 (19)0.0239 (12)0.0182 (13)0.0205 (13)
O50.0308 (13)0.0289 (13)0.066 (2)0.0114 (12)0.0099 (13)0.0200 (13)
O60.0397 (17)0.059 (2)0.094 (3)0.0287 (15)0.0296 (17)0.0359 (18)
O1W0.235 (12)0.129 (7)0.141 (7)0.008 (6)0.044 (8)0.040 (5)
O2W0.065 (3)0.095 (3)0.243 (8)0.049 (3)0.060 (4)0.094 (4)
O3W0.090 (3)0.208 (6)0.083 (3)0.101 (4)0.045 (3)0.068 (4)
O4W0.130 (5)0.110 (5)0.187 (8)0.020 (4)0.073 (6)0.018 (5)
Geometric parameters (Å, º) top
Cu1—O31.936 (3)C18—C191.428 (5)
Cu1—O11.939 (3)C19—O51.268 (5)
Cu1—O41.944 (3)C19—C201.441 (5)
Cu1—O51.953 (3)C20—C251.404 (5)
Cu1—N6i2.248 (3)C20—C211.405 (5)
C1—O21.229 (6)C21—C221.352 (5)
C1—O11.285 (6)C21—H210.9300
C1—C21.489 (6)C22—F21.362 (4)
C2—C101.371 (6)C22—C231.414 (6)
C2—C31.426 (6)C23—C241.388 (6)
C3—O31.281 (5)C23—N51.398 (5)
C3—C41.435 (6)C24—C251.406 (5)
C4—C51.403 (6)C24—H240.9300
C4—C91.406 (6)C25—N41.398 (5)
C5—C61.344 (6)C26—N41.340 (5)
C5—H50.9300C26—H260.9300
C6—F11.357 (6)C27—C281.511 (8)
C6—C71.420 (7)C27—H27A0.9600
C7—C81.388 (6)C27—H27B0.9600
C7—N21.384 (6)C27—H27C0.9600
C8—C91.396 (6)C28—N41.483 (5)
C8—H80.9300C28—H28A0.9700
C9—N11.398 (5)C28—H28B0.9700
C10—N11.341 (6)C29—N51.481 (6)
C10—H100.9300C29—C301.505 (6)
C11—N11.475 (6)C29—H29A0.9700
C11—C121.499 (8)C29—H29B0.9700
C11—H11A0.9700C30—N61.481 (5)
C11—H11B0.9700C30—H30A0.9700
C12—H12A0.9600C30—H30B0.9700
C12—H12B0.9600C31—N61.464 (6)
C12—H12C0.9600C31—C321.513 (6)
C13—N21.488 (6)C31—H31A0.9700
C13—C141.517 (7)C31—H31B0.9700
C13—H13A0.9700C32—N51.458 (5)
C13—H13B0.9700C32—H32A0.9700
C14—N31.452 (7)C32—H32B0.9700
C14—H14A0.9700N3—H3B0.900 (8)
C14—H14B0.9700N6—Cu1ii2.248 (3)
C15—N31.454 (7)N6—H6A1.05 (2)
C15—C161.511 (7)O1W—O1Wiii1.500 (18)
C15—H15A0.9700O1W—H1W0.83 (9)
C15—H15B0.9700O1W—H2W0.83 (8)
C16—N21.469 (6)O2W—H3W0.83 (7)
C16—H16A0.9700O2W—H4W0.83 (4)
C16—H16B0.9700O3W—H5W0.88 (3)
C17—O61.236 (5)O3W—H6W0.83 (8)
C17—O41.270 (5)O4W—H7W0.83 (8)
C17—C181.503 (5)O4W—H8W0.90 (9)
C18—C261.369 (6)
O3—Cu1—O192.22 (13)C21—C20—C19119.3 (3)
O3—Cu1—O485.49 (12)C22—C21—C20119.4 (3)
O1—Cu1—O4164.06 (13)C22—C21—H21120.3
O3—Cu1—O5165.39 (13)C20—C21—H21120.3
O1—Cu1—O587.15 (13)C21—C22—F2117.8 (3)
O4—Cu1—O591.12 (12)C21—C22—C23123.8 (3)
O3—Cu1—N6i105.05 (13)F2—C22—C23118.4 (3)
O1—Cu1—N6i94.09 (14)C24—C23—N5123.3 (3)
O4—Cu1—N6i101.75 (14)C24—C23—C22116.5 (3)
O5—Cu1—N6i89.55 (13)N5—C23—C22120.1 (3)
O2—C1—O1122.4 (4)C23—C24—C25120.6 (4)
O2—C1—C2118.5 (4)C23—C24—H24119.7
O1—C1—C2119.1 (4)C25—C24—H24119.7
C10—C2—C3118.6 (4)N4—C25—C20118.1 (3)
C10—C2—C1116.4 (4)N4—C25—C24121.2 (3)
C3—C2—C1125.1 (4)C20—C25—C24120.7 (3)
O3—C3—C2125.0 (4)N4—C26—C18125.0 (4)
O3—C3—C4118.1 (4)N4—C26—H26117.5
C2—C3—C4117.0 (4)C18—C26—H26117.5
C5—C4—C9117.8 (4)C28—C27—H27A109.5
C5—C4—C3120.8 (4)C28—C27—H27B109.5
C9—C4—C3121.4 (4)H27A—C27—H27B109.5
C6—C5—C4120.4 (4)C28—C27—H27C109.5
C6—C5—H5119.8H27A—C27—H27C109.5
C4—C5—H5119.8H27B—C27—H27C109.5
C5—C6—F1118.4 (4)N4—C28—C27111.2 (4)
C5—C6—C7123.9 (4)N4—C28—H28A109.4
F1—C6—C7117.6 (4)C27—C28—H28A109.4
C8—C7—N2123.2 (4)N4—C28—H28B109.4
C8—C7—C6115.3 (4)C27—C28—H28B109.4
N2—C7—C6121.4 (4)H28A—C28—H28B108.0
C7—C8—C9122.2 (4)N5—C29—C30110.5 (4)
C7—C8—H8118.9N5—C29—H29A109.5
C9—C8—H8118.9C30—C29—H29A109.6
C8—C9—N1121.1 (4)N5—C29—H29B109.5
C8—C9—C4120.3 (4)C30—C29—H29B109.5
N1—C9—C4118.5 (4)H29A—C29—H29B108.1
N1—C10—C2124.8 (4)N6—C30—C29110.2 (3)
N1—C10—H10117.6N6—C30—H30A109.6
C2—C10—H10117.6C29—C30—H30A109.6
N1—C11—C12112.5 (4)N6—C30—H30B109.6
N1—C11—H11A109.1C29—C30—H30B109.6
C12—C11—H11A109.1H30A—C30—H30B108.1
N1—C11—H11B109.1N6—C31—C32110.6 (4)
C12—C11—H11B109.1N6—C31—H31A109.5
H11A—C11—H11B107.8C32—C31—H31A109.5
C11—C12—H12A109.5N6—C31—H31B109.5
C11—C12—H12B109.5C32—C31—H31B109.5
H12A—C12—H12B109.5H31A—C31—H31B108.1
C11—C12—H12C109.5N5—C32—C31110.2 (3)
H12A—C12—H12C109.5N5—C32—H32A109.6
H12B—C12—H12C109.5C31—C32—H32A109.6
N2—C13—C14110.1 (4)N5—C32—H32B109.6
N2—C13—H13A109.6C31—C32—H32B109.6
C14—C13—H13A109.6H32A—C32—H32B108.1
N2—C13—H13B109.6C10—N1—C9119.6 (4)
C14—C13—H13B109.6C10—N1—C11118.2 (4)
H13A—C13—H13B108.1C9—N1—C11122.1 (4)
N3—C14—C13113.2 (4)C7—N2—C16117.2 (4)
N3—C14—H14A109.0C7—N2—C13116.2 (4)
C13—C14—H14A109.0C16—N2—C13110.8 (4)
N3—C14—H14B108.9C14—N3—C15109.1 (4)
C13—C14—H14B108.9C14—N3—H3B124.2 (12)
H14A—C14—H14B107.8C15—N3—H3B123.9 (12)
N3—C15—C16114.5 (4)C26—N4—C25119.5 (3)
N3—C15—H15A108.6C26—N4—C28117.4 (3)
C16—C15—H15A108.6C25—N4—C28123.0 (3)
N3—C15—H15B108.6C23—N5—C32117.2 (3)
C16—C15—H15B108.6C23—N5—C29115.6 (3)
H15A—C15—H15B107.6C32—N5—C29110.5 (3)
N2—C16—C15110.3 (4)C31—N6—C30108.5 (3)
N2—C16—H16A109.6C31—N6—Cu1ii115.4 (3)
C15—C16—H16A109.6C30—N6—Cu1ii119.5 (3)
N2—C16—H16B109.6C31—N6—H6A111.7 (13)
C15—C16—H16B109.6C30—N6—H6A111.6 (13)
H16A—C16—H16B108.1Cu1ii—N6—H6A89 (2)
O6—C17—O4122.8 (4)C1—O1—Cu1131.2 (3)
O6—C17—C18117.7 (4)C3—O3—Cu1127.2 (3)
O4—C17—C18119.6 (3)C17—O4—Cu1130.5 (2)
C26—C18—C19118.9 (3)C19—O5—Cu1126.1 (2)
C26—C18—C17117.4 (3)O1Wiii—O1W—H1W161 (7)
C19—C18—C17123.7 (3)O1Wiii—O1W—H2W85 (7)
O5—C19—C18125.4 (3)H1W—O1W—H2W113 (10)
O5—C19—C20118.8 (3)H3W—O2W—H4W113 (8)
C18—C19—C20115.8 (3)H5W—O3W—H6W108 (9)
C25—C20—C21118.4 (3)H7W—O4W—H8W108 (11)
C25—C20—C19122.2 (3)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O4W0.83 (9)2.08 (10)2.735 (14)136 (10)
O1W—H2W···O3Wii0.83 (8)1.78 (8)2.580 (11)163 (11)
O3W—H5W···O1Wi0.88 (6)2.17 (11)2.580 (11)108 (9)
O3W—H6W···O10.83 (8)2.13 (8)2.865 (8)147 (9)
O4W—H8W···O1W0.90 (9)2.17 (11)2.735 (14)121 (10)
N6—H6A···O1Wiii1.05 (3)2.12 (4)3.105 (12)155 (3)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[Cu(C16H17FN3O3)2]·4H2O
Mr772.26
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.023 (2), 11.708 (2), 16.219 (3)
α, β, γ (°)97.22 (3), 107.05 (3), 105.00 (3)
V3)1715.2 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.43 × 0.28 × 0.22
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.749, 0.859
No. of measured, independent and
observed [I > 2σ(I)] reflections
13404, 5960, 4481
Rint0.028
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.191, 1.00
No. of reflections5960
No. of parameters492
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.90, 0.72

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O31.936 (3)Cu1—O51.953 (3)
Cu1—O11.939 (3)Cu1—N6i2.248 (3)
Cu1—O41.944 (3)
Symmetry code: (i) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O4W0.83 (9)2.08 (10)2.735 (14)136 (10)
O1W—H2W···O3Wii0.83 (8)1.78 (8)2.580 (11)163 (11)
O3W—H5W···O1Wi0.88 (6)2.17 (11)2.580 (11)108 (9)
O3W—H6W···O10.83 (8)2.13 (8)2.865 (8)147 (9)
O4W—H8W···O1W0.90 (9)2.17 (11)2.735 (14)121 (10)
N6—H6A···O1Wiii1.05 (3)2.12 (4)3.105 (12)155 (3)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+1, y+2, z.
 

Acknowledgements

The authors are grateful for financial support from the Natural Science Foundation of Heilongjiang Province (D200672).

References

First citationAn, Z., Xu, W. & Wang, R.-S. (2007). Acta Cryst. E63, m507–m508.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z.-F., Xiong, R.-G., Zhang, J., Chen, X.-T., Xue, Z.-L. & You, X.-Z. (2001). Inorg. Chem. 40, 4075–4077.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMizuki, Y., Fujiwara, I. & Yamaguchi, T. (1996). J. Antimicrob. Chemother. 37, Suppl. A, 41–45.  Google Scholar
First citationQu, Z.-R., Zhao, H., Xing, L.-X., Wang, X.-S., Chen, Z.-F., Yu, Z., Xiong, R.-G. & You, X.-Z. (2003). Eur. J. Inorg. Chem. pp. 2920–2923.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1201-m1202
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds