organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Ethyl N′-[1-(2-hy­droxy­phen­yl)ethyl­­idene]hydrazine­carboxyl­ate

aMarine College, Zhejiang Institute of Communications, Hangzhou 311112, People's Republic of China
*Correspondence e-mail: bgao_zjvtit@126.com

(Received 2 August 2008; accepted 5 August 2008; online 16 August 2008)

In the mol­ecule of the title compound, C11H14N2O3, the dihedral angle between the benzene ring and the hydrazinecarboxyl­ate mean plane is 3.65 (12)°. Intra­molecular C—H⋯N and O—H⋯N hydrogen bonds result in the formation of a nearly planar six-membered ring, which is oriented at a dihedral angle of 2.38 (3)° with respect to the benzene ring, and a five-membered ring having an envelope conformation. In the crystal structure, inter­molecular N—H⋯O and C—H⋯N hydrogen bonds link the mol­ecules. There is a C—H⋯π contact between the benzene ring and the methyl group of the ethyl substituent.

Related literature

For general background, see: Parashar et al. (1988[Parashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201-208.]); Hadjoudis et al. (1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345-1360.]); Borg et al., (1999[Borg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 433-4342.]). For a related structure, see: Gao (2008[Gao, B. (2008). Acta Cryst. E64, o1646.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14N2O3

  • Mr = 222.24

  • Monoclinic, P 21 /c

  • a = 8.0841 (7) Å

  • b = 23.052 (2) Å

  • c = 6.6019 (6) Å

  • β = 111.584 (3)°

  • V = 1144.03 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 273 (2) K

  • 0.28 × 0.24 × 0.23 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.981

  • 12167 measured reflections

  • 2018 independent reflections

  • 1360 reflections with I > 2σ(I)

  • Rint = 0.089

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.117

  • S = 1.05

  • 2018 reflections

  • 149 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.85 2.5604 (18) 145
N2—H2A⋯O2i 0.86 2.07 2.9175 (18) 167
C8—H8A⋯N2 0.96 2.49 2.825 (2) 100
C8—H8A⋯O2i 0.96 2.40 3.217 (2) 142
C11—H11CCg1ii 0.96 3.00 3.748 (3) 136
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzaldehydehydrazone derivatives have received considerable attention for a long time, due to their pharmacological activities (Parashar et al., 1988) and their photochromic properties (Hadjoudis et al., 1987). They are important intermidiates fot 1,3,4-oxadiazoles, which have been reported to be versatile compounds with many properties (Borg et al., 1999). As a further investigation of this type of derivatives, we report herein the crystal structure of the title compound.

The title molecule (Fig. 1) adopts a trans configuration with respect to the CN bond. The bond lengths and angles agree with those observed for (E)-ethyl N'-(4-bromobenzylidene)hydrazinecarboxylate (Gao, 2008). The ring A (C1-C6) is, of course, planar and it is oriented with respect to the mean plane of (C9/C10/C11/N1/N2/O2/O3) at a dihedral angle of 3.65 (12)°. The intramolecular C-H···N and O-H···N hydrogen bonds (Table 1) result in the formation of five- and six-membered rings: B (N1/N2/C7/C8/H8A) and C (N1/O1/H1/C1/C6/C7). Ring B adopts envelope conformation, with H8A atom displaced by -0.413 (3) Å from the plane of the other ring atoms. Ring C is nearly planar and it is oriented with respect to ring A at a dihedral angle of 2.38 (3)°.

In the crystal structure, intermolecular N-H···O and C-H···N hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. A C—H···π contact (Table 1) between the benzene ring and the methyl group further stabilize the structure.

Related literature top

For general background, see: Parashar et al. (1988); Hadjoudis et al. (1987); Borg et al., (1999). For related structure, see: Gao (2008).

Experimental top

2-Hydroxy-acetophenone (1.36 g, 0.01 mol) and ethyl hydrazinecarboxylate (1.04 g, 0.01 mol) were dissolved in stirred methanol (25 ml) and left for 4 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound (yield; 85%, m.p. 487-489 K). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically, with O-H = 0.82 Å (for OH), N-H = 0.86 Å (for NH) and C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,N,O), where x = 1.5 for OH H and methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
(E)-Ethyl N'-[1-(2-hydroxyphenyl)ethylidene]hydrazinecarboxylate top
Crystal data top
C11H14N2O3F(000) = 472
Mr = 222.24Dx = 1.290 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1018 reflections
a = 8.0841 (7) Åθ = 1.8–25.0°
b = 23.052 (2) ŵ = 0.10 mm1
c = 6.6019 (6) ÅT = 273 K
β = 111.584 (3)°Block, colourless
V = 1144.03 (18) Å30.28 × 0.24 × 0.23 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2018 independent reflections
Radiation source: fine-focus sealed tube1360 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 99
Tmin = 0.973, Tmax = 0.981k = 2725
12167 measured reflectionsl = 77
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0565P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.004
2018 reflectionsΔρmax = 0.21 e Å3
149 parametersΔρmin = 0.12 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.003 (2)
Crystal data top
C11H14N2O3V = 1144.03 (18) Å3
Mr = 222.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.0841 (7) ŵ = 0.10 mm1
b = 23.052 (2) ÅT = 273 K
c = 6.6019 (6) Å0.28 × 0.24 × 0.23 mm
β = 111.584 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2018 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1360 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.981Rint = 0.089
12167 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.05Δρmax = 0.21 e Å3
2018 reflectionsΔρmin = 0.12 e Å3
149 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.48727 (18)0.67615 (6)0.1086 (2)0.0764 (4)
H10.47140.65320.02260.115*
O20.33133 (16)0.55003 (5)0.4805 (2)0.0700 (4)
O30.30739 (14)0.62476 (5)0.25268 (17)0.0577 (4)
N10.54972 (18)0.58512 (6)0.1300 (2)0.0547 (4)
N20.50506 (17)0.55461 (6)0.2812 (2)0.0575 (4)
H2A0.55830.52260.33330.069*
C10.6180 (2)0.65614 (8)0.1721 (3)0.0596 (5)
C20.6542 (3)0.68841 (9)0.3299 (3)0.0758 (6)
H20.59010.72210.38490.091*
C30.7839 (3)0.67078 (11)0.4046 (3)0.0849 (7)
H30.80640.69250.51050.102*
C40.8806 (3)0.62129 (11)0.3238 (4)0.0840 (6)
H40.96900.60950.37360.101*
C50.8453 (3)0.58970 (9)0.1696 (3)0.0704 (5)
H50.91120.55620.11660.084*
C60.7148 (2)0.60525 (7)0.0876 (3)0.0534 (4)
C70.6823 (2)0.56945 (7)0.0794 (3)0.0524 (4)
C80.7998 (2)0.51833 (8)0.1808 (3)0.0721 (6)
H8A0.79860.51140.32360.108*
H8B0.91920.52640.19150.108*
H8C0.75640.48460.09180.108*
C90.3771 (2)0.57519 (7)0.3476 (3)0.0521 (4)
C100.1786 (2)0.65209 (8)0.3283 (3)0.0606 (5)
H10A0.23130.65940.48370.073*
H10B0.07600.62710.30020.073*
C110.1244 (3)0.70765 (8)0.2071 (3)0.0771 (6)
H11A0.22660.73230.23840.116*
H11B0.03740.72670.25100.116*
H11C0.07440.69990.05350.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0824 (9)0.0654 (9)0.0859 (10)0.0151 (7)0.0364 (8)0.0187 (7)
O20.0769 (8)0.0633 (8)0.0855 (9)0.0117 (6)0.0484 (7)0.0207 (7)
O30.0619 (7)0.0571 (8)0.0613 (7)0.0126 (6)0.0310 (6)0.0104 (6)
N10.0578 (8)0.0550 (9)0.0557 (8)0.0027 (6)0.0262 (7)0.0052 (7)
N20.0613 (8)0.0538 (9)0.0651 (9)0.0103 (7)0.0323 (7)0.0122 (7)
C10.0621 (10)0.0590 (11)0.0553 (10)0.0084 (9)0.0188 (9)0.0026 (9)
C20.0857 (14)0.0681 (13)0.0640 (12)0.0163 (11)0.0163 (11)0.0106 (10)
C30.1013 (16)0.1014 (18)0.0584 (13)0.0409 (14)0.0370 (12)0.0050 (12)
C40.0921 (15)0.1005 (18)0.0737 (14)0.0166 (14)0.0471 (13)0.0061 (13)
C50.0756 (12)0.0776 (14)0.0682 (12)0.0021 (10)0.0385 (10)0.0014 (10)
C60.0561 (10)0.0547 (11)0.0507 (10)0.0066 (8)0.0211 (8)0.0052 (8)
C70.0522 (9)0.0510 (10)0.0548 (10)0.0002 (8)0.0207 (8)0.0033 (8)
C80.0722 (12)0.0655 (13)0.0891 (14)0.0136 (10)0.0420 (11)0.0129 (10)
C90.0533 (9)0.0509 (11)0.0545 (10)0.0019 (8)0.0227 (8)0.0032 (8)
C100.0572 (10)0.0685 (12)0.0602 (11)0.0091 (8)0.0266 (8)0.0005 (9)
C110.0907 (14)0.0644 (13)0.0770 (13)0.0209 (11)0.0319 (11)0.0041 (10)
Geometric parameters (Å, º) top
O1—H10.8200C7—N11.286 (2)
N2—N11.3735 (18)C7—C81.507 (2)
N2—H2A0.8600C8—H8A0.9600
C1—O11.353 (2)C8—H8B0.9600
C2—C31.374 (3)C8—H8C0.9600
C2—C11.396 (3)C9—O21.2168 (18)
C2—H20.9300C9—O31.3251 (19)
C3—C41.375 (3)C9—N21.350 (2)
C3—H30.9300C10—O31.4537 (19)
C4—H40.9300C10—C111.488 (3)
C5—C41.365 (3)C10—H10A0.9700
C5—H50.9300C10—H10B0.9700
C6—C51.398 (2)C11—H11A0.9600
C6—C11.407 (2)C11—H11B0.9600
C6—C71.476 (2)C11—H11C0.9600
C1—O1—H1109.5N1—C7—C6115.56 (14)
C9—O3—C10116.40 (13)N1—C7—C8123.60 (15)
C7—N1—N2120.80 (14)C6—C7—C8120.84 (14)
C9—N2—N1119.60 (14)C7—C8—H8A109.5
C9—N2—H2A120.2C7—C8—H8B109.5
N1—N2—H2A120.2H8A—C8—H8B109.5
O1—C1—C2116.86 (18)C7—C8—H8C109.5
O1—C1—C6123.05 (16)H8A—C8—H8C109.5
C2—C1—C6120.09 (18)H8B—C8—H8C109.5
C3—C2—C1120.5 (2)O2—C9—O3124.27 (15)
C3—C2—H2119.7O2—C9—N2122.61 (16)
C1—C2—H2119.7O3—C9—N2113.11 (14)
C2—C3—C4120.43 (19)O3—C10—C11107.12 (14)
C2—C3—H3119.8O3—C10—H10A110.3
C4—C3—H3119.8C11—C10—H10A110.3
C5—C4—C3119.1 (2)O3—C10—H10B110.3
C5—C4—H4120.4C11—C10—H10B110.3
C3—C4—H4120.4H10A—C10—H10B108.5
C4—C5—C6123.2 (2)C10—C11—H11A109.5
C4—C5—H5118.4C10—C11—H11B109.5
C6—C5—H5118.4H11A—C11—H11B109.5
C5—C6—C1116.69 (16)C10—C11—H11C109.5
C5—C6—C7120.86 (16)H11A—C11—H11C109.5
C1—C6—C7122.45 (15)H11B—C11—H11C109.5
C9—N2—N1—C7173.35 (15)C5—C6—C7—N1174.51 (15)
C3—C2—C1—O1179.43 (16)C1—C6—C7—N15.5 (2)
C3—C2—C1—C60.2 (3)C5—C6—C7—C85.6 (2)
C1—C2—C3—C40.4 (3)C1—C6—C7—C8174.34 (16)
C2—C3—C4—C50.5 (3)C6—C7—N1—N2179.08 (13)
C6—C5—C4—C30.3 (3)C8—C7—N1—N21.1 (2)
C5—C6—C1—O1179.61 (16)O2—C9—O3—C105.1 (2)
C7—C6—C1—O10.4 (3)N2—C9—O3—C10175.28 (14)
C5—C6—C1—C20.0 (2)O2—C9—N2—N1179.74 (14)
C7—C6—C1—C2179.98 (15)O3—C9—N2—N10.1 (2)
C1—C6—C5—C40.0 (3)C11—C10—O3—C9177.71 (14)
C7—C6—C5—C4179.95 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.852.5604 (18)145
N2—H2A···O2i0.862.072.9175 (18)167
C8—H8A···N20.962.492.825 (2)100
C8—H8A···O2i0.962.403.217 (2)142
C11—H11C···Cg1ii0.963.003.748 (3)136
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC11H14N2O3
Mr222.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)8.0841 (7), 23.052 (2), 6.6019 (6)
β (°) 111.584 (3)
V3)1144.03 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.28 × 0.24 × 0.23
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.973, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
12167, 2018, 1360
Rint0.089
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.117, 1.05
No. of reflections2018
No. of parameters149
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.12

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.852.5604 (18)144.8
N2—H2A···O2i0.862.072.9175 (18)166.5
C8—H8A···N20.962.492.825 (2)100.2
C8—H8A···O2i0.962.403.217 (2)142.2
C11—H11C···Cg1ii0.963.003.748 (3)135.5
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.
 

Acknowledgements

The author acknowledges the financial support of Zhejiang Police College, China.

References

First citationBorg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 433–4342.  Web of Science CrossRef Google Scholar
First citationBruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, B. (2008). Acta Cryst. E64, o1646.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationParashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201–208.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds