organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-{[2,5-Di­chloro-4-(1,1,2,3,3,3-hexa­fluoro­prop­­oxy)phen­yl]amino­carbon­yl}-2,6-di­fluoro­benzamide

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Xinmofan Road No. 5, Nanjing 210009, People's Republic of China
*Correspondence e-mail: fangshi.li@njut.edu.cn

(Received 6 August 2008; accepted 8 August 2008; online 13 August 2008)

In the mol­ecule of the title compound, C17H8Cl2F8N2O3, the two aromatic rings are oriented at a dihedral angle of 50.12 (3)°. Intra­molecular N—H⋯O, C—H⋯O and N—H⋯Cl hydrogen bonds result in the formation of two six- and one five-membered rings. The six-membered rings have flattened-boat conformations, while the five-membered ring adopts an envelope conformation. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Related literature

For related literature, see: Drabek & Boeger (1986[Drabek, J. & Boeger, M. (1986). European Patent No. 179022.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformation puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C17H8Cl2F8N2O3

  • Mr = 511.15

  • Monoclinic, P 21 /n

  • a = 9.2300 (18) Å

  • b = 16.404 (3) Å

  • c = 14.074 (3) Å

  • β = 108.77 (3)°

  • V = 2017.6 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 294 (2) K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.851, Tmax = 0.921

  • 3609 measured reflections

  • 3609 independent reflections

  • 1922 reflections with I > 2σ(I)

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.086

  • wR(F2) = 0.247

  • S = 1.09

  • 3609 reflections

  • 283 parameters

  • 96 restraints

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl2 0.86 2.43 2.892 (4) 115
N2—H2A⋯O1 0.86 1.98 2.664 (6) 135
N1—H1A⋯O2i 0.86 1.98 2.814 (6) 163
C10—H10A⋯O2 0.93 2.28 2.851 (6) 119
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound is considered to belong to the fourth generation of insectides with properties such as high selectivity, low acute toxicity for mammals and high biological activity. It is generally recognized as a chitin-synthesis inhibitor that interrupts chitin-synthesis during the development and reproduction of the insectide. As part of our studies in this area, we report herein the crystal structure of the title compound.

In the molecule of the title compound, (Fig. 1) the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6) and B (C9-C14) are, of course, planar, and the dihedral angle between them is A/B = 50.12 (3)°. The intramolecular N-H···O, C-H···O and N-H···Cl hydrogen bonds (Table 1) result in the formation of two six- and one five-membered non-planar rings: C (O1/N1/N2/C7/C8/H2A), D (O2/N2/C8-C10/H10A) and E (Cl2/N2/C9/C14/H2A). Rings C and D adopt twisted [ϕ = -169.19 (2)°, θ = 21.09 (3)° (for ring C) and ϕ = 178.48 (3)°, θ = 127.74 (3)° (for ring D)] conformations, having total puckering amplitudes, QT, of 0.113 (3) and 0.201 (3) Å, respectively (Cremer & Pople, 1975). Ring E adopts envelope conformation, with H2A atom displaced by 0.190 (3) Å from the plane of the other ring atoms.

In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For related literature, see: Drabek & Boeger (1986). For bond-length data, see: Allen et al. (1987). For ring conformation puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound was prepared according to the literature method (Drabek & Boeger, 1986). The crystals suitable for X-ray analysis were obtained by dissolving the title compound (0.3 g) in acetonitrile (25 ml) and evaporating the solvent slowly at room temperature for about 8 d.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93 and 0.98 Å for aromatic and methine H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
N-{[2,5-Dichloro-4-(1,1,2,3,3,3-hexafluoropropoxy)phenyl]aminocarbonyl}- 2,6-difluorobenzamide top
Crystal data top
C17H8Cl2F8N2O3F(000) = 1016
Mr = 511.15Dx = 1.683 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 9.2300 (18) Åθ = 9–12°
b = 16.404 (3) ŵ = 0.42 mm1
c = 14.074 (3) ÅT = 294 K
β = 108.77 (3)°Block, colorless
V = 2017.6 (8) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1922 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.2°, θmin = 2.0°
ω/2θ scansh = 1110
Absorption correction: ψ scan
(North et al., 1968)
k = 019
Tmin = 0.851, Tmax = 0.921l = 016
3609 measured reflections3 standard reflections every 200 reflections
3609 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.086Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.248H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.1258P)2 + 1.1819P]
where P = (Fo2 + 2Fc2)/3
3609 reflections(Δ/σ)max = 0.001
283 parametersΔρmax = 0.42 e Å3
96 restraintsΔρmin = 0.35 e Å3
Crystal data top
C17H8Cl2F8N2O3V = 2017.6 (8) Å3
Mr = 511.15Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.2300 (18) ŵ = 0.42 mm1
b = 16.404 (3) ÅT = 294 K
c = 14.074 (3) Å0.40 × 0.30 × 0.20 mm
β = 108.77 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1922 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.851, Tmax = 0.9213 standard reflections every 200 reflections
3609 measured reflections intensity decay: none
3609 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.08696 restraints
wR(F2) = 0.248H-atom parameters constrained
S = 1.09Δρmax = 0.42 e Å3
3609 reflectionsΔρmin = 0.35 e Å3
283 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.21022 (15)1.15534 (9)0.61828 (12)0.0527 (5)
Cl21.06547 (19)0.83402 (11)0.80001 (17)0.0914 (8)
F10.4001 (5)0.7889 (3)0.7184 (3)0.0975 (16)
F20.4224 (4)0.8023 (3)0.3906 (3)0.0810 (13)
F31.5260 (5)1.0359 (3)0.6887 (5)0.1116 (18)
F41.5722 (4)0.9618 (3)0.8001 (4)0.1039 (17)
F51.8146 (6)1.0579 (3)0.7942 (5)0.145 (3)
F61.8127 (6)1.0156 (3)0.9703 (4)0.1121 (18)
F71.9281 (6)1.1152 (3)0.9350 (4)0.119 (2)
F81.6616 (6)1.1347 (3)0.9601 (4)0.1029 (15)
O10.6850 (4)0.7921 (2)0.6546 (4)0.0703 (15)
O20.6981 (4)1.0216 (3)0.5376 (3)0.0505 (11)
O31.4248 (4)1.0694 (3)0.7916 (4)0.0758 (16)
N10.5870 (4)0.9045 (2)0.5577 (3)0.0359 (11)
H1A0.50330.92420.51750.043*
N20.8483 (4)0.9219 (2)0.6377 (3)0.0327 (10)
H2A0.84680.87240.65760.039*
C10.1954 (8)0.7296 (5)0.5816 (6)0.074 (2)
H1B0.14140.71400.62420.089*
C20.1405 (7)0.7183 (4)0.4832 (5)0.0588 (17)
H2B0.04440.69450.45690.071*
C30.2142 (7)0.7389 (4)0.4199 (5)0.0607 (17)
H3A0.17040.72750.35190.073*
C40.3505 (6)0.7758 (4)0.4526 (4)0.0450 (14)
C50.4228 (6)0.7893 (3)0.5551 (4)0.0435 (14)
C60.3397 (7)0.7666 (4)0.6175 (5)0.0568 (16)
C70.5790 (6)0.8247 (3)0.5960 (4)0.0437 (14)
C80.7151 (6)0.9534 (3)0.5785 (4)0.0407 (14)
C90.9852 (5)0.9614 (3)0.6689 (4)0.0330 (12)
C101.0214 (5)1.0332 (3)0.6291 (4)0.0368 (12)
H10A0.94771.05950.57700.044*
C111.1661 (5)1.0655 (3)0.6667 (4)0.0355 (12)
C121.2807 (6)1.0310 (4)0.7494 (5)0.0518 (16)
C131.2445 (7)0.9591 (4)0.7901 (5)0.0572 (17)
H13A1.31590.93500.84530.069*
C141.1065 (5)0.9252 (3)0.7492 (4)0.0391 (13)
C151.5460 (7)1.0386 (4)0.8024 (7)0.079 (3)
C161.6854 (8)1.0845 (5)0.8271 (9)0.107 (4)
H16A1.65761.13940.79990.129*
C171.7772 (11)1.0946 (6)0.9319 (7)0.089
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0401 (8)0.0436 (9)0.0782 (11)0.0152 (6)0.0242 (7)0.0007 (7)
Cl20.0513 (10)0.0599 (12)0.1330 (18)0.0100 (8)0.0123 (10)0.0497 (12)
F10.097 (3)0.135 (4)0.051 (3)0.054 (3)0.010 (2)0.026 (2)
F20.086 (3)0.103 (3)0.059 (3)0.045 (3)0.030 (2)0.034 (2)
F30.099 (4)0.106 (4)0.133 (5)0.034 (3)0.041 (3)0.032 (3)
F40.054 (2)0.072 (3)0.172 (5)0.010 (2)0.019 (3)0.015 (3)
F50.092 (3)0.141 (5)0.225 (7)0.023 (3)0.082 (4)0.111 (5)
F60.127 (4)0.104 (4)0.095 (4)0.017 (3)0.021 (3)0.052 (3)
F70.099 (3)0.083 (3)0.116 (4)0.024 (3)0.048 (3)0.006 (3)
F80.097 (3)0.111 (4)0.103 (4)0.001 (3)0.034 (3)0.012 (3)
O10.029 (2)0.047 (3)0.107 (4)0.0006 (18)0.017 (2)0.037 (2)
O20.046 (2)0.047 (3)0.057 (3)0.0033 (19)0.013 (2)0.005 (2)
O30.035 (2)0.043 (3)0.129 (5)0.009 (2)0.001 (2)0.009 (3)
N10.028 (2)0.019 (2)0.058 (3)0.0007 (17)0.009 (2)0.0093 (19)
N20.028 (2)0.025 (2)0.043 (3)0.0005 (17)0.0085 (19)0.0044 (19)
C10.070 (4)0.082 (5)0.076 (4)0.028 (4)0.032 (4)0.017 (4)
C20.046 (3)0.051 (4)0.071 (4)0.016 (3)0.007 (3)0.003 (3)
C30.059 (4)0.061 (4)0.051 (4)0.023 (3)0.002 (3)0.014 (3)
C40.045 (3)0.046 (3)0.042 (3)0.003 (3)0.011 (3)0.004 (3)
C50.039 (3)0.042 (3)0.047 (3)0.006 (2)0.011 (2)0.010 (3)
C60.044 (3)0.067 (4)0.053 (4)0.009 (3)0.007 (3)0.014 (3)
C70.045 (3)0.039 (3)0.047 (4)0.010 (3)0.016 (3)0.004 (3)
C80.037 (3)0.027 (3)0.051 (4)0.000 (2)0.005 (3)0.009 (3)
C90.026 (2)0.036 (3)0.036 (3)0.000 (2)0.009 (2)0.005 (2)
C100.032 (2)0.040 (3)0.042 (3)0.007 (2)0.016 (2)0.003 (2)
C110.033 (3)0.035 (3)0.044 (3)0.009 (2)0.020 (2)0.008 (2)
C120.030 (3)0.053 (4)0.065 (4)0.003 (2)0.006 (3)0.004 (3)
C130.042 (3)0.051 (4)0.071 (4)0.013 (3)0.007 (3)0.017 (3)
C140.022 (2)0.042 (3)0.049 (3)0.012 (2)0.005 (2)0.009 (2)
C150.029 (3)0.050 (5)0.142 (8)0.006 (3)0.007 (4)0.014 (4)
C160.041 (4)0.046 (4)0.219 (11)0.009 (3)0.021 (5)0.007 (6)
C170.0800.0890.0960.0060.0260.004
Geometric parameters (Å, º) top
Cl1—C111.727 (5)C2—C31.326 (9)
Cl2—C141.751 (6)C2—H2B0.9300
F1—C61.398 (7)O3—C151.191 (7)
F2—C41.327 (7)O3—C121.418 (6)
F3—C151.552 (10)C3—C41.338 (8)
F4—C151.284 (8)C3—H3A0.9300
F5—C161.477 (9)C4—C51.399 (8)
F6—C171.403 (10)C5—C61.389 (8)
F7—C171.420 (10)C5—C71.488 (7)
F8—C171.415 (10)C9—C101.390 (7)
O1—C71.186 (6)C9—C141.439 (7)
N1—C81.380 (6)C10—C111.374 (7)
N1—C71.427 (7)C10—H10A0.9300
N1—H1A0.8600C11—C121.414 (7)
C1—C21.327 (10)C12—C131.398 (8)
C1—C61.401 (9)C13—C141.338 (8)
C1—H1B0.9300C13—H13A0.9300
N2—C81.347 (6)C15—C161.434 (9)
N2—C91.361 (6)C16—C171.455 (13)
N2—H2A0.8600C16—H16A0.9800
O2—C81.245 (6)
C8—N1—C7126.7 (4)C11—C10—C9120.1 (5)
C8—N1—H1A116.6C11—C10—H10A120.0
C7—N1—H1A116.6C9—C10—H10A120.0
C2—C1—C6115.8 (6)C10—C11—C12122.7 (5)
C2—C1—H1B122.1C10—C11—Cl1120.0 (4)
C6—C1—H1B122.1C12—C11—Cl1117.2 (4)
C8—N2—C9125.8 (4)C13—C12—C11117.4 (5)
C8—N2—H2A117.1C13—C12—O3121.2 (5)
C9—N2—H2A117.1C11—C12—O3121.4 (5)
C1—C2—C3124.0 (6)C14—C13—C12119.7 (5)
C1—C2—H2B118.0C14—C13—H13A120.2
C3—C2—H2B118.0C12—C13—H13A120.2
C15—O3—C12125.5 (6)C13—C14—C9123.9 (5)
C2—C3—C4120.9 (6)C13—C14—Cl2118.8 (4)
C2—C3—H3A119.6C9—C14—Cl2117.2 (4)
C4—C3—H3A119.6O3—C15—F4126.1 (6)
F2—C4—C3122.4 (6)O3—C15—C16122.7 (7)
F2—C4—C5117.0 (5)F4—C15—C16111.1 (6)
C3—C4—C5120.7 (6)O3—C15—F394.9 (6)
C6—C5—C4115.6 (5)F4—C15—F384.7 (6)
C6—C5—C7121.6 (5)C16—C15—F393.7 (7)
C4—C5—C7122.8 (5)C15—C16—C17119.4 (9)
C5—C6—F1116.8 (5)C15—C16—F5121.4 (7)
C5—C6—C1122.9 (6)C17—C16—F594.9 (6)
F1—C6—C1120.1 (6)C15—C16—H16A106.6
O1—C7—N1123.1 (5)C17—C16—H16A106.6
O1—C7—C5125.0 (5)F5—C16—H16A106.6
N1—C7—C5111.9 (5)F6—C17—F8115.2 (7)
O2—C8—N2125.8 (5)F6—C17—F795.9 (6)
O2—C8—N1116.9 (4)F8—C17—F7134.6 (8)
N2—C8—N1117.2 (5)F6—C17—C16105.8 (7)
N2—C9—C10126.3 (5)F8—C17—C1695.3 (7)
N2—C9—C14117.6 (5)F7—C17—C16107.7 (7)
C10—C9—C14116.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl20.862.432.892 (4)115
N2—H2A···O10.861.982.664 (6)135
N1—H1A···O2i0.861.982.814 (6)163
C10—H10A···O20.932.282.851 (6)119
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC17H8Cl2F8N2O3
Mr511.15
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)9.2300 (18), 16.404 (3), 14.074 (3)
β (°) 108.77 (3)
V3)2017.6 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.851, 0.921
No. of measured, independent and
observed [I > 2σ(I)] reflections
3609, 3609, 1922
Rint0.000
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.086, 0.248, 1.09
No. of reflections3609
No. of parameters283
No. of restraints96
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.35

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl20.862.432.892 (4)114.7
N2—H2A···O10.861.982.664 (6)135.4
N1—H1A···O2i0.861.982.814 (6)163.2
C10—H10A···O20.932.282.851 (6)119.0
Symmetry code: (i) x+1, y+2, z+1.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDrabek, J. & Boeger, M. (1986). European Patent No. 179022.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds