organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Nitro-p-phenyl­ene bis­­(toluene­sulfonate)

aTianjin Municipal Key Laboratory of Fiber Modification and Functional Fibers, Tianjin Polytechnic University, Tianjin 300160People's Republic of China, and bSchool of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China
*Correspondence e-mail: liuchao_tj@yahoo.com

(Received 19 July 2008; accepted 18 August 2008; online 23 August 2008)

In the mol­ecule of the title compound, C20H17NO8S2, the two toluene rings are oriented at a dihedral angle of 3.65 (4)°, while the nitrophenyl ring is oriented at dihedral angles of 44.39 (3) and 47.44 (3)° with respect to the toluene rings. An intra­molecular C—H⋯O hydrogen bond results in the formation of a five-membered ring, which adopts an envelope conformation. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules. There is a ππ contact between the toluene rings [centroid–centroid distance = 4.035 (1) Å].

Related literature

For related literature, see: Atkinson et al. (2005[Atkinson, P. J., Bromidge, S. M., Duxon, M. S., Gaster, L. M., Hadley, M. S., Hammond, B., Johnson, C. N., Middlemiss, D. N., North, S. E., Price, G. W., Rami, H. K., Riley, G. J., Scott, C. M., Shaw, T. E., Starr, K. R., Stemp, G., Thewlis, K. M., Thomas, D. R., Thompson, M., Vong, A. K. K. & Watson, J. M. (2005). Bioorg. Med. Chem. Lett. 15, 737-741.]); Hu et al. (2001[Hu, B., Ellingboe, J., Gunawan, I., Han, S., Largis, E., Li, Z., Malamas, M., Mulvey, R., Oliphant, A., Sum, F.-W., Tillett, J. & Wong, V. (2001). Bioorg. Med. Chem. Lett. 11, 757-760.]); Svensson et al. (1998[Svensson, M., Helgee, B., Skarp, K. & Andersson, G. (1998). J. Mater. Chem. 8, 353-362.]); Trollsås et al. (1996[Trollsås, M., Orrenius, C., Sahlén, F., Gedde, U. W., Norin, T., Hult, A., Hermann, D., Rudquist, P., Komitov, L., Lagerwall, S. T. & Lindström, J. (1996). J. Am. Chem. Soc. 118, 8542-8548.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C20H17NO8S2

  • Mr = 463.49

  • Triclinic, P 1

  • a = 7.926 (3) Å

  • b = 8.244 (3) Å

  • c = 8.709 (3) Å

  • α = 98.323 (6)°

  • β = 96.180 (6)°

  • γ = 103.915 (6)°

  • V = 540.5 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 294 (2) K

  • 0.26 × 0.22 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.928, Tmax = 0.955

  • 2693 measured reflections

  • 1918 independent reflections

  • 1717 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.135

  • S = 1.05

  • 1918 reflections

  • 282 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 315 Friedel Pairs

  • Flack parameter: 0.21 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.93 2.49 3.405 (11) 168
C9—H9⋯O6ii 0.93 2.46 3.319 (9) 153
C10—H10⋯O8i 0.93 2.47 3.369 (10) 164
C11—H11⋯O1iii 0.93 2.50 3.352 (10) 153
C15—H15⋯O5 0.93 2.56 2.923 (10) 104
C18—H18⋯O5iv 0.93 2.49 3.409 (11) 168
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1; (iii) x, y, z-1; (iv) x, y-1, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Phenolic esters are useful intermediates in organic synthesis (Trollsås et al., 1996; Svensson et al., 1998; Atkinson et al., 2005; Hu et al., 2001). We have developed a new method for the syntheses of some phenolic esters. The title compound has been produced as a byproduct. We report herein its crystal structure.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1—C6), B (C8—C13) and C (C14—C19) are, of course, planar, and the dihedral angles between them are A/B = 44.39 (3)°, A/C = 3.65 (4)° and B/C = 47.44 (3)°. The intramolecular C—H···O hydrogen bond (Table 1) results in the formation of a five-membered ring D (S2/O5/C14/C15/H15), adopting envelope conformation, with O5 atom displaced by 0.356 (3) Å from the plane of the other ring atoms.

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. A ππ contact between A and C rings Cg1···Cg3i [symmetry code: (i) 1 + x, 1 + y, 1 + z, where Cg1 and Cg3 are the centroids of the rings A and C, respectively] further stabilize the structure, with centroid-centroid distance of 4.035 (1) Å.

Related literature top

For related literature, see: Atkinson et al. (2005); Hu et al. (2001); Svensson et al. (1998); Trollsås et al. (1996). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, 2-nitrohydroquinone (155 mg, 1.0 mmol) was dissolved in chloroform (30 ml). To this solution, 4-toluenesulfonyl chloride (191 mg, 1.0 mmol) and triethylamine (101 mg, 1.0 mmol) were added, the reaction was stirred at room temperature for 3 h. The reaction mixture was extracted with dichloromethane and dried with anhydrous sodium sulfate. After concentration, the residue was separated by flash column chromatography and purified by recrystallization from chloroform (yield; 72 mg, 31%, m.p. 415 K). Spectroscopic analysis: IR (KBr, ν, cm-1): 3089, 2922, 1596, 1539, 1390, 1201, 1183, 1089. Analysis required for C20H17NO8S2: C 51.83; H 3.70; N 3.02%. Found: C 50.85; H 3.65; N 3.19%.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
2-Nitro-p-phenylene bis(toluenesulfonate) top
Crystal data top
C20H17NO8S2Z = 1
Mr = 463.49F(000) = 240
Triclinic, P1Dx = 1.424 Mg m3
Hall symbol: P 1Melting point: 415 K
a = 7.926 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.244 (3) ÅCell parameters from 1246 reflections
c = 8.709 (3) Åθ = 2.6–26.9°
α = 98.323 (6)°µ = 0.29 mm1
β = 96.180 (6)°T = 294 K
γ = 103.915 (6)°Block, colorless
V = 540.5 (3) Å30.26 × 0.22 × 0.16 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1918 independent reflections
Radiation source: fine-focus sealed tube1717 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 96
Tmin = 0.928, Tmax = 0.955k = 79
2693 measured reflectionsl = 108
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0884P)2 + 0.0596P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.135(Δ/σ)max = 0.007
S = 1.05Δρmax = 0.38 e Å3
1918 reflectionsΔρmin = 0.29 e Å3
282 parametersAbsolute structure: Flack (1983), with 315 Friedel Pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.21 (13)
Secondary atom site location: difference Fourier map
Crystal data top
C20H17NO8S2γ = 103.915 (6)°
Mr = 463.49V = 540.5 (3) Å3
Triclinic, P1Z = 1
a = 7.926 (3) ÅMo Kα radiation
b = 8.244 (3) ŵ = 0.29 mm1
c = 8.709 (3) ÅT = 294 K
α = 98.323 (6)°0.26 × 0.22 × 0.16 mm
β = 96.180 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1918 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1717 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.955Rint = 0.018
2693 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.135Δρmax = 0.38 e Å3
S = 1.05Δρmin = 0.29 e Å3
1918 reflectionsAbsolute structure: Flack (1983), with 315 Friedel Pairs
282 parametersAbsolute structure parameter: 0.21 (13)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.2533 (2)0.96499 (17)1.25707 (16)0.0455 (6)
S20.0820 (2)0.52158 (16)0.40141 (16)0.0461 (6)
O10.1899 (10)1.0093 (7)1.3993 (6)0.0661 (19)
O20.3449 (8)0.8397 (6)1.2462 (6)0.0602 (18)
O30.0766 (7)0.8988 (6)1.1351 (6)0.0461 (14)
O40.0995 (7)0.5877 (7)0.5288 (6)0.0477 (15)
O50.1792 (8)0.6481 (6)0.4198 (6)0.0602 (17)
O60.0204 (8)0.4733 (7)0.2588 (6)0.0578 (16)
O70.2194 (9)0.3656 (8)0.7024 (7)0.103 (2)
O80.0174 (10)0.3014 (7)0.8493 (7)0.104 (2)
N10.1160 (10)0.4007 (7)0.7819 (7)0.0713 (17)
C10.3630 (12)1.1486 (10)1.1911 (10)0.043 (2)
C20.4931 (12)1.1343 (12)1.0940 (10)0.058 (3)
H20.52511.03331.06930.069*
C30.5700 (14)1.2794 (13)1.0380 (11)0.066 (3)
H30.65271.27280.97090.080*
C40.5312 (14)1.4300 (14)1.0756 (12)0.063 (3)
C50.4075 (13)1.4426 (12)1.1802 (12)0.068 (3)
H50.38281.54611.21150.082*
C60.3232 (12)1.2979 (11)1.2355 (10)0.055 (3)
H60.24021.30401.30250.066*
C70.6108 (16)1.5928 (14)1.0174 (12)0.100 (4)
H7A0.72251.64901.08000.150*
H7B0.53341.66611.02560.150*
H7C0.62671.56590.90980.150*
C80.0860 (11)0.8191 (9)0.9787 (8)0.039 (2)
C90.0942 (10)0.6546 (8)0.9560 (9)0.0405 (19)
H90.09890.59591.03920.049*
C100.0717 (12)0.9097 (10)0.8580 (9)0.049 (2)
H100.05791.01930.87730.058*
C110.0786 (11)0.8330 (9)0.7098 (9)0.050 (2)
H110.07400.89360.62790.060*
C120.0926 (10)0.6654 (10)0.6776 (9)0.040 (2)
C130.0952 (10)0.5776 (9)0.8033 (9)0.041 (2)
C140.1986 (12)0.3410 (11)0.4653 (9)0.039 (2)
C150.3270 (10)0.3498 (10)0.5546 (9)0.046 (2)
H150.35770.45140.57970.055*
C160.4131 (12)0.2048 (11)0.6089 (10)0.051 (2)
H160.50360.20940.66790.061*
C170.3648 (13)0.0550 (12)0.5756 (10)0.054 (3)
C180.2358 (13)0.0481 (11)0.4832 (11)0.059 (3)
H180.20630.05400.45710.071*
C190.1494 (11)0.1887 (10)0.4286 (10)0.053 (3)
H190.06000.18330.36860.064*
C200.4603 (13)0.1022 (13)0.6365 (12)0.082 (3)
H20A0.50670.19460.55010.123*
H20B0.55480.07750.68780.123*
H20C0.37920.13310.70970.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0547 (15)0.0356 (11)0.0427 (13)0.0047 (10)0.0065 (11)0.0075 (9)
S20.0554 (15)0.0371 (12)0.0423 (13)0.0051 (10)0.0035 (11)0.0100 (9)
O10.097 (6)0.056 (4)0.043 (4)0.009 (4)0.017 (4)0.012 (3)
O20.071 (5)0.042 (4)0.067 (4)0.017 (3)0.001 (4)0.016 (3)
O30.049 (4)0.043 (3)0.042 (3)0.007 (3)0.007 (3)0.000 (2)
O40.046 (4)0.048 (3)0.044 (4)0.000 (3)0.011 (3)0.008 (2)
O50.065 (5)0.039 (4)0.070 (4)0.009 (3)0.004 (4)0.009 (3)
O60.071 (5)0.058 (4)0.038 (4)0.002 (3)0.014 (3)0.013 (3)
O70.127 (5)0.102 (5)0.103 (4)0.080 (4)0.018 (4)0.004 (3)
O80.169 (6)0.043 (3)0.103 (4)0.029 (3)0.009 (4)0.031 (3)
N10.099 (5)0.050 (3)0.062 (3)0.029 (3)0.016 (3)0.003 (3)
C10.041 (6)0.034 (5)0.048 (6)0.001 (4)0.003 (4)0.006 (4)
C20.062 (7)0.067 (6)0.050 (5)0.018 (5)0.026 (5)0.009 (4)
C30.063 (7)0.075 (8)0.055 (6)0.000 (5)0.017 (5)0.016 (5)
C40.049 (7)0.066 (7)0.066 (7)0.004 (5)0.007 (5)0.033 (5)
C50.054 (7)0.043 (6)0.106 (10)0.006 (5)0.005 (7)0.024 (5)
C60.057 (7)0.040 (5)0.074 (7)0.021 (5)0.013 (5)0.014 (4)
C70.085 (8)0.093 (9)0.099 (9)0.031 (7)0.006 (7)0.048 (6)
C80.039 (5)0.032 (4)0.040 (5)0.002 (4)0.006 (4)0.008 (3)
C90.049 (6)0.030 (4)0.042 (5)0.007 (4)0.003 (4)0.013 (3)
C100.060 (7)0.028 (5)0.050 (6)0.005 (4)0.008 (5)0.005 (4)
C110.056 (6)0.041 (5)0.046 (6)0.004 (4)0.003 (4)0.020 (4)
C120.029 (5)0.040 (5)0.047 (6)0.002 (4)0.001 (4)0.011 (4)
C130.041 (5)0.033 (5)0.050 (6)0.008 (4)0.006 (4)0.013 (3)
C140.039 (5)0.043 (5)0.034 (5)0.011 (4)0.003 (4)0.008 (4)
C150.040 (5)0.036 (5)0.056 (5)0.006 (4)0.002 (4)0.002 (3)
C160.040 (5)0.070 (6)0.047 (5)0.014 (5)0.012 (4)0.018 (4)
C170.042 (6)0.052 (6)0.062 (6)0.004 (5)0.004 (5)0.018 (5)
C180.058 (7)0.042 (5)0.082 (7)0.016 (5)0.014 (6)0.018 (5)
C190.048 (6)0.043 (5)0.067 (7)0.004 (4)0.025 (5)0.008 (4)
C200.064 (7)0.083 (8)0.112 (9)0.011 (6)0.021 (6)0.061 (6)
Geometric parameters (Å, º) top
S1—O21.396 (6)C7—H7B0.9600
S1—O11.419 (6)C7—H7C0.9600
S1—O31.591 (6)C8—C91.360 (9)
S1—C11.762 (8)C8—C101.385 (10)
S2—O61.422 (5)C9—C131.389 (9)
S2—O51.439 (6)C9—H90.9300
S2—O41.643 (6)C10—C111.366 (10)
S2—C141.752 (9)C10—H100.9300
O3—C81.441 (8)C11—C121.403 (10)
O4—C121.373 (8)C11—H110.9300
O7—N11.189 (7)C12—C131.398 (10)
O8—N11.247 (8)C14—C151.355 (10)
N1—C131.494 (9)C14—C191.405 (10)
C1—C61.357 (10)C15—C161.400 (12)
C1—C21.417 (10)C15—H150.9300
C2—C31.387 (13)C16—C171.380 (12)
C2—H20.9300C16—H160.9300
C3—C41.353 (13)C17—C181.374 (11)
C3—H30.9300C17—C201.532 (12)
C4—C51.419 (13)C18—C191.374 (12)
C4—C71.521 (14)C18—H180.9300
C5—C61.399 (13)C19—H190.9300
C5—H50.9300C20—H20A0.9600
C6—H60.9300C20—H20B0.9600
C7—H7A0.9600C20—H20C0.9600
O2—S1—O1119.0 (4)C9—C8—O3118.2 (6)
O2—S1—O3108.4 (3)C10—C8—O3118.1 (7)
O1—S1—O3102.0 (4)C8—C9—C13117.3 (7)
O2—S1—C1112.4 (4)C8—C9—H9121.3
O1—S1—C1110.6 (4)C13—C9—H9121.3
O3—S1—C1102.5 (4)C11—C10—C8117.9 (8)
O6—S2—O5122.6 (4)C11—C10—H10121.0
O6—S2—O4102.9 (3)C8—C10—H10121.0
O5—S2—O4108.1 (3)C10—C11—C12121.8 (7)
O6—S2—C14110.0 (4)C10—C11—H11119.1
O5—S2—C14108.1 (4)C12—C11—H11119.1
O4—S2—C14103.4 (4)O4—C12—C13120.7 (7)
C8—O3—S1118.2 (5)O4—C12—C11122.0 (7)
C12—O4—S2119.0 (5)C13—C12—C11117.3 (7)
O7—N1—O8125.9 (6)C9—C13—C12121.9 (7)
O7—N1—C13119.0 (7)C9—C13—N1116.6 (6)
O8—N1—C13115.1 (6)C12—C13—N1121.2 (7)
C6—C1—C2122.3 (9)C15—C14—C19120.7 (8)
C6—C1—S1119.7 (7)C15—C14—S2120.8 (6)
C2—C1—S1118.0 (6)C19—C14—S2118.4 (7)
C3—C2—C1116.2 (8)C14—C15—C16119.5 (8)
C3—C2—H2121.9C14—C15—H15120.3
C1—C2—H2121.9C16—C15—H15120.3
C4—C3—C2123.6 (10)C17—C16—C15120.4 (8)
C4—C3—H3118.2C17—C16—H16119.8
C2—C3—H3118.2C15—C16—H16119.8
C3—C4—C5118.8 (10)C18—C17—C16119.2 (9)
C3—C4—C7125.8 (12)C18—C17—C20121.1 (9)
C5—C4—C7115.3 (11)C16—C17—C20119.7 (9)
C6—C5—C4119.3 (9)C17—C18—C19121.4 (9)
C6—C5—H5120.3C17—C18—H18119.3
C4—C5—H5120.3C19—C18—H18119.3
C1—C6—C5119.6 (9)C18—C19—C14118.7 (8)
C1—C6—H6120.2C18—C19—H19120.6
C5—C6—H6120.2C14—C19—H19120.6
C4—C7—H7A109.5C17—C20—H20A109.5
C4—C7—H7B109.5C17—C20—H20B109.5
H7A—C7—H7B109.5H20A—C20—H20B109.5
C4—C7—H7C109.5C17—C20—H20C109.5
H7A—C7—H7C109.5H20A—C20—H20C109.5
H7B—C7—H7C109.5H20B—C20—H20C109.5
C9—C8—C10123.5 (7)
O2—S1—O3—C845.0 (6)S2—O4—C12—C1175.6 (9)
O1—S1—O3—C8171.4 (5)C10—C11—C12—O4179.9 (7)
C1—S1—O3—C874.1 (5)C10—C11—C12—C131.4 (12)
O6—S2—O4—C12171.7 (5)C8—C9—C13—C121.6 (10)
O5—S2—O4—C1240.7 (6)C8—C9—C13—N1176.1 (8)
C14—S2—O4—C1273.8 (6)O4—C12—C13—C9177.9 (6)
O2—S1—C1—C6160.2 (7)C11—C12—C13—C93.6 (11)
O1—S1—C1—C624.6 (9)O4—C12—C13—N13.6 (12)
O3—S1—C1—C683.5 (7)C11—C12—C13—N1177.8 (7)
O2—S1—C1—C218.8 (9)O7—N1—C13—C9132.7 (7)
O1—S1—C1—C2154.4 (8)O8—N1—C13—C948.5 (9)
O3—S1—C1—C297.4 (8)O7—N1—C13—C1241.8 (11)
C6—C1—C2—C34.1 (15)O8—N1—C13—C12136.9 (8)
S1—C1—C2—C3176.8 (7)O6—S2—C14—C15152.6 (7)
C1—C2—C3—C42.3 (16)O5—S2—C14—C1516.4 (9)
C2—C3—C4—C51.1 (17)O4—S2—C14—C1598.0 (8)
C2—C3—C4—C7179.8 (9)O6—S2—C14—C1930.7 (8)
C3—C4—C5—C63.0 (16)O5—S2—C14—C19166.9 (6)
C7—C4—C5—C6177.8 (8)O4—S2—C14—C1978.6 (6)
C2—C1—C6—C52.4 (14)C19—C14—C15—C160.9 (13)
S1—C1—C6—C5178.6 (8)S2—C14—C15—C16177.5 (6)
C4—C5—C6—C11.2 (14)C14—C15—C16—C171.8 (13)
S1—O3—C8—C979.1 (8)C15—C16—C17—C182.6 (14)
S1—O3—C8—C10106.1 (8)C15—C16—C17—C20179.8 (9)
C10—C8—C9—C132.7 (12)C16—C17—C18—C192.6 (15)
O3—C8—C9—C13177.2 (7)C20—C17—C18—C19179.8 (8)
C9—C8—C10—C114.7 (13)C17—C18—C19—C141.8 (14)
O3—C8—C10—C11179.3 (7)C15—C14—C19—C181.0 (12)
C8—C10—C11—C122.5 (12)S2—C14—C19—C18177.6 (7)
S2—O4—C12—C13102.9 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.932.493.405 (11)168
C9—H9···O6ii0.932.463.319 (9)153
C10—H10···O8i0.932.473.369 (10)164
C11—H11···O1iii0.932.503.352 (10)153
C15—H15···O50.932.562.923 (10)104
C18—H18···O5iv0.932.493.409 (11)168
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1; (iii) x, y, z1; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC20H17NO8S2
Mr463.49
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)7.926 (3), 8.244 (3), 8.709 (3)
α, β, γ (°)98.323 (6), 96.180 (6), 103.915 (6)
V3)540.5 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.26 × 0.22 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.928, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
2693, 1918, 1717
Rint0.018
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.135, 1.05
No. of reflections1918
No. of parameters282
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.29
Absolute structureFlack (1983), with 315 Friedel Pairs
Absolute structure parameter0.21 (13)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.932.493.405 (11)168.00
C9—H9···O6ii0.932.463.319 (9)153.00
C10—H10···O8i0.932.473.369 (10)164.00
C11—H11···O1iii0.932.503.352 (10)153.00
C15—H15···O50.932.562.923 (10)104.00
C18—H18···O5iv0.932.493.409 (11)168.00
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1; (iii) x, y, z1; (iv) x, y1, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAtkinson, P. J., Bromidge, S. M., Duxon, M. S., Gaster, L. M., Hadley, M. S., Hammond, B., Johnson, C. N., Middlemiss, D. N., North, S. E., Price, G. W., Rami, H. K., Riley, G. J., Scott, C. M., Shaw, T. E., Starr, K. R., Stemp, G., Thewlis, K. M., Thomas, D. R., Thompson, M., Vong, A. K. K. & Watson, J. M. (2005). Bioorg. Med. Chem. Lett. 15, 737–741.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHu, B., Ellingboe, J., Gunawan, I., Han, S., Largis, E., Li, Z., Malamas, M., Mulvey, R., Oliphant, A., Sum, F.-W., Tillett, J. & Wong, V. (2001). Bioorg. Med. Chem. Lett. 11, 757–760.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSvensson, M., Helgee, B., Skarp, K. & Andersson, G. (1998). J. Mater. Chem. 8, 353–362.  Web of Science CrossRef CAS Google Scholar
First citationTrollsås, M., Orrenius, C., Sahlén, F., Gedde, U. W., Norin, T., Hult, A., Hermann, D., Rudquist, P., Komitov, L., Lagerwall, S. T. & Lindström, J. (1996). J. Am. Chem. Soc. 118, 8542–8548.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds