organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-(Benzyl­sulfan­yl)-5-(2-meth­oxy­phen­yl)-1,3-di­methyl-5,6-di­hydro­pyrimido[4,5-d]pyrimidine-2,4(1H,3H)-dione

aDepartment of Chemistry, Islamic Azad University, Dorood Branch, Dorood 688173551, Iran, and bDepartment of Chemistry, Faculty of Science, Islamic Azad University, Karaj Branch, Karaj, Iran
*Correspondence e-mail: a_bazgir@yahoo.com

(Received 19 July 2008; accepted 29 July 2008; online 6 August 2008)

In the mol­ecule of the title compound, C22H22N4O3S, the benzene and phenyl rings are oriented at a dihedral angle of 88.72 (4)°. The other two rings have flattened-boat conformations. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules.

Related literature

For general background, see: Sharma et al. (2004[Sharma, P., Rane, N. & Gurram, V. K. (2004). Bioorg. Med. Chem. Lett. 14, 4185-4190.]); Quiroga et al. (2002[Quiroga, J., Insuasty, H., Insuasty, B., Abonia, R., Cobo, J., Sanchez, A. & Nogueras, M. (2002). Tetrahedron, 58, 4873-4877.]); Devi et al. (2003[Devi, I., Kumar, B. S. D. & Bhuyan, P. J. (2003). Tetrahedron Lett. 44, 8307-8310.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformation puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C22H22N4O3S

  • Mr = 422.51

  • Monoclinic, P 21 /n

  • a = 10.9216 (9) Å

  • b = 8.8528 (5) Å

  • c = 20.7263 (15) Å

  • β = 90.638 (6)°

  • V = 2003.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 294 (2) K

  • 0.4 × 0.3 × 0.05 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.928, Tmax = 0.985

  • 23191 measured reflections

  • 5394 independent reflections

  • 4510 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.135

  • S = 1.15

  • 5394 reflections

  • 278 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4B⋯O1i 0.85 (3) 2.02 (3) 2.836 (2) 161 (2)
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The importance of fused pyrimidines, common source for the development of new potential therapeutic agents (Sharma et al., 2004), is well known. Among them, the pyrimido[2,3-d]pyrimidines are an important class of annulated uracils with biological significance because of their connection with purine pteridine system (Quiroga et al., 2002). Numerous reports delineate the antitumor, antivial, antioxidant, antifungal and hepatoprotective activities of these compounds (Devi et al., 2003). Therefore, for the preparation of these complex molecules large efforts have been directed towards the synthetic manipulation of uracils. We report herein the synthesis and crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6) and D (C16-C21) are, of course, planar and they are oriented at a dihedral angle of A/D = 88.72 (4)°. Rings B (N2/N3/C9/C11/C13/C14) and C (N1/N4/C8/C9/C14/C15) have flattened-boat [ϕ = 105.63 (2)°, θ = 100.53 (3)° (for ring B) and ϕ = 29.58 (3)°, θ = 58.23 (3)° (for ring C)] conformations, having total puckering amplitudes, QT, of 0.120 (3) and 0.364 (3) Å, respectively (Cremer & Pople, 1975).

In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Sharma et al. (2004); Quiroga et al. (2002); Devi et al. (2003). For bond-length data, see: Allen et al. (1987). For ring conformation puckering parameters, see: Cremer & Pople (1975).

Experimental top

For the preparation of the title compound, 6-amino-1,3-dimethyluracil (0.15 g, 1 mmol), 2-methylbenzaldehyde (0.12 g, 1 mmol), 2-benzylthiourea hydrochloride (0.30 g, 1.5 mmol) and p-toluenesulfonic acid (0.1 g) were mixed. The reaction mixture was placed in a screw capped vial and irradiated for 5 min with a power of 700 W microwave irradiation. After cooling, the reaction mixture was washed with water, and then recrystallized from ethyl acetate to afford the title compound (yield; 0.25 g. 65%, m.p. 519-521 K).

Refinement top

H4B atom (for NH) was located in difference syntheses and refined isotropically [N-H = 0.85 (3) Å and Uiso(H) = 0.049 (6) Å2]. The remaining H atoms were positioned geometrically, with C-H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
7-(Benzylsulfanyl)-5-(2-methoxyphenyl)-1,3-dimethyl-5,6-dihydropyrimido[4,5-d]pyrimidine-2,4(1H,3H)-dione top
Crystal data top
C22H22N4O3SF(000) = 888
Mr = 422.51Dx = 1.401 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2175 reflections
a = 10.9216 (9) Åθ = 2.1–29.3°
b = 8.8528 (5) ŵ = 0.20 mm1
c = 20.7263 (15) ÅT = 294 K
β = 90.638 (6)°Plate, colorless
V = 2003.8 (2) Å30.4 × 0.3 × 0.05 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4510 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.063
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
θmax = 29.3°, θmin = 2.1°
Tmin = 0.928, Tmax = 0.985h = 1415
23191 measured reflectionsk = 1112
5394 independent reflectionsl = 2828
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.055 w = 1/[σ2(Fo2) + (0.0538P)2 + 0.6815P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.135(Δ/σ)max = 0.038
S = 1.15Δρmax = 0.32 e Å3
5394 reflectionsΔρmin = 0.25 e Å3
278 parameters
Crystal data top
C22H22N4O3SV = 2003.8 (2) Å3
Mr = 422.51Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.9216 (9) ŵ = 0.20 mm1
b = 8.8528 (5) ÅT = 294 K
c = 20.7263 (15) Å0.4 × 0.3 × 0.05 mm
β = 90.638 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5394 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
4510 reflections with I > 2σ(I)
Tmin = 0.928, Tmax = 0.985Rint = 0.063
23191 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.32 e Å3
5394 reflectionsΔρmin = 0.25 e Å3
278 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.34470 (5)0.84201 (5)0.12120 (2)0.04173 (13)
O10.34328 (15)0.11232 (15)0.03830 (7)0.0508 (4)
O20.32309 (14)0.52289 (16)0.17071 (6)0.0469 (3)
O30.08733 (11)0.71339 (19)0.00741 (7)0.0502 (4)
N10.33713 (13)0.57943 (16)0.05837 (7)0.0322 (3)
N20.34856 (13)0.34559 (15)0.00770 (7)0.0320 (3)
N30.32991 (14)0.31591 (16)0.10452 (7)0.0349 (3)
N40.33864 (13)0.80243 (16)0.00370 (7)0.0326 (3)
H4B0.341 (2)0.898 (3)0.0043 (11)0.049 (6)*
C10.15207 (19)0.5279 (2)0.18010 (10)0.0459 (4)
H10.19820.46320.15470.055*
C20.0325 (2)0.4896 (3)0.19479 (10)0.0509 (5)
H20.00110.40020.1790.061*
C30.0368 (2)0.5839 (3)0.23278 (10)0.0526 (5)
H30.11690.55820.24290.063*
C40.0136 (2)0.7165 (3)0.25561 (11)0.0592 (6)
H40.03280.78070.28110.071*
C50.1329 (2)0.7546 (3)0.24080 (10)0.0525 (5)
H50.16590.84430.25660.063*
C60.20406 (17)0.6607 (2)0.20257 (8)0.0388 (4)
C70.33376 (18)0.7042 (2)0.18617 (9)0.0432 (4)
H7A0.37820.61390.17390.052*
H7B0.37330.74530.22450.052*
C80.33809 (14)0.72697 (18)0.05202 (8)0.0300 (3)
C90.33441 (13)0.50102 (17)0.00128 (8)0.0288 (3)
C100.37101 (17)0.2765 (2)0.07119 (9)0.0382 (4)
H10A0.29420.25320.09090.057*
H10B0.41590.34580.09810.057*
H10C0.41760.18540.0660.057*
C110.34047 (15)0.25006 (18)0.04476 (9)0.0345 (3)
C120.3234 (2)0.2154 (2)0.16086 (10)0.0483 (5)
H12A0.37850.13210.15460.072*
H12B0.34610.27040.19880.072*
H12C0.24140.1780.1660.072*
C130.32425 (15)0.47335 (19)0.11530 (8)0.0331 (3)
C140.31967 (14)0.56353 (17)0.05833 (8)0.0293 (3)
C150.30427 (14)0.73269 (17)0.06556 (8)0.0287 (3)
H150.36440.76620.09730.034*
C160.17931 (14)0.78714 (18)0.08936 (8)0.0301 (3)
C170.16945 (17)0.8519 (2)0.15010 (9)0.0378 (4)
H170.23810.85460.17620.045*
C180.0604 (2)0.9128 (2)0.17325 (10)0.0469 (5)
H180.05590.95510.21430.056*
C190.0411 (2)0.9096 (3)0.13438 (11)0.0532 (5)
H190.11430.95150.14910.064*
C200.03502 (18)0.8450 (3)0.07381 (10)0.0493 (5)
H200.10410.84390.0480.059*
C210.07381 (16)0.7812 (2)0.05109 (9)0.0371 (4)
C220.0178 (2)0.7044 (4)0.04781 (13)0.0771 (9)
H22A0.05160.80350.05350.116*
H22B0.00570.66360.0890.116*
H22C0.07810.640.0280.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0512 (11)0.0413 (10)0.0454 (10)0.0063 (8)0.0071 (8)0.0019 (8)
C20.0550 (12)0.0452 (11)0.0528 (11)0.0047 (9)0.0061 (9)0.0045 (9)
C30.0478 (11)0.0587 (13)0.0515 (11)0.0019 (10)0.0107 (9)0.0136 (10)
C40.0607 (14)0.0600 (14)0.0573 (13)0.0121 (11)0.0216 (11)0.0024 (11)
C50.0591 (13)0.0489 (12)0.0495 (11)0.0002 (9)0.0081 (9)0.0100 (9)
C60.0425 (9)0.0429 (10)0.0311 (8)0.0043 (7)0.0013 (7)0.0027 (7)
C70.0402 (9)0.0522 (11)0.0372 (9)0.0014 (8)0.0051 (7)0.0013 (8)
C80.0233 (7)0.0286 (7)0.0383 (8)0.0005 (5)0.0010 (6)0.0006 (6)
C90.0228 (7)0.0239 (7)0.0398 (8)0.0006 (5)0.0039 (6)0.0030 (6)
C100.0377 (9)0.0320 (8)0.0447 (9)0.0034 (7)0.0009 (7)0.0115 (7)
C110.0318 (8)0.0251 (7)0.0467 (9)0.0018 (6)0.0029 (7)0.0016 (7)
C120.0609 (12)0.0340 (9)0.0501 (11)0.0013 (9)0.0015 (9)0.0085 (8)
C130.0302 (8)0.0285 (7)0.0407 (8)0.0014 (6)0.0046 (6)0.0017 (7)
C140.0258 (7)0.0242 (7)0.0381 (8)0.0002 (5)0.0027 (6)0.0029 (6)
C150.0262 (7)0.0242 (7)0.0356 (8)0.0012 (5)0.0034 (6)0.0052 (6)
C160.0287 (7)0.0246 (7)0.0369 (8)0.0004 (6)0.0005 (6)0.0034 (6)
C170.0413 (9)0.0327 (8)0.0395 (9)0.0009 (7)0.0007 (7)0.0054 (7)
C180.0540 (12)0.0421 (10)0.0444 (10)0.0064 (9)0.0092 (8)0.0101 (8)
C190.0440 (11)0.0559 (12)0.0593 (12)0.0163 (9)0.0118 (9)0.0057 (10)
C200.0320 (9)0.0632 (13)0.0525 (11)0.0102 (9)0.0007 (8)0.0039 (10)
C210.0303 (8)0.0393 (9)0.0415 (9)0.0023 (7)0.0007 (6)0.0042 (7)
C220.0416 (12)0.127 (3)0.0628 (15)0.0041 (14)0.0173 (10)0.0345 (16)
N10.0338 (7)0.0268 (6)0.0361 (7)0.0024 (5)0.0011 (5)0.0018 (5)
N20.0324 (7)0.0240 (6)0.0396 (7)0.0015 (5)0.0024 (5)0.0056 (5)
N30.0379 (7)0.0257 (7)0.0411 (7)0.0017 (5)0.0034 (6)0.0025 (6)
N40.0340 (7)0.0220 (6)0.0418 (8)0.0020 (5)0.0016 (6)0.0017 (6)
O10.0688 (10)0.0210 (6)0.0624 (9)0.0018 (6)0.0002 (7)0.0037 (6)
O20.0654 (9)0.0384 (7)0.0371 (6)0.0033 (6)0.0075 (6)0.0023 (6)
O30.0279 (6)0.0759 (10)0.0468 (7)0.0022 (6)0.0057 (5)0.0226 (7)
S10.0468 (3)0.0340 (2)0.0444 (2)0.00253 (18)0.00230 (19)0.00687 (18)
Geometric parameters (Å, º) top
N4—H4B0.85 (3)C11—N21.379 (2)
C1—C61.383 (3)C12—N31.469 (2)
C1—C21.387 (3)C12—H12A0.96
C1—H10.93C12—H12B0.96
C2—C31.379 (3)C12—H12C0.96
C2—H20.93C13—O21.229 (2)
C3—C41.378 (4)C13—N31.413 (2)
C3—H30.93C13—C141.427 (2)
C4—C51.383 (3)C14—C151.514 (2)
C4—H40.93C15—N41.468 (2)
C5—C61.392 (3)C15—C161.524 (2)
C5—H50.93C15—H150.98
C6—C71.510 (3)C16—C171.386 (2)
C7—S11.822 (2)C16—C211.407 (2)
C7—H7A0.97C17—C181.388 (3)
C7—H7B0.97C17—H170.93
C8—N11.313 (2)C18—C191.377 (3)
C8—N41.334 (2)C18—H180.93
C8—S11.7596 (17)C19—C201.381 (3)
C9—C141.362 (2)C19—H190.93
C9—N11.372 (2)C20—C211.393 (3)
C9—N21.3908 (19)C20—H200.93
C10—N21.469 (2)C21—O31.359 (2)
C10—H10A0.96C22—O31.431 (2)
C10—H10B0.96C22—H22A0.96
C10—H10C0.96C22—H22B0.96
C11—O11.227 (2)C22—H22C0.96
C11—N31.373 (2)
C6—C1—C2121.20 (19)N3—C13—C14115.02 (14)
C6—C1—H1119.4C9—C14—C13121.24 (14)
C2—C1—H1119.4C9—C14—C15120.24 (14)
C3—C2—C1120.1 (2)C13—C14—C15118.45 (14)
C3—C2—H2120N4—C15—C14107.61 (13)
C1—C2—H2120N4—C15—C16111.66 (13)
C4—C3—C2119.4 (2)C14—C15—C16116.28 (13)
C4—C3—H3120.3N4—C15—H15106.9
C2—C3—H3120.3C14—C15—H15106.9
C3—C4—C5120.4 (2)C16—C15—H15106.9
C3—C4—H4119.8C17—C16—C21118.14 (15)
C5—C4—H4119.8C17—C16—C15119.01 (14)
C4—C5—C6120.9 (2)C21—C16—C15122.79 (14)
C4—C5—H5119.5C16—C17—C18122.16 (17)
C6—C5—H5119.5C16—C17—H17118.9
C1—C6—C5117.99 (19)C18—C17—H17118.9
C1—C6—C7121.56 (17)C19—C18—C17118.85 (18)
C5—C6—C7120.45 (18)C19—C18—H18120.6
C6—C7—S1113.99 (13)C17—C18—H18120.6
C6—C7—H7A108.8C18—C19—C20120.64 (18)
S1—C7—H7A108.8C18—C19—H19119.7
C6—C7—H7B108.8C20—C19—H19119.7
S1—C7—H7B108.8C19—C20—C21120.48 (19)
H7A—C7—H7B107.6C19—C20—H20119.8
N1—C8—N4125.81 (15)C21—C20—H20119.8
N1—C8—S1119.63 (13)O3—C21—C20124.34 (17)
N4—C8—S1114.52 (12)O3—C21—C16115.97 (15)
C14—C9—N1125.32 (14)C20—C21—C16119.68 (17)
C14—C9—N2120.04 (15)O3—C22—H22A109.5
N1—C9—N2114.64 (14)O3—C22—H22B109.5
N2—C10—H10A109.5H22A—C22—H22B109.5
N2—C10—H10B109.5O3—C22—H22C109.5
H10A—C10—H10B109.5H22A—C22—H22C109.5
N2—C10—H10C109.5H22B—C22—H22C109.5
H10A—C10—H10C109.5C8—N1—C9114.65 (14)
H10B—C10—H10C109.5C11—N2—C9121.68 (14)
O1—C11—N3121.48 (17)C11—N2—C10117.34 (14)
O1—C11—N2121.47 (17)C9—N2—C10120.98 (14)
N3—C11—N2117.05 (14)C11—N3—C13124.39 (14)
N3—C12—H12A109.5C11—N3—C12117.56 (15)
N3—C12—H12B109.5C13—N3—C12118.05 (15)
H12A—C12—H12B109.5C8—N4—C15122.81 (14)
N3—C12—H12C109.5C8—N4—H4B120.9 (16)
H12A—C12—H12C109.5C15—N4—H4B114.5 (16)
H12B—C12—H12C109.5C21—O3—C22117.82 (16)
O2—C13—N3119.99 (16)C8—S1—C7102.25 (9)
O2—C13—C14124.99 (16)
C6—C1—C2—C30.4 (3)C17—C16—C21—O3178.46 (16)
C1—C2—C3—C40.3 (3)C15—C16—C21—O34.6 (3)
C2—C3—C4—C50.2 (4)C17—C16—C21—C202.5 (3)
C3—C4—C5—C60.2 (4)C15—C16—C21—C20174.39 (17)
C2—C1—C6—C50.4 (3)N4—C8—N1—C91.1 (2)
C2—C1—C6—C7179.27 (18)S1—C8—N1—C9178.71 (11)
C4—C5—C6—C10.2 (3)C14—C9—N1—C87.4 (2)
C4—C5—C6—C7179.4 (2)N2—C9—N1—C8172.47 (14)
C1—C6—C7—S1100.2 (2)O1—C11—N2—C9174.13 (16)
C5—C6—C7—S179.5 (2)N3—C11—N2—C96.3 (2)
N1—C9—C14—C13176.78 (15)O1—C11—N2—C105.0 (2)
N2—C9—C14—C133.1 (2)N3—C11—N2—C10174.62 (14)
N1—C9—C14—C150.1 (2)C14—C9—N2—C114.1 (2)
N2—C9—C14—C15179.98 (13)N1—C9—N2—C11175.99 (14)
O2—C13—C14—C9172.94 (17)C14—C9—N2—C10176.78 (15)
N3—C13—C14—C97.4 (2)N1—C9—N2—C103.1 (2)
O2—C13—C14—C154.0 (2)O1—C11—N3—C13178.99 (17)
N3—C13—C14—C15175.67 (14)N2—C11—N3—C131.4 (2)
C9—C14—C15—N413.62 (19)O1—C11—N3—C120.7 (3)
C13—C14—C15—N4163.38 (13)N2—C11—N3—C12178.94 (16)
C9—C14—C15—C16112.44 (17)O2—C13—N3—C11175.12 (16)
C13—C14—C15—C1670.56 (19)C14—C13—N3—C115.2 (2)
N4—C15—C16—C17124.18 (16)O2—C13—N3—C125.2 (2)
C14—C15—C16—C17111.82 (17)C14—C13—N3—C12174.47 (15)
N4—C15—C16—C2152.7 (2)N1—C8—N4—C1517.5 (2)
C14—C15—C16—C2171.3 (2)S1—C8—N4—C15164.81 (11)
C21—C16—C17—C181.3 (3)C14—C15—N4—C821.9 (2)
C15—C16—C17—C18175.73 (17)C16—C15—N4—C8106.81 (17)
C16—C17—C18—C190.4 (3)C20—C21—O3—C221.3 (3)
C17—C18—C19—C201.0 (3)C16—C21—O3—C22179.8 (2)
C18—C19—C20—C210.3 (4)N1—C8—S1—C75.17 (15)
C19—C20—C21—O3179.0 (2)N4—C8—S1—C7176.99 (12)
C19—C20—C21—C162.1 (3)C6—C7—S1—C884.81 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O1i0.85 (3)2.02 (3)2.836 (2)161 (2)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC22H22N4O3S
Mr422.51
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)10.9216 (9), 8.8528 (5), 20.7263 (15)
β (°) 90.638 (6)
V3)2003.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.4 × 0.3 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.928, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
23191, 5394, 4510
Rint0.063
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.135, 1.15
No. of reflections5394
No. of parameters278
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.25

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O1i0.85 (3)2.02 (3)2.836 (2)161 (2)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

AB is grateful to the Islamic Azad University, Dorood Branch, for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDevi, I., Kumar, B. S. D. & Bhuyan, P. J. (2003). Tetrahedron Lett. 44, 8307–8310.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationQuiroga, J., Insuasty, H., Insuasty, B., Abonia, R., Cobo, J., Sanchez, A. & Nogueras, M. (2002). Tetrahedron, 58, 4873–4877.  Web of Science CrossRef CAS Google Scholar
First citationSharma, P., Rane, N. & Gurram, V. K. (2004). Bioorg. Med. Chem. Lett. 14, 4185–4190.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds