metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa-μ2-acetato-1:2κ4O:O′;1:2κ2O:O;2:3κ4O:O′;2:3κ2O:O-bis­­(2-amino-7-chloro-5-methyl-1,8-naphthyridine)-1κN1,3κN1-trizinc(II)

aCollege of Animal Husbandry and Veterinary Studies, Henan Agricultural University, Zhengzhou, Henan Province 450002, People's Republic of China
*Correspondence e-mail: mojuan52@126.com

(Received 11 June 2008; accepted 31 July 2008; online 6 August 2008)

The title complex, [Zn3(C2H3O2)6(C9H8ClN3)2], contains three ZnII atoms bridged by six acetate ligands. The central ZnII ion, located on an inversion centre, is surrounded by six O atoms from acetate ligands in a distorted octa­hedral geometry [Zn—O = 1.9588 (12)–2.1237 (12) Å]. The terminal ZnII ions are coordinated by one N atom of 2-amino-7-chloro-5-methyl-1,8-naphthyridine and three O atoms of three acetate ligands in a distorted tetra­hedral geometry. The separation between the central and terminal ZnII ions is 3.245 (3) Å.

Related literature

For related literature, see: Baker & Norman (2004[Baker, R. S. & Norman, R. E. (2004). Acta Cryst. E60, m1761-m1763.]); Lis et al. (2005[Lis, T., Kinzhybalo, V. & Zieba, K. (2005). Acta Cryst. E61, m2382-m2384.]); Stadie et al. (2007[Stadie, N. P., Sanchez-Smith, R. & Groy, T. L. (2007). Acta Cryst. E63, m2153-m2154.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn3(C2H3O2)6(C9H8ClN3)2]

  • Mr = 937.64

  • Triclinic, [P \overline 1]

  • a = 9.1978 (12) Å

  • b = 9.2108 (13) Å

  • c = 12.0457 (16) Å

  • α = 93.602 (3)°

  • β = 91.685 (2)°

  • γ = 118.247 (2)°

  • V = 895.2 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.21 mm−1

  • T = 113 (2) K

  • 0.12 × 0.08 × 0.02 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.782, Tmax = 0.956

  • 11008 measured reflections

  • 4221 independent reflections

  • 3495 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.065

  • S = 1.01

  • 4221 reflections

  • 253 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—O3 2.0724 (12)
Zn1—O5 2.0910 (12)
Zn1—O1 2.1237 (12)
Zn2—O3 1.9588 (12)
Zn2—O2 1.9748 (12)
Zn2—N2 2.0379 (14)
O3—Zn1—O5i 91.21 (5)
O3—Zn1—O5 88.79 (5)
O3—Zn1—O1i 89.96 (5)
O5—Zn1—O1i 93.21 (5)
O3—Zn1—O1 90.04 (5)
O5—Zn1—O1 86.79 (5)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯O2 0.85 (2) 2.15 (2) 2.921 (2) 150.0 (17)
N3—H3A⋯O5ii 0.87 (2) 2.09 (2) 2.958 (2) 171.0 (19)
Symmetry code: (ii) -x+2, -y+2, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: XP in SHELXTL.

Supporting information


Comment top

Acetic acid is versatile ligand which can function in monodentate or bidentate modes in metal complexes (Baker & Norman, 2004; Lis et al., 2005; Stadie et al., 2007). Here, we report the crystal structure of the title compound, (I), in which three ZnII ions are bridged by three acetic acid ligands.

The middle Zn atom in (I) (Fig. 1) has a distorted octahedral coordination geometry involving six O atoms of six acetic acid ligands. The Zn—O bonds lengths are between 1.9588 (12) and 2.1237 (12)Å (Table 1). The End ZnII ion is coordinated by one N atom of 2-amino-4-methyl-7-chloro-1,8-naphthyridine and three O atoms of three acetic acid ligands, and has a distorted tetrahedron coordination geometry. The distance of two neighboring ZnII ions separated by two O atoms of each two acetate bridging ligands and one O atoms of one acetate bridging ligand is 3.245 (3) Å.

Related literature top

For related literature, see: Baker & Norman (2004); Lis et al. (2005); Stadie et al. (2007).

Experimental top

A 10 ml dichloromethane solution of 2-amino-5-methyl-7-chloro-1,8-naphthyridine (0.039 g, 0.2 mmol) was added to a 20 mL dichloromethane solution of Zn(CH3COO)2 (0.055 g, 0.3 mmol) under an N2 atmosphere. The mixture was stirred for 10 h. Colorless crystals suitable for X-ray diffraction were formed by vapour diffusion of diethyl ethyl ether into dichloromethane solution.

Refinement top

All hydrogen atoms were generated geometrically (C—H bond lengths of methyl group fixed at 0.98 Å, C—H bond lengths of naphthyridine fixed at 0.95 Å), assigned appropriated isotropic thermal parameters, Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XP in SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom-numbering scheme and displacement ellipsoids drawn at the 40% probability level. (Symmetry code: 1 - x, 1 - y, 1 - z).
Hexa-µ2-acetato-1:2κ4O:O';1:2κ2O:O;2:3κ4O:O';2:3κ2O:O- bis(2-amino-7-chloro-5-methyl-1,8-naphthyridine)-1κN1,3κN1- trizinc(II) top
Crystal data top
[Zn3(C2H3O2)6(C9H8ClN3)2]Z = 1
Mr = 937.64F(000) = 476
Triclinic, P1Dx = 1.739 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 9.1978 (12) ÅCell parameters from 2625 reflections
b = 9.2108 (13) Åθ = 2.5–25.0°
c = 12.0457 (16) ŵ = 2.21 mm1
α = 93.602 (3)°T = 113 K
β = 91.685 (2)°Prism, colorless
γ = 118.247 (2)°0.12 × 0.08 × 0.02 mm
V = 895.2 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4221 independent reflections
Radiation source: fine-focus sealed tube3495 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 27.9°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.782, Tmax = 0.956k = 1212
11008 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0354P)2]
where P = (Fo2 + 2Fc2)/3
4221 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Zn3(C2H3O2)6(C9H8ClN3)2]γ = 118.247 (2)°
Mr = 937.64V = 895.2 (2) Å3
Triclinic, P1Z = 1
a = 9.1978 (12) ÅMo Kα radiation
b = 9.2108 (13) ŵ = 2.21 mm1
c = 12.0457 (16) ÅT = 113 K
α = 93.602 (3)°0.12 × 0.08 × 0.02 mm
β = 91.685 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4221 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3495 reflections with I > 2σ(I)
Tmin = 0.782, Tmax = 0.956Rint = 0.030
11008 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.36 e Å3
4221 reflectionsΔρmin = 0.65 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.50000.50000.01215 (8)
Zn20.81766 (2)0.76297 (2)0.660723 (16)0.01398 (7)
Cl10.47109 (6)0.69320 (6)0.93855 (4)0.03122 (13)
N10.75010 (17)0.85718 (17)0.85071 (12)0.0158 (3)
N20.97997 (17)0.97283 (17)0.75522 (12)0.0136 (3)
N31.20715 (19)1.0819 (2)0.64915 (13)0.0181 (3)
H3A1.299 (3)1.168 (3)0.6360 (17)0.024 (6)*
H3B1.164 (2)0.998 (2)0.6007 (17)0.018 (5)*
C10.6629 (2)0.8670 (2)0.93115 (15)0.0179 (4)
C20.7103 (2)1.0020 (2)1.01047 (15)0.0182 (4)
H20.63940.99991.06690.022*
C30.8637 (2)1.1386 (2)1.00414 (14)0.0163 (4)
C40.9626 (2)1.1348 (2)0.91812 (14)0.0143 (3)
C50.8998 (2)0.9917 (2)0.84338 (14)0.0138 (3)
C61.1288 (2)1.0979 (2)0.73619 (14)0.0140 (4)
C71.2028 (2)1.2477 (2)0.80965 (15)0.0174 (4)
H71.30841.33500.79620.021*
C81.1228 (2)1.2645 (2)0.89753 (15)0.0170 (4)
H81.17311.36320.94620.020*
C90.9208 (2)1.2883 (2)1.08722 (16)0.0222 (4)
H9A0.92061.37971.04990.033*
H9B1.03311.32131.11780.033*
H9C0.84581.26081.14780.033*
C100.8902 (2)0.6534 (2)0.45903 (14)0.0152 (4)
C111.0029 (2)0.6306 (2)0.38019 (16)0.0206 (4)
H11A1.06540.58490.41870.031*
H11B1.07990.73760.35450.031*
H11C0.93690.55430.31600.031*
C120.5768 (2)0.8498 (2)0.60578 (15)0.0195 (4)
C130.4045 (2)0.8233 (3)0.59278 (19)0.0314 (5)
H13A0.39860.91770.63030.047*
H13B0.32980.72200.62610.047*
H13C0.37140.81280.51340.047*
C140.3533 (2)0.5867 (2)0.29542 (14)0.0132 (3)
C150.3642 (2)0.7221 (2)0.22734 (15)0.0200 (4)
H15A0.35240.80540.27530.030*
H15B0.27550.67550.16770.030*
H15C0.47160.77380.19460.030*
O10.73730 (14)0.56434 (14)0.44255 (10)0.0174 (3)
O20.95980 (15)0.76262 (15)0.54110 (10)0.0191 (3)
O30.59970 (14)0.72059 (14)0.60042 (10)0.0170 (3)
O40.69633 (18)0.98977 (17)0.62159 (15)0.0385 (4)
O50.46887 (14)0.62359 (14)0.36908 (10)0.0165 (3)
O60.22937 (14)0.44604 (14)0.27489 (10)0.0178 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01022 (14)0.01115 (14)0.01260 (15)0.00360 (11)0.00109 (10)0.00257 (11)
Zn20.01081 (11)0.01109 (11)0.01601 (12)0.00248 (8)0.00174 (8)0.00236 (8)
Cl10.0224 (2)0.0204 (2)0.0333 (3)0.0039 (2)0.0130 (2)0.0047 (2)
N10.0152 (7)0.0122 (7)0.0145 (8)0.0023 (6)0.0001 (6)0.0009 (6)
N20.0133 (7)0.0104 (7)0.0141 (7)0.0034 (6)0.0006 (6)0.0003 (6)
N30.0130 (8)0.0141 (8)0.0220 (9)0.0021 (7)0.0041 (6)0.0008 (7)
C10.0159 (9)0.0140 (9)0.0173 (9)0.0017 (7)0.0027 (7)0.0013 (7)
C20.0204 (9)0.0165 (9)0.0155 (9)0.0070 (8)0.0031 (7)0.0012 (7)
C30.0204 (9)0.0144 (9)0.0145 (9)0.0091 (8)0.0036 (7)0.0009 (7)
C40.0143 (8)0.0112 (8)0.0153 (9)0.0049 (7)0.0038 (7)0.0006 (6)
C50.0134 (8)0.0128 (8)0.0135 (9)0.0051 (7)0.0013 (7)0.0009 (7)
C60.0128 (8)0.0110 (8)0.0170 (9)0.0049 (7)0.0020 (7)0.0011 (7)
C70.0118 (8)0.0103 (8)0.0248 (10)0.0012 (7)0.0015 (7)0.0002 (7)
C80.0159 (9)0.0097 (8)0.0214 (9)0.0036 (7)0.0039 (7)0.0024 (7)
C90.0241 (10)0.0176 (9)0.0215 (10)0.0081 (8)0.0021 (8)0.0053 (8)
C100.0165 (8)0.0127 (8)0.0164 (9)0.0065 (7)0.0019 (7)0.0038 (7)
C110.0164 (9)0.0215 (9)0.0231 (10)0.0083 (8)0.0052 (7)0.0011 (8)
C120.0227 (9)0.0160 (9)0.0190 (10)0.0091 (8)0.0009 (7)0.0018 (7)
C130.0235 (10)0.0231 (11)0.0490 (14)0.0136 (9)0.0034 (10)0.0060 (9)
C140.0136 (8)0.0141 (8)0.0128 (8)0.0073 (7)0.0042 (6)0.0010 (7)
C150.0206 (9)0.0181 (9)0.0201 (10)0.0078 (8)0.0021 (7)0.0058 (7)
O10.0117 (6)0.0176 (6)0.0191 (7)0.0044 (5)0.0018 (5)0.0026 (5)
O20.0139 (6)0.0172 (6)0.0195 (7)0.0027 (5)0.0008 (5)0.0041 (5)
O30.0150 (6)0.0134 (6)0.0223 (7)0.0079 (5)0.0053 (5)0.0076 (5)
O40.0261 (8)0.0178 (7)0.0673 (11)0.0077 (6)0.0081 (7)0.0025 (7)
O50.0133 (6)0.0132 (6)0.0179 (7)0.0022 (5)0.0016 (5)0.0020 (5)
O60.0151 (6)0.0125 (6)0.0214 (7)0.0037 (5)0.0038 (5)0.0014 (5)
Geometric parameters (Å, º) top
Zn1—O32.0724 (12)C7—C81.349 (2)
Zn1—O3i2.0724 (12)C7—H70.9500
Zn1—O5i2.0910 (12)C8—H80.9500
Zn1—O52.0910 (12)C9—H9A0.9800
Zn1—O1i2.1237 (12)C9—H9B0.9800
Zn1—O12.1237 (12)C9—H9C0.9800
Zn2—O31.9588 (12)C10—O11.249 (2)
Zn2—O21.9748 (12)C10—O21.275 (2)
Zn2—O6i1.9783 (12)C10—C111.504 (2)
Zn2—N22.0379 (14)C11—H11A0.9800
Cl1—C11.7428 (18)C11—H11B0.9800
N1—C11.302 (2)C11—H11C0.9800
N1—C51.358 (2)C12—O41.234 (2)
N2—C61.346 (2)C12—O31.301 (2)
N2—C51.359 (2)C12—C131.487 (2)
N3—C61.329 (2)C13—H13A0.9800
N3—H3A0.87 (2)C13—H13B0.9800
N3—H3B0.85 (2)C13—H13C0.9800
C1—C21.401 (2)C14—O61.259 (2)
C2—C31.385 (2)C14—O51.264 (2)
C2—H20.9500C14—C151.502 (2)
C3—C41.408 (2)C15—H15A0.9800
C3—C91.512 (2)C15—H15B0.9800
C4—C51.407 (2)C15—H15C0.9800
C4—C81.433 (2)O6—Zn2i1.9783 (12)
C6—C71.439 (2)
O3—Zn1—O3i180.0C8—C7—C6120.23 (16)
O3—Zn1—O5i91.21 (5)C8—C7—H7119.9
O3i—Zn1—O5i88.79 (5)C6—C7—H7119.9
O3—Zn1—O588.79 (5)C7—C8—C4120.55 (16)
O3i—Zn1—O591.21 (5)C7—C8—H8119.7
O5i—Zn1—O5180.000 (1)C4—C8—H8119.7
O3—Zn1—O1i89.96 (5)C3—C9—H9A109.5
O3i—Zn1—O1i90.04 (5)C3—C9—H9B109.5
O5i—Zn1—O1i86.79 (5)H9A—C9—H9B109.5
O5—Zn1—O1i93.21 (5)C3—C9—H9C109.5
O3—Zn1—O190.04 (5)H9A—C9—H9C109.5
O3i—Zn1—O189.96 (5)H9B—C9—H9C109.5
O5i—Zn1—O193.21 (5)O1—C10—O2124.22 (16)
O5—Zn1—O186.79 (5)O1—C10—C11119.27 (15)
O1i—Zn1—O1180.0O2—C10—C11116.48 (15)
O3—Zn2—O2111.65 (5)C10—C11—H11A109.5
O3—Zn2—O6i103.18 (5)C10—C11—H11B109.5
O2—Zn2—O6i100.45 (5)H11A—C11—H11B109.5
O3—Zn2—N2124.29 (5)C10—C11—H11C109.5
O2—Zn2—N299.92 (5)H11A—C11—H11C109.5
O6i—Zn2—N2115.01 (6)H11B—C11—H11C109.5
C1—N1—C5116.26 (15)O4—C12—O3120.09 (17)
C6—N2—C5118.94 (14)O4—C12—C13121.64 (17)
C6—N2—Zn2132.49 (12)O3—C12—C13118.27 (16)
C5—N2—Zn2107.49 (10)C12—C13—H13A109.5
C6—N3—H3A117.2 (13)C12—C13—H13B109.5
C6—N3—H3B122.8 (13)H13A—C13—H13B109.5
H3A—N3—H3B119.2 (19)C12—C13—H13C109.5
N1—C1—C2125.99 (16)H13A—C13—H13C109.5
N1—C1—Cl1115.41 (13)H13B—C13—H13C109.5
C2—C1—Cl1118.60 (14)O6—C14—O5125.42 (16)
C3—C2—C1117.92 (16)O6—C14—C15117.28 (16)
C3—C2—H2121.0O5—C14—C15117.30 (15)
C1—C2—H2121.0C14—C15—H15A109.5
C2—C3—C4118.36 (16)C14—C15—H15B109.5
C2—C3—C9120.18 (16)H15A—C15—H15B109.5
C4—C3—C9121.44 (16)C14—C15—H15C109.5
C5—C4—C3118.00 (15)H15A—C15—H15C109.5
C5—C4—C8115.72 (15)H15B—C15—H15C109.5
C3—C4—C8126.28 (16)C10—O1—Zn1146.79 (11)
N1—C5—N2112.32 (14)C10—O2—Zn2116.68 (11)
N1—C5—C4123.46 (15)C12—O3—Zn2114.47 (11)
N2—C5—C4124.21 (15)C12—O3—Zn1134.69 (11)
N3—C6—N2119.47 (15)Zn2—O3—Zn1107.19 (5)
N3—C6—C7120.21 (16)C14—O5—Zn1133.41 (11)
N2—C6—C7120.32 (15)C14—O6—Zn2i128.40 (12)
O3—Zn2—N2—C6112.51 (15)C11—C10—O1—Zn1177.44 (14)
O2—Zn2—N2—C612.43 (16)O3—Zn1—O1—C1018.1 (2)
O6i—Zn2—N2—C6118.98 (15)O3i—Zn1—O1—C10161.9 (2)
O3—Zn2—N2—C555.10 (13)O5i—Zn1—O1—C1073.1 (2)
O2—Zn2—N2—C5179.96 (11)O5—Zn1—O1—C10106.9 (2)
O6i—Zn2—N2—C573.41 (12)O1—C10—O2—Zn210.3 (2)
C5—N1—C1—C20.7 (3)C11—C10—O2—Zn2168.04 (12)
C5—N1—C1—Cl1179.79 (13)O3—Zn2—O2—C1039.80 (14)
N1—C1—C2—C30.1 (3)O6i—Zn2—O2—C1069.02 (13)
Cl1—C1—C2—C3179.40 (14)N2—Zn2—O2—C10173.03 (12)
C1—C2—C3—C40.5 (3)O4—C12—O3—Zn216.8 (2)
C1—C2—C3—C9179.64 (16)C13—C12—O3—Zn2163.00 (14)
C2—C3—C4—C50.1 (2)O4—C12—O3—Zn1138.26 (16)
C9—C3—C4—C5179.27 (16)C13—C12—O3—Zn141.9 (3)
C2—C3—C4—C8179.11 (17)O2—Zn2—O3—C12106.56 (12)
C9—C3—C4—C80.0 (3)O6i—Zn2—O3—C12146.38 (12)
C1—N1—C5—N2178.05 (15)N2—Zn2—O3—C1213.12 (15)
C1—N1—C5—C41.1 (3)O2—Zn2—O3—Zn155.16 (7)
C6—N2—C5—N1178.72 (15)O6i—Zn2—O3—Zn151.90 (7)
Zn2—N2—C5—N19.14 (17)N2—Zn2—O3—Zn1174.84 (5)
C6—N2—C5—C40.5 (2)O5i—Zn1—O3—C12148.65 (17)
Zn2—N2—C5—C4170.03 (14)O5—Zn1—O3—C1231.35 (17)
C3—C4—C5—N10.7 (3)O1i—Zn1—O3—C1261.86 (17)
C8—C4—C5—N1179.97 (16)O1—Zn1—O3—C12118.14 (17)
C3—C4—C5—N2178.36 (15)O5i—Zn1—O3—Zn255.03 (6)
C8—C4—C5—N21.0 (3)O5—Zn1—O3—Zn2124.97 (6)
C5—N2—C6—N3178.89 (16)O1i—Zn1—O3—Zn2141.82 (6)
Zn2—N2—C6—N312.4 (2)O1—Zn1—O3—Zn238.18 (6)
C5—N2—C6—C71.3 (2)O6—C14—O5—Zn110.3 (3)
Zn2—N2—C6—C7167.75 (12)C15—C14—O5—Zn1169.19 (11)
N3—C6—C7—C8179.50 (17)O3—Zn1—O5—C14137.70 (15)
N2—C6—C7—C80.7 (3)O3i—Zn1—O5—C1442.30 (15)
C6—C7—C8—C40.8 (3)O1i—Zn1—O5—C1447.81 (15)
C5—C4—C8—C71.6 (3)O1—Zn1—O5—C14132.19 (15)
C3—C4—C8—C7177.70 (17)O5—C14—O6—Zn2i5.4 (3)
O2—C10—O1—Zn10.9 (3)C15—C14—O6—Zn2i175.15 (11)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O20.85 (2)2.15 (2)2.921 (2)150.0 (17)
N3—H3A···O5ii0.87 (2)2.09 (2)2.958 (2)171.0 (19)
Symmetry code: (ii) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Zn3(C2H3O2)6(C9H8ClN3)2]
Mr937.64
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)9.1978 (12), 9.2108 (13), 12.0457 (16)
α, β, γ (°)93.602 (3), 91.685 (2), 118.247 (2)
V3)895.2 (2)
Z1
Radiation typeMo Kα
µ (mm1)2.21
Crystal size (mm)0.12 × 0.08 × 0.02
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.782, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
11008, 4221, 3495
Rint0.030
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.065, 1.01
No. of reflections4221
No. of parameters253
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.65

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—O32.0724 (12)Zn2—O31.9588 (12)
Zn1—O52.0910 (12)Zn2—O21.9748 (12)
Zn1—O12.1237 (12)Zn2—N22.0379 (14)
O3—Zn1—O5i91.21 (5)O5—Zn1—O1i93.21 (5)
O3—Zn1—O588.79 (5)O3—Zn1—O190.04 (5)
O3—Zn1—O1i89.96 (5)O5—Zn1—O186.79 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O20.85 (2)2.15 (2)2.921 (2)150.0 (17)
N3—H3A···O5ii0.87 (2)2.09 (2)2.958 (2)171.0 (19)
Symmetry code: (ii) x+2, y+2, z+1.
 

Acknowledgements

We thank Henan Agricultural University for the generous support of this study.

References

First citationBaker, R. S. & Norman, R. E. (2004). Acta Cryst. E60, m1761–m1763.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLis, T., Kinzhybalo, V. & Zieba, K. (2005). Acta Cryst. E61, m2382–m2384.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStadie, N. P., Sanchez-Smith, R. & Groy, T. L. (2007). Acta Cryst. E63, m2153–m2154.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds