organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

2,2′-Di­methyl-7,7′-(methyl­enedi­imino)di-1,8-naphthyridin-1-ium bis­­(perchlorate)

crossmark logo

aCollege of Animal Husbandry and Veterinary Studies, Henan Agricultural University, Zhengzhou, Henan Province 450002, People's Republic of China
*Correspondence e-mail: mojuan52@126.com

(Received 14 June 2008; accepted 31 July 2008; online 6 August 2008)

In the title salt, C19H20N62+·2ClO4, the two planar 1,8-naphthyridine systems are linked by a methyl­enediamine group with a dihedral angle of 60.6 (1)° between the two systems. The crystal structure involves extensive N—H⋯O and C—H⋯O hydrogen bonding.

Related literature

For related literature, see: Baker & Norman (2004[Baker, R. S. & Norman, R. E. (2004). Acta Cryst. E60, m1761-m1763.]); Gavrilova & Bosnich (2004[Gavrilova, E. L. & Bosnich, B. (2004). Chem. Rev. 104, 349-383.]); Nakatani et al. (2000[Nakatani, K., Sando, S. & Saito, I. (2000). J. Am. Chem. Soc. 122, 2172-2178.], 2001[Nakatani, K., Sando, S. & Saito, I. (2001). Nat. Biotechnol. 19, 51-55.]); Stadie et al. (2007[Stadie, N. P., Sanchez-Smith, R. & Groy, T. L. (2007). Acta Cryst. E63, m2153-m2154.]); Ferrarini et al. (1997[Ferrarini, P. L., Mori, C., Badawneh, M., Manera, C., Martinelli, A., Miceli, M., Ramagnoli, F. & Saccomanni, G. (1997). J. Heterocycl. Chem. 34, 1501-1504.]).

[Scheme 1]

Experimental

Crystal data
  • C19H20N62+·2ClO4

  • Mr = 531.31

  • Orthorhombic, P b c a

  • a = 8.191 (1) Å

  • b = 19.325 (2) Å

  • c = 27.885 (2) Å

  • V = 4413.9 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 113 (2) K

  • 0.34 × 0.16 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.908, Tmax = 0.952

  • 31220 measured reflections

  • 3882 independent reflections

  • 3598 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.134

  • S = 1.16

  • 3882 reflections

  • 308 parameters

  • 16 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6i 0.88 (4) 1.92 2.794 (4) 168
N3—H3A⋯O3 0.80 (3) 2.23 2.990 (6) 159
N4—H4A⋯O5i 0.71 (4) 2.56 3.233 (5) 160
N4—H4A⋯O7i 0.71 (4) 2.52 3.133 (5) 145
N6—H6⋯O1 0.84 (3) 2.00 2.838 (8) 178
C1—H1A⋯O7ii 0.98 2.54 3.501 (3) 167
C1—H1B⋯O4iii 0.98 2.33 3.078 (4) 132
C4—H4⋯O8iv 0.95 2.52 3.392 (7) 152
C10—H10B⋯O4iv 0.99 2.35 3.082 (5) 130
C13—H13⋯O2i 0.95 2.41 3.259 (3) 149
C19—H19B⋯O5 0.98 2.57 3.351 (6) 136
C19—H19C⋯O7v 0.98 2.58 3.207 (7) 122
C19—H19C⋯O8v 0.98 2.57 3.548 (4) 172
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+{\script{3\over 2}}, -y, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (v) x-1, y, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: XP in SHELXTL.

Supporting information


Comment top

1,8-Naphthyridine and its derivatives are used for binding of mismatched guanine or used as versatile ligands which are able to form metal aggregates with monodentates fashion or chelating bidentate fashion(Nakatani et al., 2000; Nakatani et al., 2001; Ferrarini et al., 1997; Gavrilova & Bosnich, 2004; Baker & Norman, 2004; Stadie et al., 2007). We report here a new 1,8-Naphthyridine compound (Fig. 1).

The title compound reveals 1,8-naphthyridine rings are linked by methenediamine with a dihedral angle between two 1,8-naphthyridine rings of 60.6 (1)°. Each 1,8-naphthyridine ring is an almost planar in which the ten atoms forming the 1,8-naphthyridine ring have mean deviation of 0.03Å from the least-squares plane calculated using the ten atoms. To balance hydrogen ion charge of two 1,8-naphthyridine rings, there are two perchlorate groups in crystal cell. From the packing diagram (Fig. 2), it seems that the intramolecular N–H···O and C–H···O and hydrogen bonds are effective in the stabilization of the crystal structure.

Related literature top

For related literature, see: Baker & Norman (2004); Gavrilova & Bosnich (2004); Nakatani et al. (2000, 2001); Stadie et al. (2007).

For related literature, see: Ferrarini et al. (1997).

Experimental top

To the solution of 2-amino-7-methyl-1,8-naphthyridine (3.18 g, 0.02 mol) in mixed solvent of water (28 mL) and ethanol (2 mL), 37% formadehyde solution (0.86 mL, 0.01 mol) was added dropwise at 0°C and the reaction mixture was stirred at room temperature for 24h. The white precipitate formed was filtered, washed several times with water and then with diethyl ether and dried. Yield: 55% (1.81 g). FTIR (KBr)cm-1: νNH 3389, 3266; νCH 3026. Anal. Calc. For C19H18N6: C, 69.07; H, 5.49; N, 25.44. Found: C, 68.86; H, 5.56; N, 25.37. Single crystals of (I) suitable for an X-ray study were obtained by slow evaporation of an aqueous ethanol solution (30% v/v) under the conditions in the presence of perchloric acid at 293 K over a period of one month.

Refinement top

Hydrogen atoms of NH (naphthyridine and amine) were located in a Fourier map and refined freely. All the other hydrogen atoms were generated geometrically (C—H bond lengths of methyl group fixed at 0.98Å, C—H bond lengths of naphthyridine fixed at 0.95 Å) assigned appropriated isotropic thermal parameters, Uiso(H) = 1.2Ueq(C). Each perchlorate anion is disordered over two different orientations. The Cl–O distances were restrained to 1.43 (4)Å.

Structure description top

1,8-Naphthyridine and its derivatives are used for binding of mismatched guanine or used as versatile ligands which are able to form metal aggregates with monodentates fashion or chelating bidentate fashion(Nakatani et al., 2000; Nakatani et al., 2001; Ferrarini et al., 1997; Gavrilova & Bosnich, 2004; Baker & Norman, 2004; Stadie et al., 2007). We report here a new 1,8-Naphthyridine compound (Fig. 1).

The title compound reveals 1,8-naphthyridine rings are linked by methenediamine with a dihedral angle between two 1,8-naphthyridine rings of 60.6 (1)°. Each 1,8-naphthyridine ring is an almost planar in which the ten atoms forming the 1,8-naphthyridine ring have mean deviation of 0.03Å from the least-squares plane calculated using the ten atoms. To balance hydrogen ion charge of two 1,8-naphthyridine rings, there are two perchlorate groups in crystal cell. From the packing diagram (Fig. 2), it seems that the intramolecular N–H···O and C–H···O and hydrogen bonds are effective in the stabilization of the crystal structure.

For related literature, see: Baker & Norman (2004); Gavrilova & Bosnich (2004); Nakatani et al. (2000, 2001); Stadie et al. (2007).

For related literature, see: Ferrarini et al. (1997).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XP in SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the cation of the title compound showing the atom-numbering scheme and displacement ellipsoids drawn at the 40% probability level.
[Figure 2] Fig. 2. Unit-cell packing diagram as viewed down the c-direction. Hydrogen bonds are shown as dashed lines.
2,2'-Dimethyl-7,7'-(methylenediimino)di-1,8-naphthyridin-1-ium bis(perchlorate) top
Crystal data top
C19H20N62+·2ClO4F(000) = 2192
Mr = 531.31Dx = 1.599 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ac 2abCell parameters from 7263 reflections
a = 8.1910 (5) Åθ = 2.1–28.0°
b = 19.3250 (12) ŵ = 0.36 mm1
c = 27.8850 (19) ÅT = 113 K
V = 4413.9 (5) Å3Prism, colorless
Z = 80.34 × 0.16 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3882 independent reflections
Radiation source: fine-focus sealed tube3598 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 2.1°
φ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2222
Tmin = 0.909, Tmax = 0.952l = 3332
31220 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0498P)2 + 5.3196P]
where P = (Fo2 + 2Fc2)/3
3882 reflections(Δ/σ)max = 0.003
308 parametersΔρmax = 0.35 e Å3
16 restraintsΔρmin = 0.41 e Å3
Crystal data top
C19H20N62+·2ClO4V = 4413.9 (5) Å3
Mr = 531.31Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.1910 (5) ŵ = 0.36 mm1
b = 19.3250 (12) ÅT = 113 K
c = 27.8850 (19) Å0.34 × 0.16 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3882 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3598 reflections with I > 2σ(I)
Tmin = 0.909, Tmax = 0.952Rint = 0.061
31220 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06016 restraints
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.35 e Å3
3882 reflectionsΔρmin = 0.41 e Å3
308 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.24246 (10)0.22574 (4)0.56855 (3)0.0360 (2)
Cl21.00163 (9)0.01682 (3)0.69459 (3)0.0323 (2)
O10.1693 (6)0.1730 (2)0.59780 (16)0.0534 (14)0.747 (5)
O20.3894 (5)0.2014 (2)0.5483 (2)0.0758 (17)0.747 (5)
O30.1302 (6)0.2438 (2)0.53084 (12)0.0738 (15)0.747 (5)
O40.2651 (6)0.28664 (19)0.59698 (15)0.0700 (14)0.747 (5)
O50.8509 (4)0.02894 (17)0.67091 (14)0.0664 (12)0.870 (6)
O60.9850 (5)0.03196 (14)0.73264 (10)0.0657 (13)0.870 (6)
O71.1129 (3)0.01123 (15)0.65972 (10)0.0490 (10)0.870 (6)
O81.0661 (6)0.0802 (2)0.7134 (2)0.0444 (13)0.870 (6)
O1'0.1358 (14)0.1676 (5)0.5766 (4)0.039 (3)0.253 (5)
O2'0.3710 (11)0.2233 (6)0.6037 (3)0.062 (4)0.253 (5)
O3'0.3135 (14)0.2178 (6)0.5220 (3)0.062 (4)0.253 (5)
O4'0.1558 (13)0.2875 (4)0.5708 (4)0.052 (3)0.253 (5)
O5'0.8301 (12)0.0031 (10)0.7058 (7)0.053 (6)0.130 (6)
O6'1.0870 (19)0.0453 (6)0.7069 (7)0.048 (6)0.130 (6)
O7'1.012 (3)0.0307 (10)0.6446 (4)0.062 (7)0.130 (6)
O8'1.056 (3)0.0738 (10)0.7228 (8)0.039 (10)0.130 (6)
N10.1466 (3)0.16498 (13)0.27420 (9)0.0328 (6)
N20.1460 (3)0.16453 (12)0.35633 (8)0.0293 (6)
N30.1396 (3)0.16601 (15)0.43819 (10)0.0353 (6)
N60.3295 (3)0.04505 (14)0.58097 (9)0.0336 (6)
N50.2041 (3)0.04253 (13)0.50731 (9)0.0327 (6)
N40.0922 (4)0.04231 (16)0.43264 (11)0.0417 (7)
C20.1739 (4)0.19127 (16)0.23034 (10)0.0377 (8)
C30.2463 (5)0.25570 (18)0.22665 (11)0.0435 (9)
H30.26340.27590.19600.052*
C40.2935 (4)0.29061 (16)0.26746 (11)0.0390 (8)
H40.34530.33440.26470.047*
C50.2662 (4)0.26239 (14)0.31277 (10)0.0285 (7)
C60.1858 (4)0.19774 (14)0.31595 (10)0.0268 (6)
C70.1866 (4)0.19636 (15)0.39716 (10)0.0288 (7)
C80.2786 (4)0.25928 (15)0.39855 (10)0.0314 (7)
H80.31320.27790.42840.038*
C90.3159 (4)0.29193 (15)0.35722 (10)0.0324 (7)
H90.37480.33430.35780.039*
C10.1243 (6)0.14783 (18)0.18868 (12)0.0518 (10)
H1A0.21230.11540.18080.078*
H1B0.10260.17760.16100.078*
H1C0.02530.12190.19680.078*
C160.4320 (4)0.02351 (16)0.61578 (11)0.0360 (8)
C170.5112 (4)0.03943 (17)0.60916 (12)0.0402 (8)
H170.58620.05560.63260.048*
C180.4812 (4)0.07835 (17)0.56878 (12)0.0398 (8)
H180.53220.12220.56530.048*
C140.3773 (4)0.05443 (15)0.53293 (12)0.0357 (7)
C150.3015 (4)0.01043 (16)0.53928 (11)0.0316 (7)
C110.1802 (4)0.00934 (17)0.46592 (11)0.0368 (8)
C120.2463 (4)0.05808 (16)0.45608 (12)0.0424 (8)
H120.22210.08080.42670.051*
C130.3428 (4)0.08878 (16)0.48880 (12)0.0411 (8)
H130.38780.13320.48250.049*
C190.4554 (5)0.06921 (19)0.65809 (11)0.0446 (8)
H19A0.48630.11560.64730.067*
H19B0.54180.05030.67850.067*
H19C0.35330.07180.67630.067*
C100.0224 (4)0.10976 (18)0.43970 (12)0.0431 (8)
H10A0.03360.11060.47120.052*
H10B0.06120.11780.41470.052*
H3A0.163 (4)0.1865 (17)0.4619 (12)0.035 (10)*
H10.101 (5)0.124 (2)0.2764 (13)0.055 (11)*
H4A0.081 (5)0.0269 (19)0.4097 (13)0.040 (12)*
H60.281 (4)0.0828 (18)0.5853 (12)0.035 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0433 (5)0.0317 (4)0.0331 (4)0.0003 (3)0.0046 (4)0.0008 (3)
Cl20.0360 (5)0.0256 (4)0.0353 (4)0.0007 (3)0.0018 (3)0.0012 (3)
O10.064 (3)0.046 (2)0.050 (3)0.016 (2)0.026 (2)0.022 (2)
O20.055 (3)0.049 (2)0.124 (4)0.002 (2)0.053 (3)0.011 (3)
O30.118 (4)0.059 (2)0.045 (2)0.031 (2)0.025 (2)0.0033 (18)
O40.089 (3)0.052 (2)0.070 (3)0.001 (2)0.002 (3)0.027 (2)
O50.0421 (19)0.063 (2)0.095 (3)0.0139 (15)0.0291 (19)0.019 (2)
O60.126 (4)0.0396 (16)0.0313 (15)0.0408 (19)0.0042 (19)0.0050 (12)
O70.0410 (17)0.0542 (18)0.0519 (18)0.0075 (14)0.0127 (14)0.0213 (14)
O80.055 (3)0.0232 (18)0.055 (2)0.0038 (16)0.002 (2)0.0076 (17)
O1'0.036 (6)0.030 (5)0.051 (7)0.003 (4)0.014 (5)0.002 (5)
O2'0.049 (6)0.086 (7)0.052 (6)0.022 (5)0.013 (5)0.031 (5)
O3'0.056 (7)0.087 (7)0.041 (6)0.016 (6)0.023 (5)0.020 (5)
O4'0.063 (6)0.027 (4)0.065 (6)0.017 (4)0.012 (5)0.007 (4)
O5'0.030 (8)0.067 (9)0.061 (10)0.008 (7)0.004 (7)0.003 (8)
O6'0.046 (9)0.033 (8)0.064 (10)0.009 (7)0.000 (8)0.003 (7)
O7'0.085 (11)0.060 (10)0.041 (9)0.012 (8)0.014 (8)0.003 (7)
O8'0.053 (14)0.032 (13)0.032 (12)0.002 (8)0.006 (8)0.010 (8)
N10.0448 (17)0.0233 (13)0.0302 (14)0.0046 (12)0.0070 (12)0.0000 (10)
N20.0321 (14)0.0275 (12)0.0283 (13)0.0027 (11)0.0009 (11)0.0035 (10)
N30.0381 (16)0.0419 (15)0.0260 (14)0.0023 (13)0.0004 (12)0.0032 (12)
N60.0353 (15)0.0344 (15)0.0310 (14)0.0059 (13)0.0054 (12)0.0103 (12)
N50.0314 (14)0.0360 (14)0.0306 (13)0.0023 (11)0.0053 (11)0.0101 (11)
N40.0479 (19)0.0467 (18)0.0306 (16)0.0128 (14)0.0024 (15)0.0084 (14)
C20.053 (2)0.0331 (16)0.0266 (16)0.0011 (15)0.0066 (15)0.0008 (13)
C30.064 (2)0.0381 (18)0.0287 (16)0.0036 (17)0.0008 (16)0.0063 (14)
C40.050 (2)0.0317 (16)0.0349 (17)0.0098 (15)0.0017 (15)0.0043 (13)
C50.0341 (17)0.0212 (14)0.0302 (15)0.0031 (12)0.0020 (13)0.0004 (12)
C60.0325 (16)0.0223 (13)0.0257 (14)0.0012 (12)0.0021 (13)0.0003 (11)
C70.0299 (16)0.0301 (15)0.0264 (15)0.0067 (13)0.0012 (13)0.0022 (12)
C80.0359 (18)0.0293 (15)0.0290 (15)0.0050 (13)0.0035 (13)0.0066 (12)
C90.0374 (18)0.0262 (15)0.0335 (16)0.0018 (13)0.0029 (14)0.0030 (12)
C10.083 (3)0.0408 (19)0.0316 (18)0.0031 (19)0.0128 (19)0.0052 (15)
C160.0290 (17)0.0429 (18)0.0362 (17)0.0019 (14)0.0067 (14)0.0172 (14)
C170.0313 (18)0.0449 (19)0.0444 (19)0.0015 (15)0.0056 (15)0.0222 (16)
C180.0337 (18)0.0324 (17)0.053 (2)0.0026 (14)0.0174 (16)0.0202 (15)
C140.0355 (18)0.0285 (15)0.0430 (18)0.0041 (14)0.0150 (15)0.0115 (14)
C150.0287 (17)0.0350 (16)0.0309 (16)0.0028 (13)0.0097 (13)0.0104 (13)
C110.0381 (19)0.0409 (18)0.0314 (16)0.0138 (15)0.0053 (15)0.0099 (14)
C120.052 (2)0.0331 (17)0.0417 (19)0.0172 (16)0.0116 (17)0.0006 (15)
C130.048 (2)0.0273 (16)0.048 (2)0.0080 (15)0.0165 (17)0.0061 (14)
C190.042 (2)0.058 (2)0.0341 (17)0.0008 (17)0.0011 (16)0.0121 (16)
C100.0343 (19)0.061 (2)0.0343 (18)0.0038 (17)0.0030 (15)0.0176 (16)
Geometric parameters (Å, º) top
Cl1—O4'1.390 (7)C2—C31.383 (5)
Cl1—O21.410 (4)C2—C11.490 (4)
Cl1—O3'1.430 (7)C3—C41.378 (4)
Cl1—O41.431 (3)C3—H30.9500
Cl1—O11.436 (4)C4—C51.394 (4)
Cl1—O2'1.439 (7)C4—H40.9500
Cl1—O31.440 (3)C5—C61.415 (4)
Cl1—O1'1.441 (8)C5—C91.424 (4)
Cl2—O51.420 (3)C7—C81.431 (4)
Cl2—O7'1.423 (9)C8—C91.349 (4)
Cl2—O8'1.424 (10)C8—H80.9500
Cl2—O61.426 (3)C9—H90.9500
Cl2—O6'1.432 (9)C1—H1A0.9800
Cl2—O81.433 (3)C1—H1B0.9800
Cl2—O71.439 (3)C1—H1C0.9800
Cl2—O5'1.464 (9)C16—C171.390 (5)
N1—C21.343 (4)C16—C191.486 (5)
N1—C61.364 (4)C17—C181.376 (5)
N1—H10.88 (4)C17—H170.9500
N2—C71.336 (4)C18—C141.392 (5)
N2—C61.336 (4)C18—H180.9500
N3—C71.342 (4)C14—C151.410 (4)
N3—C101.451 (4)C14—C131.427 (5)
N3—H3A0.80 (3)C11—C121.437 (5)
N6—C161.350 (4)C12—C131.345 (5)
N6—C151.360 (4)C12—H120.9500
N6—H60.84 (3)C13—H130.9500
N5—C111.335 (4)C19—H19A0.9800
N5—C151.348 (4)C19—H19B0.9800
N4—C111.337 (4)C19—H19C0.9800
N4—C101.437 (5)C10—H10A0.9900
N4—H4A0.71 (4)C10—H10B0.9900
O4'—Cl1—O2137.8 (4)N1—C2—C3118.7 (3)
O4'—Cl1—O3'109.9 (6)N1—C2—C1116.8 (3)
O4'—Cl1—O448.3 (4)C3—C2—C1124.5 (3)
O2—Cl1—O4112.7 (3)C4—C3—C2120.0 (3)
O3'—Cl1—O4122.6 (5)C4—C3—H3120.0
O4'—Cl1—O1111.8 (5)C2—C3—H3120.0
O2—Cl1—O1110.3 (3)C3—C4—C5120.8 (3)
O3'—Cl1—O1127.5 (5)C3—C4—H4119.6
O4—Cl1—O1108.9 (3)C5—C4—H4119.6
O4'—Cl1—O2'111.7 (6)C4—C5—C6118.5 (3)
O2—Cl1—O2'68.8 (5)C4—C5—C9125.9 (3)
O3'—Cl1—O2'108.5 (6)C6—C5—C9115.6 (3)
O4—Cl1—O2'63.6 (5)N2—C6—N1116.0 (2)
O1—Cl1—O2'84.0 (4)N2—C6—C5126.2 (3)
O4'—Cl1—O359.9 (5)N1—C6—C5117.8 (3)
O2—Cl1—O3109.5 (3)N2—C7—N3117.0 (3)
O3'—Cl1—O367.9 (5)N2—C7—C8123.0 (3)
O4—Cl1—O3106.7 (2)N3—C7—C8120.0 (3)
O1—Cl1—O3108.7 (3)C9—C8—C7119.6 (3)
O2'—Cl1—O3166.5 (4)C9—C8—H8120.2
O4'—Cl1—O1'110.7 (6)C7—C8—H8120.2
O2—Cl1—O1'108.6 (6)C8—C9—C5119.4 (3)
O3'—Cl1—O1'107.7 (6)C8—C9—H9120.3
O4—Cl1—O1'129.3 (5)C5—C9—H9120.3
O2'—Cl1—O1'108.2 (6)C2—C1—H1A109.5
O3—Cl1—O1'85.2 (5)C2—C1—H1B109.5
O5—Cl2—O7'64.3 (8)H1A—C1—H1B109.5
O5—Cl2—O8'113.6 (11)C2—C1—H1C109.5
O7'—Cl2—O8'112.1 (10)H1A—C1—H1C109.5
O5—Cl2—O6111.8 (2)H1B—C1—H1C109.5
O7'—Cl2—O6149.3 (8)N6—C16—C17117.7 (3)
O8'—Cl2—O697.5 (11)N6—C16—C19117.9 (3)
O5—Cl2—O6'132.4 (7)C17—C16—C19124.4 (3)
O7'—Cl2—O6'111.3 (8)C18—C17—C16120.2 (3)
O8'—Cl2—O6'111.4 (10)C18—C17—H17119.9
O6—Cl2—O6'46.6 (7)C16—C17—H17119.9
O5—Cl2—O8110.5 (2)C17—C18—C14121.0 (3)
O7'—Cl2—O8100.1 (8)C17—C18—H18119.5
O6—Cl2—O8109.1 (3)C14—C18—H18119.5
O6'—Cl2—O8116.7 (8)C18—C14—C15118.3 (3)
O5—Cl2—O7107.38 (19)C18—C14—C13125.9 (3)
O7'—Cl2—O750.9 (8)C15—C14—C13115.8 (3)
O8'—Cl2—O7117.9 (11)N5—C15—N6116.0 (3)
O6—Cl2—O7108.3 (2)N5—C15—C14125.9 (3)
O6'—Cl2—O762.4 (8)N6—C15—C14118.1 (3)
O8—Cl2—O7109.6 (3)N5—C11—N4116.8 (3)
O5—Cl2—O5'45.2 (7)N5—C11—C12123.1 (3)
O7'—Cl2—O5'107.7 (8)N4—C11—C12120.2 (3)
O8'—Cl2—O5'108.7 (10)C13—C12—C11119.5 (3)
O6—Cl2—O5'68.2 (8)C13—C12—H12120.3
O6'—Cl2—O5'105.3 (8)C11—C12—H12120.3
O8—Cl2—O5'115.5 (8)C12—C13—C14119.8 (3)
O7—Cl2—O5'133.2 (8)C12—C13—H13120.1
C2—N1—C6124.2 (3)C14—C13—H13120.1
C2—N1—H1118 (2)C16—C19—H19A109.5
C6—N1—H1117 (2)C16—C19—H19B109.5
C7—N2—C6115.9 (2)H19A—C19—H19B109.5
C7—N3—C10122.8 (3)C16—C19—H19C109.5
C7—N3—H3A115 (2)H19A—C19—H19C109.5
C10—N3—H3A121 (2)H19B—C19—H19C109.5
C16—N6—C15124.6 (3)N4—C10—N3114.4 (3)
C16—N6—H6117 (2)N4—C10—H10A108.7
C15—N6—H6118 (2)N3—C10—H10A108.7
C11—N5—C15116.0 (3)N4—C10—H10B108.7
C11—N4—C10123.5 (3)N3—C10—H10B108.7
C11—N4—H4A120 (3)H10A—C10—H10B107.6
C10—N4—H4A117 (3)
C6—N1—C2—C30.1 (5)C15—N6—C16—C19176.9 (3)
C6—N1—C2—C1179.5 (3)N6—C16—C17—C181.5 (4)
N1—C2—C3—C42.1 (5)C19—C16—C17—C18179.8 (3)
C1—C2—C3—C4177.4 (4)C16—C17—C18—C142.8 (5)
C2—C3—C4—C51.4 (6)C17—C18—C14—C150.8 (4)
C3—C4—C5—C61.3 (5)C17—C18—C14—C13177.1 (3)
C3—C4—C5—C9177.0 (3)C11—N5—C15—N6178.3 (3)
C7—N2—C6—N1179.2 (3)C11—N5—C15—C140.7 (4)
C7—N2—C6—C50.2 (4)C16—N6—C15—N5175.3 (3)
C2—N1—C6—N2178.4 (3)C16—N6—C15—C143.8 (4)
C2—N1—C6—C52.5 (5)C18—C14—C15—N5176.7 (3)
C4—C5—C6—N2177.9 (3)C13—C14—C15—N51.5 (4)
C9—C5—C6—N23.7 (5)C18—C14—C15—N62.3 (4)
C4—C5—C6—N13.1 (4)C13—C14—C15—N6179.5 (3)
C9—C5—C6—N1175.3 (3)C15—N5—C11—N4176.0 (3)
C6—N2—C7—N3176.2 (3)C15—N5—C11—C123.0 (4)
C6—N2—C7—C84.9 (4)C10—N4—C11—N50.9 (5)
C10—N3—C7—N212.6 (4)C10—N4—C11—C12179.9 (3)
C10—N3—C7—C8168.5 (3)N5—C11—C12—C132.9 (5)
N2—C7—C8—C95.7 (5)N4—C11—C12—C13176.0 (3)
N3—C7—C8—C9175.5 (3)C11—C12—C13—C140.5 (5)
C7—C8—C9—C51.4 (5)C18—C14—C13—C12176.5 (3)
C4—C5—C9—C8178.9 (3)C15—C14—C13—C121.5 (4)
C6—C5—C9—C82.8 (4)C11—N4—C10—N374.2 (4)
C15—N6—C16—C171.9 (4)C7—N3—C10—N485.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O6i0.88 (4)1.922.794 (4)168
N3—H3A···O30.80 (3)2.232.990 (6)159
N4—H4A···O5i0.71 (4)2.563.233 (5)160
N4—H4A···O7i0.71 (4)2.523.133 (5)145
N6—H6···O10.84 (3)2.002.838 (8)178
C1—H1A···O7ii0.982.543.501 (3)167
C1—H1B···O4iii0.982.333.078 (4)132
C4—H4···O8iv0.952.523.392 (7)152
C10—H10B···O4iv0.992.353.082 (5)130
C13—H13···O2i0.952.413.259 (3)149
C19—H19B···O50.982.573.351 (6)136
C19—H19C···O7v0.982.583.207 (7)122
C19—H19C···O8v0.982.573.548 (4)172
Symmetry codes: (i) x+1, y, z+1; (ii) x+3/2, y, z1/2; (iii) x, y+1/2, z1/2; (iv) x1/2, y+1/2, z+1; (v) x1, y, z.

Experimental details

Crystal data
Chemical formulaC19H20N62+·2ClO4
Mr531.31
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)113
a, b, c (Å)8.1910 (5), 19.3250 (12), 27.8850 (19)
V3)4413.9 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.34 × 0.16 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.909, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
31220, 3882, 3598
Rint0.061
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.134, 1.16
No. of reflections3882
No. of parameters308
No. of restraints16
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.41

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O6i0.88 (4)1.922.794 (4)168
N3—H3A···O30.80 (3)2.232.990 (6)159
N4—H4A···O5i0.71 (4)2.563.233 (5)160
N4—H4A···O7i0.71 (4)2.523.133 (5)145
N6—H6···O10.84 (3)2.002.838 (8)178
C1—H1A···O7ii0.982.543.501 (3)167
C1—H1B···O4iii0.982.333.078 (4)132
C4—H4···O8iv0.952.523.392 (7)152
C10—H10B···O4iv0.992.353.082 (5)130
C13—H13···O2i0.952.413.259 (3)149
C19—H19B···O50.982.573.351 (6)136
C19—H19C···O7v0.982.583.207 (7)122
C19—H19C···O8v0.982.573.548 (4)172
Symmetry codes: (i) x+1, y, z+1; (ii) x+3/2, y, z1/2; (iii) x, y+1/2, z1/2; (iv) x1/2, y+1/2, z+1; (v) x1, y, z.
 

Acknowledgements

We thank Henan Agricultural University for the generous support of this study.

References

First citationBaker, R. S. & Norman, R. E. (2004). Acta Cryst. E60, m1761–m1763.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFerrarini, P. L., Mori, C., Badawneh, M., Manera, C., Martinelli, A., Miceli, M., Ramagnoli, F. & Saccomanni, G. (1997). J. Heterocycl. Chem. 34, 1501–1504.  CrossRef CAS Google Scholar
First citationGavrilova, E. L. & Bosnich, B. (2004). Chem. Rev. 104, 349–383.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNakatani, K., Sando, S. & Saito, I. (2000). J. Am. Chem. Soc. 122, 2172–2178.  Web of Science CrossRef CAS Google Scholar
First citationNakatani, K., Sando, S. & Saito, I. (2001). Nat. Biotechnol. 19, 51–55.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStadie, N. P., Sanchez-Smith, R. & Groy, T. L. (2007). Acta Cryst. E63, m2153–m2154.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds