organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-Di-2-naphthoyl-1,1′-(o-phenyl­ene)di­thio­urea

aInstitute of Natural Products, Research Center for Eco-Environmental Sciences, Guiyang College, Guiyang 550005, People's Republic of China, bSchool of Chemistry and Environmental Sciences, Guizhou University for Nationalities, Guiyang 550025, People's Republic of China, and cAnalytical Center, Tianjin University, Tianjin 300072, People's Republic of China
*Correspondence e-mail: haitangdu@gz139.com.cn

(Received 12 August 2008; accepted 14 August 2008; online 20 August 2008)

In the mol­ecule of the title compound, C30H22N4O2S2, the central benzene ring is oriented at dihedral angles of 63.83 (3) and 1.37 (3)° with respect to the naphthalene ring systems, while the two naphthalene ring systems are oriented at a dihedral angle of 62.78 (3)°. Intra­molecular N—H⋯O and N—H⋯N hydrogen bonds result in the formation of one five- and two six-membered rings. The twisting modes of the two side arms are different [C—N—C—O and C—N—C—N torsion angles = 11.1 (4) and 1.5 (3)°, respectively, in one arm, and −2.2 (4) and 0.8 (3)° in the other arm]. In the crystal structure, inter­molecular N—H⋯S hydrogen bonds link the mol­ecules into centrosymmetric dimers. There is a C—H⋯π contact between the naphthalene rings and ππ contacts between the naphthalene rings and the naphthalene and benzene rings [centroid–centroid distances = 3.651 (1), 3.828 (1), 3.811 (2) and 3.786 (1) Å].

Related literature

For a related structure, see: Thiam et al. (2008[Thiam, E. I., Diop, M., Gaye, M., Sall, A. S. & Barry, A. H. (2008). Acta Cryst. E64, o776.]). For ring conformation puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C30H22N4O2S2

  • Mr = 534.64

  • Triclinic, [P \overline 1]

  • a = 8.7135 (17) Å

  • b = 12.453 (3) Å

  • c = 12.541 (3) Å

  • α = 72.33 (3)°

  • β = 74.55 (3)°

  • γ = 78.89 (3)°

  • V = 1240.5 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 113 (2) K

  • 0.10 × 0.08 × 0.04 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC. (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.975, Tmax = 0.990

  • 7203 measured reflections

  • 4337 independent reflections

  • 3311 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.130

  • S = 1.07

  • 4337 reflections

  • 355 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.89 (2) 1.88 (3) 2.624 (3) 140 (2)
N2—H2A⋯S1i 0.82 (3) 2.60 (3) 3.418 (2) 178 (2)
N3—H3A⋯O2 0.83 (3) 1.88 (3) 2.613 (3) 148 (3)
N3—H3A⋯N1 0.83 (3) 2.28 (3) 2.693 (3) 111 (2)
C28—H28⋯Cg3 0.95 2.76 3.621 (2) 152 (2)
Symmetry code: (i) -x, -y+2, -z+2. Cg3 is the centroid of the C11–C16 ring.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC. (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2005[Rigaku/MSC. (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the molecule of the title compound (Fig. 1), the bond lengths and angles are within normal ranges. Rings A (C1-C6), B (C9-C11/C16-C18), C (C11-C16), D (C21-C24/C29/C30) and E (C24-C29) are, of course, planar, and the dihedral angles between rings B, C and D, E are B/C = 4.38 (4)° and D/E = 3.00 (3)°. So, the naphthalene rings are nearly planar, and the dihedral angle between them is 62.78 (3)°. Ring A is oriented with respect to the naphthalene rings, consisting of B, C and D, E rings, at dihedral angles of 63.83 (3)° and 1.37 (3)°, respectively.

The intramolecular N-H···O and N-H···N hydrogen bonds (Table 1) result in the formation of one five- and two six-membered rings: F (N1/N3/C1/C6/H3A), G (O1/N1/N2/C7/C8/H1) and H (O2/N3/N4/C19/C20/H3A). Rings F and H are planar and they are oriented at a dihedral angle of 6.25 (3)°. Ring A is oriented with respect to them at dihedral angles of 1.25 (3)° and 5.48 (3)°, respectively. Ring G adopts flattened-boat [ϕ = -71.32 (2)°, θ = 60.93 (3)°] conformation, having total puckering amplitude, QT, of 0.371 (3) Å (Cremer & Pople, 1975). The two side arms are not twisted in the same way, as evidenced by the torsion angles: C7-N2-C8-O1 [11.1 (4)°], C8-N2-C7-N1 [1.5 (3)°] and C19-N4-C20-O2 [-2.2 (4)°], C20-N4-C19-N3 [0.8 (3)°], as in 1,2-bis(N'-benzoyl- thioureido)benzene (Thiam et al., 2008).

In the crystal structure, intermolecular N-H···S hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure. The C—H···π contact (Table 1) between the naphthalene rings and the ππ contacts between the naphthalene rings and the naphthalene and phenyl rings: Cg4···Cg4i, Cg2···Cg3ii, Cg3···Cg3iand Cg5···Cg1iii [symmetry codes: (i) 2 - x, -y, 1 - z; (ii) 2 - x, 1 - y, -z; (iii) 1 - x, -y, 1 - z, where Cg1, Cg2, Cg3, Cg4 and Cg5 are centroids of the rings A, B, C, D and E, respectively] further stabilize the structure, with centroid-centroid distances of 3.651 (1), 3.828 (1), 3.811 (2) and 3.786 (1) Å, respectively.

Related literature top

For a related structure, see: Thiam et al. (2008). For ring conformation puckering parameters, see: Cremer & Pople (1975).

Cg3 is the centroid of the C11–C16 ring.

Experimental top

For the preparation of the title compound, ammonium thiocyanate (30 mmol), 2-naphthoyl chloride (20 mmol), PEG-400 (0.2 mmol) and acetone (50 mL) were placed in a dried round-bottomed flask containing a magnetic stirrer bar and stirred at room temperature for 1 h, then benzene-1,2-diamine (9.5 mmol) was added, and the mixture was stirred for 2 h. The mixture was poured into water (20 ml). The resulting solid was filtered, washed with water, and then dried. Crystals suitable for X-ray analysis were obtained by the recrystallization of the solid residue from a mixture of N,N-dimethylformamide/ethanol (1:1) by slow evaporation at room temperature.

Refinement top

H1, H2A, H3A, H4A (for NH) atoms were located in difference syntheses and refined [N-H = 0.82 (3)-0.89 (2) Å and Uiso(H) = 0.021-0.027 Å2]. The remaining H atoms were positioned geometrically, with C-H = 0.95 Å for aromatic H and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalStructure (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
3,3'-Di-2-naphthoyl-1,1'-(o-phenylene)dithiourea top
Crystal data top
C30H22N4O2S2Z = 2
Mr = 534.64F(000) = 556
Triclinic, P1Dx = 1.431 Mg m3
Hall symbol: -P 1Melting point: 489 K
a = 8.7135 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.453 (3) ÅCell parameters from 2566 reflections
c = 12.541 (3) Åθ = 1.7–27.1°
α = 72.33 (3)°µ = 0.25 mm1
β = 74.55 (3)°T = 113 K
γ = 78.89 (3)°Block, colorless
V = 1240.5 (6) Å30.10 × 0.08 × 0.04 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
4337 independent reflections
Radiation source: rotating anode3311 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.055
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 1.7°
ω and ϕ scansh = 910
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1414
Tmin = 0.975, Tmax = 0.990l = 1412
7203 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0613P)2]
where P = (Fo2 + 2Fc2)/3
4337 reflections(Δ/σ)max = 0.001
355 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C30H22N4O2S2γ = 78.89 (3)°
Mr = 534.64V = 1240.5 (6) Å3
Triclinic, P1Z = 2
a = 8.7135 (17) ÅMo Kα radiation
b = 12.453 (3) ŵ = 0.25 mm1
c = 12.541 (3) ÅT = 113 K
α = 72.33 (3)°0.10 × 0.08 × 0.04 mm
β = 74.55 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
4337 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
3311 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.990Rint = 0.055
7203 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.32 e Å3
4337 reflectionsΔρmin = 0.38 e Å3
355 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.14334 (7)1.12794 (6)0.94643 (6)0.02210 (19)
S20.47504 (8)1.33865 (7)0.40927 (6)0.0302 (2)
O10.48084 (19)0.83813 (16)0.82983 (16)0.0242 (4)
O20.30123 (19)1.00328 (16)0.63446 (14)0.0231 (4)
N10.4251 (2)1.05227 (19)0.83207 (17)0.0178 (5)
H10.488 (3)0.992 (2)0.814 (2)0.021*
N20.2372 (2)0.92516 (18)0.90634 (17)0.0179 (5)
H2A0.146 (3)0.911 (2)0.941 (2)0.021*
N30.4218 (2)1.1856 (2)0.61854 (19)0.0199 (5)
H3A0.384 (3)1.124 (3)0.650 (3)0.024*
N40.3551 (2)1.1461 (2)0.47074 (19)0.0223 (5)
H4A0.356 (3)1.171 (3)0.397 (3)0.027*
C10.4825 (2)1.2304 (2)0.6873 (2)0.0173 (5)
C20.5430 (3)1.3339 (2)0.6541 (2)0.0219 (6)
H20.54351.38270.57920.026*
C30.6027 (3)1.3653 (2)0.7308 (2)0.0219 (6)
H30.64601.43530.70750.026*
C40.6001 (3)1.2962 (2)0.8410 (2)0.0240 (6)
H40.64071.31920.89270.029*
C50.5384 (3)1.1938 (2)0.8755 (2)0.0221 (6)
H50.53561.14650.95120.026*
C60.4806 (3)1.1607 (2)0.7992 (2)0.0172 (5)
C70.2774 (3)1.0316 (2)0.8916 (2)0.0168 (5)
C80.3352 (3)0.8358 (2)0.8680 (2)0.0178 (5)
C90.2575 (3)0.7382 (2)0.8759 (2)0.0181 (5)
C100.1037 (3)0.7483 (2)0.86101 (19)0.0175 (5)
H100.03950.81990.85350.021*
C110.0400 (3)0.6543 (2)0.8567 (2)0.0187 (5)
C120.1169 (3)0.6634 (2)0.8383 (2)0.0252 (6)
H120.18590.73270.83620.030*
C130.1691 (3)0.5734 (3)0.8237 (2)0.0302 (7)
H130.27310.58100.80980.036*
C140.0691 (3)0.4691 (3)0.8292 (2)0.0317 (7)
H140.10580.40720.81790.038*
C150.0794 (3)0.4564 (2)0.8507 (2)0.0286 (7)
H150.14440.38520.85600.034*
C160.1376 (3)0.5477 (2)0.8651 (2)0.0213 (6)
C170.2939 (3)0.5386 (2)0.8852 (2)0.0228 (6)
H170.35830.46700.89570.027*
C180.3520 (3)0.6298 (2)0.8896 (2)0.0217 (6)
H180.45710.62170.90190.026*
C190.4172 (3)1.2218 (2)0.5070 (2)0.0191 (6)
C200.2990 (3)1.0445 (2)0.5323 (2)0.0198 (6)
C210.2338 (3)0.9850 (2)0.4698 (2)0.0182 (6)
C220.2170 (3)1.0319 (2)0.3545 (2)0.0214 (6)
H220.25061.10390.31200.026*
C230.1522 (3)0.9726 (2)0.3048 (2)0.0247 (6)
H230.14221.00420.22750.030*
C240.0999 (3)0.8658 (2)0.3658 (2)0.0235 (6)
C250.0246 (3)0.8052 (3)0.3189 (2)0.0284 (7)
H250.01090.83560.24230.034*
C260.0282 (3)0.7038 (3)0.3824 (3)0.0317 (7)
H260.08080.66550.35010.038*
C270.0059 (3)0.6551 (3)0.4952 (3)0.0316 (7)
H270.04260.58410.53840.038*
C280.0691 (3)0.7109 (3)0.5422 (2)0.0280 (7)
H280.08690.67700.61740.034*
C290.1199 (3)0.8177 (2)0.4805 (2)0.0201 (6)
C300.1876 (3)0.8804 (2)0.5296 (2)0.0203 (6)
H300.20120.84900.60600.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0227 (3)0.0185 (4)0.0251 (3)0.0060 (3)0.0016 (2)0.0097 (3)
S20.0430 (4)0.0245 (5)0.0217 (4)0.0143 (3)0.0095 (3)0.0041 (3)
O10.0205 (9)0.0215 (12)0.0295 (10)0.0025 (7)0.0020 (7)0.0084 (9)
O20.0329 (10)0.0215 (12)0.0157 (9)0.0084 (8)0.0052 (7)0.0030 (9)
N10.0202 (10)0.0148 (13)0.0186 (10)0.0048 (9)0.0026 (8)0.0046 (10)
N20.0182 (9)0.0161 (13)0.0189 (10)0.0071 (9)0.0011 (8)0.0053 (10)
N30.0232 (10)0.0165 (14)0.0209 (11)0.0080 (9)0.0033 (8)0.0042 (10)
N40.0297 (11)0.0214 (14)0.0155 (11)0.0066 (9)0.0040 (9)0.0031 (10)
C10.0167 (11)0.0154 (15)0.0191 (12)0.0041 (10)0.0018 (9)0.0039 (11)
C20.0220 (12)0.0178 (16)0.0232 (13)0.0021 (10)0.0036 (10)0.0029 (12)
C30.0199 (12)0.0147 (16)0.0309 (14)0.0049 (10)0.0019 (10)0.0072 (12)
C40.0238 (12)0.0221 (17)0.0289 (14)0.0046 (11)0.0067 (10)0.0091 (13)
C50.0231 (12)0.0234 (17)0.0199 (13)0.0059 (11)0.0037 (10)0.0051 (12)
C60.0157 (11)0.0130 (15)0.0220 (12)0.0036 (9)0.0002 (9)0.0061 (11)
C70.0194 (11)0.0193 (16)0.0121 (11)0.0046 (10)0.0051 (9)0.0022 (11)
C80.0222 (12)0.0156 (15)0.0150 (11)0.0025 (10)0.0052 (9)0.0023 (11)
C90.0242 (12)0.0149 (15)0.0122 (11)0.0052 (10)0.0012 (9)0.0021 (11)
C100.0219 (11)0.0137 (15)0.0143 (12)0.0014 (10)0.0022 (9)0.0022 (11)
C110.0242 (12)0.0192 (16)0.0116 (11)0.0073 (10)0.0002 (9)0.0030 (11)
C120.0253 (13)0.0301 (18)0.0209 (13)0.0062 (11)0.0044 (10)0.0070 (13)
C130.0243 (13)0.046 (2)0.0246 (14)0.0168 (12)0.0006 (10)0.0136 (15)
C140.0381 (15)0.035 (2)0.0268 (15)0.0243 (13)0.0089 (12)0.0161 (15)
C150.0372 (15)0.0231 (18)0.0237 (14)0.0118 (12)0.0072 (11)0.0108 (13)
C160.0279 (13)0.0179 (16)0.0160 (12)0.0070 (10)0.0037 (9)0.0062 (12)
C170.0255 (12)0.0164 (16)0.0214 (13)0.0006 (11)0.0019 (10)0.0060 (12)
C180.0220 (12)0.0208 (16)0.0186 (12)0.0014 (10)0.0009 (10)0.0037 (12)
C190.0211 (12)0.0155 (15)0.0201 (13)0.0038 (10)0.0033 (9)0.0038 (12)
C200.0183 (12)0.0187 (16)0.0202 (13)0.0028 (10)0.0007 (9)0.0048 (12)
C210.0189 (11)0.0175 (16)0.0162 (12)0.0008 (10)0.0011 (9)0.0050 (12)
C220.0235 (12)0.0180 (16)0.0198 (13)0.0019 (10)0.0014 (10)0.0041 (12)
C230.0245 (12)0.0300 (18)0.0188 (13)0.0060 (11)0.0063 (10)0.0095 (13)
C240.0153 (11)0.0304 (18)0.0263 (14)0.0049 (11)0.0019 (10)0.0166 (13)
C250.0225 (12)0.041 (2)0.0274 (14)0.0044 (12)0.0082 (11)0.0203 (15)
C260.0231 (13)0.040 (2)0.0413 (17)0.0027 (12)0.0042 (12)0.0284 (17)
C270.0287 (14)0.033 (2)0.0354 (16)0.0093 (12)0.0038 (12)0.0188 (15)
C280.0298 (13)0.0314 (19)0.0235 (14)0.0078 (12)0.0014 (11)0.0124 (14)
C290.0173 (11)0.0248 (17)0.0191 (12)0.0015 (10)0.0015 (9)0.0125 (12)
C300.0213 (12)0.0244 (17)0.0149 (12)0.0017 (10)0.0006 (9)0.0085 (12)
Geometric parameters (Å, º) top
S1—C71.677 (2)C11—C121.424 (3)
S2—C191.657 (3)C12—C131.364 (4)
O1—C81.234 (3)C12—H120.9500
O2—C201.231 (3)C13—C141.412 (4)
N1—C71.334 (3)C13—H130.9500
N1—C61.427 (3)C14—C151.362 (4)
N1—H10.89 (2)C14—H140.9500
N2—C71.381 (3)C15—C161.407 (4)
N2—C81.392 (3)C15—H150.9500
N2—H2A0.82 (3)C16—C171.427 (3)
N3—C191.343 (3)C17—C181.350 (4)
N3—C11.409 (3)C17—H170.9500
N3—H3A0.83 (3)C18—H180.9500
N4—C201.372 (4)C20—C211.496 (3)
N4—C191.405 (3)C21—C301.367 (4)
N4—H4A0.88 (3)C21—C221.422 (3)
C1—C21.389 (4)C22—C231.371 (3)
C1—C61.405 (4)C22—H220.9500
C2—C31.387 (3)C23—C241.412 (4)
C2—H20.9500C23—H230.9500
C3—C41.385 (4)C24—C251.418 (3)
C3—H30.9500C24—C291.424 (4)
C4—C51.381 (4)C25—C261.363 (4)
C4—H40.9500C25—H250.9500
C5—C61.385 (3)C26—C271.409 (4)
C5—H50.9500C26—H260.9500
C8—C91.468 (3)C27—C281.374 (4)
C9—C101.379 (3)C27—H270.9500
C9—C181.427 (3)C28—C291.409 (4)
C10—C111.409 (3)C28—H280.9500
C10—H100.9500C29—C301.414 (3)
C11—C161.423 (3)C30—H300.9500
C7—N1—C6123.9 (2)C15—C14—C13120.6 (3)
C7—N1—H1114.4 (18)C15—C14—H14119.7
C6—N1—H1121.7 (18)C13—C14—H14119.7
C7—N2—C8127.1 (2)C14—C15—C16120.7 (3)
C7—N2—H2A118.4 (19)C14—C15—H15119.7
C8—N2—H2A114.5 (19)C16—C15—H15119.7
C19—N3—C1131.8 (2)C15—C16—C11119.4 (2)
C19—N3—H3A111.8 (19)C15—C16—C17122.4 (2)
C1—N3—H3A116.4 (19)C11—C16—C17118.2 (2)
C20—N4—C19129.6 (2)C18—C17—C16121.3 (2)
C20—N4—H4A119.2 (19)C18—C17—H17119.4
C19—N4—H4A111.2 (19)C16—C17—H17119.4
C2—C1—C6119.0 (2)C17—C18—C9120.8 (2)
C2—C1—N3126.2 (2)C17—C18—H18119.6
C6—C1—N3114.8 (2)C9—C18—H18119.6
C3—C2—C1119.5 (3)N3—C19—N4113.0 (2)
C3—C2—H2120.2N3—C19—S2129.7 (2)
C1—C2—H2120.2N4—C19—S2117.24 (19)
C4—C3—C2121.1 (3)O2—C20—N4122.1 (2)
C4—C3—H3119.5O2—C20—C21120.9 (2)
C2—C3—H3119.5N4—C20—C21117.0 (2)
C5—C4—C3120.0 (2)C30—C21—C22119.7 (2)
C5—C4—H4120.0C30—C21—C20116.7 (2)
C3—C4—H4120.0C22—C21—C20123.6 (2)
C4—C5—C6119.5 (3)C23—C22—C21119.7 (3)
C4—C5—H5120.2C23—C22—H22120.1
C6—C5—H5120.2C21—C22—H22120.1
C5—C6—C1120.9 (3)C22—C23—C24121.6 (2)
C5—C6—N1119.9 (2)C22—C23—H23119.2
C1—C6—N1119.2 (2)C24—C23—H23119.2
N1—C7—N2116.73 (19)C23—C24—C25122.9 (3)
N1—C7—S1123.0 (2)C23—C24—C29118.7 (2)
N2—C7—S1120.30 (17)C25—C24—C29118.4 (3)
O1—C8—N2121.6 (2)C26—C25—C24120.7 (3)
O1—C8—C9121.5 (2)C26—C25—H25119.6
N2—C8—C9116.90 (19)C24—C25—H25119.6
C10—C9—C18119.0 (2)C25—C26—C27121.0 (2)
C10—C9—C8123.1 (2)C25—C26—H26119.5
C18—C9—C8117.6 (2)C27—C26—H26119.5
C9—C10—C11121.3 (2)C28—C27—C26119.6 (3)
C9—C10—H10119.4C28—C27—H27120.2
C11—C10—H10119.4C26—C27—H27120.2
C10—C11—C16119.3 (2)C27—C28—C29120.9 (3)
C10—C11—C12122.2 (2)C27—C28—H28119.6
C16—C11—C12118.4 (2)C29—C28—H28119.6
C13—C12—C11120.6 (2)C28—C29—C30122.0 (2)
C13—C12—H12119.7C28—C29—C24119.4 (2)
C11—C12—H12119.7C30—C29—C24118.6 (3)
C12—C13—C14120.3 (2)C21—C30—C29121.7 (2)
C12—C13—H13119.9C21—C30—H30119.1
C14—C13—H13119.9C29—C30—H30119.1
C19—N3—C1—C26.0 (4)C10—C11—C16—C174.0 (3)
C19—N3—C1—C6173.4 (2)C12—C11—C16—C17179.1 (2)
C6—C1—C2—C31.1 (3)C15—C16—C17—C18174.6 (2)
N3—C1—C2—C3178.3 (2)C11—C16—C17—C183.7 (4)
C1—C2—C3—C41.3 (3)C16—C17—C18—C91.0 (4)
C2—C3—C4—C50.5 (3)C10—C9—C18—C171.6 (4)
C3—C4—C5—C60.5 (3)C8—C9—C18—C17172.9 (2)
C4—C5—C6—C10.6 (3)C1—N3—C19—N4175.7 (2)
C4—C5—C6—N1176.5 (2)C1—N3—C19—S23.4 (4)
C2—C1—C6—C50.2 (3)C20—N4—C19—N30.8 (3)
N3—C1—C6—C5179.30 (19)C20—N4—C19—S2179.98 (18)
C2—C1—C6—N1177.28 (19)C19—N4—C20—O22.2 (4)
N3—C1—C6—N12.2 (3)C19—N4—C20—C21177.61 (19)
C7—N1—C6—C584.1 (3)O2—C20—C21—C304.2 (3)
C7—N1—C6—C198.8 (3)N4—C20—C21—C30175.96 (18)
C6—N1—C7—N2173.5 (2)O2—C20—C21—C22175.2 (2)
C6—N1—C7—S16.2 (3)N4—C20—C21—C224.7 (3)
C8—N2—C7—N11.5 (3)C30—C21—C22—C231.0 (3)
C8—N2—C7—S1178.83 (18)C20—C21—C22—C23178.31 (18)
C7—N2—C8—O111.1 (4)C21—C22—C23—C240.5 (3)
C7—N2—C8—C9169.4 (2)C22—C23—C24—C25176.6 (2)
O1—C8—C9—C10146.3 (2)C22—C23—C24—C291.9 (3)
N2—C8—C9—C1034.2 (3)C23—C24—C25—C26178.0 (2)
O1—C8—C9—C1827.9 (3)C29—C24—C25—C260.4 (3)
N2—C8—C9—C18151.6 (2)C24—C25—C26—C271.6 (3)
C18—C9—C10—C111.3 (4)C25—C26—C27—C280.5 (3)
C8—C9—C10—C11172.9 (2)C26—C27—C28—C291.8 (3)
C9—C10—C11—C161.5 (4)C27—C28—C29—C30175.7 (2)
C9—C10—C11—C12178.3 (2)C27—C28—C29—C243.0 (3)
C10—C11—C12—C13173.7 (2)C23—C24—C29—C28179.69 (19)
C16—C11—C12—C133.1 (4)C25—C24—C29—C281.8 (3)
C11—C12—C13—C141.4 (4)C23—C24—C29—C301.6 (3)
C12—C13—C14—C150.9 (4)C25—C24—C29—C30176.88 (19)
C13—C14—C15—C161.5 (4)C22—C21—C30—C291.3 (3)
C14—C15—C16—C110.3 (4)C20—C21—C30—C29178.12 (18)
C14—C15—C16—C17178.6 (2)C28—C29—C30—C21178.7 (2)
C10—C11—C16—C15174.4 (2)C24—C29—C30—C210.1 (3)
C12—C11—C16—C152.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.89 (2)1.88 (3)2.624 (3)140 (2)
N2—H2A···S1i0.82 (3)2.60 (3)3.418 (2)178 (2)
N3—H3A···O20.83 (3)1.88 (3)2.613 (3)148 (3)
N3—H3A···N10.83 (3)2.28 (3)2.693 (3)111 (2)
C28—H28···Cg30.952.763.621 (2)152 (2)
Symmetry code: (i) x, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC30H22N4O2S2
Mr534.64
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)8.7135 (17), 12.453 (3), 12.541 (3)
α, β, γ (°)72.33 (3), 74.55 (3), 78.89 (3)
V3)1240.5 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.10 × 0.08 × 0.04
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.975, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
7203, 4337, 3311
Rint0.055
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.130, 1.07
No. of reflections4337
No. of parameters355
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.38

Computer programs: CrystalClear (Rigaku/MSC, 2005), CrystalStructure (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.89 (2)1.88 (3)2.624 (3)140 (2)
N2—H2A···S1i0.82 (3)2.60 (3)3.418 (2)178 (2)
N3—H3A···O20.83 (3)1.88 (3)2.613 (3)148 (3)
N3—H3A···N10.83 (3)2.28 (3)2.693 (3)111 (2)
C28—H28···Cg30.952.763.621 (2)151.9 (16)
Symmetry code: (i) x, y+2, z+2.
 

Acknowledgements

The authors thank Guiyang College for financial support.

References

First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationRigaku/MSC. (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThiam, E. I., Diop, M., Gaye, M., Sall, A. S. & Barry, A. H. (2008). Acta Cryst. E64, o776.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds