organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-(4-Fluoro­phen­yl)-3,3,6,6-tetra­methyl-10-p-tolyl-1,2,3,4,5,6,7,8,9,10-deca­hydroacridine-1,8-dione

aSchool of Chemistry and Chemical Engineering, Xuzhou Institute of Technology, Xuzhou 221006, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou 221116, People's Republic of China
*Correspondence e-mail: laotu2001@263.net

(Received 20 August 2008; accepted 24 August 2008; online 30 August 2008)

The title compound, C30H32FNO2, was synthesized by the reaction of dimedone with 4-fluoro­benzaldehyde and p-toluidine in water. The dihydro­pyridine and both of the cyclo­hexenone rings are not planar and have flattened boat conformations. The dihedral angle between the planar aromatic rings is 15.33 (3)°. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Related literature

For general background, see: Wysocka-Skrzela & Ledochowski (1976[Wysocka-Skrzela, B. & Ledochowski, A. (1976). Rocz. Chem. 50, 127-131.]); Nasim & Brychcy (1979[Nasim, A. & Brychcy, T. (1979). Mutat. Res. 65, 261-288.]); Thull & Testa, (1994[Thull, U. & Testa, B. (1994). Biochem. Pharmacol. 47, 2307-2310.]); Reil et al. (1994[Reil, E., Scoll, M., Masson, K. & Oettmeier, W. (1994). Biochem. Soc. Trans. 22, s62.]); Mandi et al. (1994[Mandi, Y., Regely, K., Ocsovszky, I., Barbe, J., Galy, J. P. & Molnar, J. (1994). Anticancer Res. 14, 2633-2636.]). For related literature, see: Tu et al. (2004[Tu, S. J., Miao, C. B., Gao, Y., Fang, F., Zhuang, Q. Y., Feng, Y. J. & Shi, D. Q. (2004). Synlett, 2, 255-258.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C30H32FNO2

  • Mr = 457.58

  • Monoclinic, P 21 /n

  • a = 15.1533 (15) Å

  • b = 10.9643 (12) Å

  • c = 16.1053 (15) Å

  • β = 102.317 (2)°

  • V = 2614.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 (2) K

  • 0.37 × 0.25 × 0.21 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.972, Tmax = 0.984

  • 13238 measured reflections

  • 4605 independent reflections

  • 2277 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.152

  • S = 1.02

  • 4605 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O1i 0.93 2.45 3.336 (3) 159
Symmetry code: (i) -x+2, -y+1, -z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Acridine derivatives containing 1,4-dihydropyridine unit belong to a special class of compounds not only because of their interesting chemical and physical properties but also due to their immense utility in pharmaceutical and dye industry, and they are well known atherapeutic agents (Wysocka-Skrzela & Ledochowski, 1976; Nasim & Brychcy, 1979; Thull & Testa, 1994; Reil et al., 1994; Mandi et al., 1994). We have reported the synthesis of N-hydroxylacridine derivatives, previously, (Tu et al., 2004) and we report herein the structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are generally within normal ranges. Rings D (C14-C19) and E (C21-C26) are, of course, planar and they are oriented at a dihedral angle of D/E = 15.33 (3)°. Rings A (C1-C6), B (N1/C1/C6-C8/C13) and C (C8-C13) are not planar, having total puckering amplitudes, QT, of 0.475 (3), 0.201 (2) and 0.448 (3) Å, respectively, and flattened boat conformations [ϕ = -56.70 (3)°, θ = 120.78 (3)°; ϕ = 172.92 (2)°, θ = 76.41 (3)° and ϕ = 170.16 (3)°, θ = 54.52 (3)°, respectively] (Cremer & Pople, 1975).

In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Wysocka-Skrzela & Ledochowski (1976); Nasim & Brychcy (1979); Thull & Testa, (1994); Reil et al. (1994); Mandi et al. (1994). For related literature, see: Tu et al. (2004). For ring puckering parameters, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the reaction of dimedone (2 mmol) with 4-fluorobenzaldehyde (1 mmol) and p-toluidine in water (1 mmol) at 413 K under microwave irradiation (maximum power 140 W, initial power 120 W) for 12 min (yield; 89%). Single crystals suitable for X-ray analysis were obtained from an ethanol solution by slow evaporation.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
9-(4-Fluorophenyl)-3,3,6,6-tetramethyl-10-p-tolyl-1,2,3,4,5,6,7,8,9,10- decahydroacridine-1,8-dione top
Crystal data top
C30H32FNO2F(000) = 976
Mr = 457.58Dx = 1.163 Mg m3
Monoclinic, P21/nMelting point = 540–541 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 15.1533 (15) ÅCell parameters from 2294 reflections
b = 10.9643 (12) Åθ = 2.3–2.3°
c = 16.1053 (15) ŵ = 0.08 mm1
β = 102.317 (2)°T = 298 K
V = 2614.2 (5) Å3Block, pale yellow
Z = 40.37 × 0.25 × 0.21 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4605 independent reflections
Radiation source: fine-focus sealed tube2277 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1618
Tmin = 0.972, Tmax = 0.984k = 1312
13238 measured reflectionsl = 1319
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0429P)2 + 1.7217P]
where P = (Fo2 + 2Fc2)/3
4605 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C30H32FNO2V = 2614.2 (5) Å3
Mr = 457.58Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.1533 (15) ŵ = 0.08 mm1
b = 10.9643 (12) ÅT = 298 K
c = 16.1053 (15) Å0.37 × 0.25 × 0.21 mm
β = 102.317 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4605 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2277 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.984Rint = 0.045
13238 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.02Δρmax = 0.18 e Å3
4605 reflectionsΔρmin = 0.21 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.73692 (17)0.0186 (2)0.21288 (18)0.1213 (10)
N10.99513 (16)0.5507 (2)0.20652 (15)0.0415 (6)
O10.89407 (16)0.3144 (2)0.03980 (14)0.0634 (7)
O21.13495 (16)0.1657 (2)0.20291 (16)0.0695 (7)
C10.93912 (19)0.5309 (2)0.12692 (19)0.0389 (7)
C20.8806 (2)0.6360 (3)0.08813 (19)0.0485 (8)
H2A0.91690.69200.06280.058*
H2B0.85990.67940.13290.058*
C30.7985 (2)0.5977 (3)0.0204 (2)0.0507 (8)
C40.8317 (2)0.5133 (3)0.0417 (2)0.0545 (9)
H4A0.77970.48070.08140.065*
H4B0.86680.56060.07400.065*
C50.8883 (2)0.4090 (3)0.00008 (19)0.0442 (8)
C60.93853 (19)0.4227 (2)0.08715 (18)0.0372 (7)
C70.98875 (19)0.3129 (2)0.12966 (18)0.0393 (7)
H71.01870.27350.08850.047*
C81.06046 (19)0.3524 (2)0.20419 (19)0.0398 (7)
C91.1334 (2)0.2666 (3)0.2352 (2)0.0504 (8)
C101.2098 (2)0.3074 (3)0.3049 (2)0.0711 (11)
H10A1.25590.34470.27970.085*
H10B1.23640.23640.33660.085*
C111.1820 (3)0.3972 (3)0.3660 (2)0.0678 (11)
C121.1319 (2)0.5027 (3)0.3152 (2)0.0572 (9)
H12A1.10370.55160.35250.069*
H12B1.17530.55400.29540.069*
C131.06083 (19)0.4636 (2)0.24020 (18)0.0405 (7)
C140.9980 (2)0.6695 (2)0.24664 (19)0.0405 (7)
C151.0480 (2)0.7618 (3)0.2215 (2)0.0456 (8)
H151.07900.74850.17830.055*
C161.0518 (2)0.8741 (3)0.2606 (2)0.0485 (8)
H161.08570.93630.24350.058*
C171.0058 (2)0.8960 (3)0.3249 (2)0.0498 (8)
C180.9566 (2)0.8024 (3)0.3491 (2)0.0584 (9)
H180.92580.81530.39250.070*
C190.9519 (2)0.6893 (3)0.3101 (2)0.0530 (9)
H190.91770.62710.32680.064*
C201.0093 (3)1.0207 (3)0.3652 (2)0.0731 (11)
H20A0.96041.06960.33470.110*
H20B1.06571.05910.36330.110*
H20C1.00381.01260.42320.110*
C210.9223 (2)0.2213 (2)0.15367 (18)0.0410 (7)
C220.9213 (2)0.1009 (3)0.1283 (2)0.0535 (9)
H220.96270.07390.09730.064*
C230.8588 (3)0.0196 (3)0.1489 (2)0.0692 (11)
H230.85800.06160.13210.083*
C240.7990 (3)0.0615 (4)0.1941 (3)0.0720 (11)
C250.7985 (3)0.1776 (4)0.2209 (3)0.0757 (12)
H250.75720.20300.25250.091*
C260.8606 (2)0.2581 (3)0.2007 (2)0.0563 (9)
H260.86090.33860.21910.068*
C270.7548 (3)0.7116 (3)0.0263 (2)0.0761 (12)
H27A0.73600.76570.01350.114*
H27B0.70330.68810.06910.114*
H27C0.79780.75240.05260.114*
C280.7295 (2)0.5314 (3)0.0606 (2)0.0696 (11)
H28A0.75640.45920.08890.104*
H28B0.67810.50930.01720.104*
H28C0.71050.58420.10110.104*
C291.2664 (3)0.4479 (3)0.4266 (3)0.1137 (19)
H29A1.24830.49890.46840.171*
H29B1.30130.49480.39480.171*
H29C1.30220.38150.45440.171*
C301.1203 (4)0.3354 (4)0.4167 (3)0.1026 (16)
H30A1.06630.30810.37870.154*
H30B1.10480.39250.45650.154*
H30C1.15100.26680.44690.154*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0961 (19)0.1090 (19)0.155 (2)0.0497 (16)0.0192 (17)0.0503 (18)
N10.0426 (15)0.0312 (13)0.0459 (16)0.0000 (11)0.0012 (12)0.0048 (11)
O10.0785 (18)0.0585 (15)0.0505 (15)0.0079 (13)0.0076 (12)0.0145 (12)
O20.0646 (17)0.0463 (14)0.0919 (19)0.0124 (12)0.0039 (14)0.0141 (13)
C10.0361 (17)0.0409 (17)0.0382 (19)0.0049 (14)0.0043 (14)0.0037 (14)
C20.049 (2)0.0423 (17)0.051 (2)0.0021 (15)0.0023 (16)0.0008 (15)
C30.046 (2)0.053 (2)0.050 (2)0.0016 (17)0.0020 (16)0.0043 (16)
C40.057 (2)0.062 (2)0.041 (2)0.0095 (18)0.0010 (16)0.0063 (17)
C50.046 (2)0.0477 (19)0.0393 (19)0.0125 (16)0.0105 (15)0.0029 (16)
C60.0376 (17)0.0364 (16)0.0368 (18)0.0066 (14)0.0062 (14)0.0008 (13)
C70.0415 (18)0.0359 (16)0.0404 (18)0.0031 (14)0.0087 (14)0.0067 (14)
C80.0363 (18)0.0353 (16)0.047 (2)0.0025 (14)0.0062 (15)0.0010 (14)
C90.046 (2)0.0369 (18)0.065 (2)0.0009 (15)0.0051 (17)0.0025 (16)
C100.061 (2)0.050 (2)0.089 (3)0.0101 (19)0.015 (2)0.001 (2)
C110.081 (3)0.046 (2)0.062 (2)0.004 (2)0.018 (2)0.0009 (19)
C120.060 (2)0.0403 (18)0.061 (2)0.0004 (16)0.0105 (18)0.0054 (16)
C130.0396 (18)0.0340 (16)0.044 (2)0.0022 (14)0.0012 (15)0.0003 (14)
C140.0408 (19)0.0330 (16)0.044 (2)0.0009 (14)0.0016 (15)0.0054 (14)
C150.0439 (19)0.0419 (18)0.050 (2)0.0034 (15)0.0084 (15)0.0062 (15)
C160.049 (2)0.0406 (18)0.054 (2)0.0056 (15)0.0059 (17)0.0000 (15)
C170.052 (2)0.0434 (19)0.048 (2)0.0073 (16)0.0028 (17)0.0074 (16)
C180.064 (2)0.058 (2)0.056 (2)0.0031 (19)0.0190 (18)0.0095 (18)
C190.057 (2)0.0455 (19)0.058 (2)0.0042 (17)0.0164 (18)0.0023 (16)
C200.086 (3)0.053 (2)0.072 (3)0.011 (2)0.001 (2)0.0208 (19)
C210.0423 (19)0.0354 (16)0.0423 (19)0.0061 (14)0.0023 (15)0.0013 (14)
C220.061 (2)0.0388 (18)0.056 (2)0.0052 (17)0.0011 (17)0.0027 (16)
C230.079 (3)0.040 (2)0.074 (3)0.018 (2)0.016 (2)0.0088 (18)
C240.056 (3)0.068 (3)0.087 (3)0.020 (2)0.004 (2)0.030 (2)
C250.065 (3)0.074 (3)0.094 (3)0.002 (2)0.030 (2)0.022 (2)
C260.059 (2)0.050 (2)0.065 (2)0.0017 (17)0.0231 (19)0.0075 (17)
C270.070 (3)0.070 (2)0.076 (3)0.012 (2)0.012 (2)0.011 (2)
C280.047 (2)0.091 (3)0.069 (3)0.006 (2)0.0102 (19)0.002 (2)
C290.120 (4)0.060 (3)0.116 (4)0.016 (3)0.074 (3)0.015 (3)
C300.169 (5)0.073 (3)0.060 (3)0.002 (3)0.011 (3)0.004 (2)
Geometric parameters (Å, º) top
F1—C241.367 (4)C14—C151.376 (4)
N1—C11.395 (4)C15—C161.379 (4)
N1—C131.403 (3)C15—H150.9300
N1—C141.450 (3)C16—C171.386 (4)
O1—C51.233 (3)C16—H160.9300
O2—C91.225 (3)C17—C181.373 (4)
C1—C61.347 (4)C17—C201.510 (4)
C1—C21.506 (4)C18—C191.386 (4)
C2—C31.528 (4)C18—H180.9300
C2—H2A0.9700C19—H190.9300
C2—H2B0.9700C20—H20A0.9600
C3—C41.524 (4)C20—H20B0.9600
C3—C281.527 (4)C20—H20C0.9600
C3—C271.534 (4)C21—C221.381 (4)
C4—C51.499 (4)C21—C261.384 (4)
C4—H4A0.9700C22—C231.391 (4)
C4—H4B0.9700C22—H220.9300
C5—C61.454 (4)C23—C241.358 (5)
C6—C71.509 (4)C23—H230.9300
C7—C81.501 (4)C24—C251.344 (5)
C7—C211.528 (4)C25—C261.378 (4)
C7—H70.9800C25—H250.9300
C8—C131.349 (4)C26—H260.9300
C8—C91.457 (4)C27—H27A0.9600
C9—C101.498 (4)C27—H27B0.9600
C10—C111.514 (5)C27—H27C0.9600
C10—H10A0.9700C28—H28A0.9600
C10—H10B0.9700C28—H28B0.9600
C11—C121.523 (4)C28—H28C0.9600
C11—C301.525 (5)C29—H29A0.9600
C11—C291.538 (5)C29—H29B0.9600
C12—C131.499 (4)C29—H29C0.9600
C12—H12A0.9700C30—H30A0.9600
C12—H12B0.9700C30—H30B0.9600
C14—C191.373 (4)C30—H30C0.9600
C1—N1—C13119.5 (2)C15—C14—N1119.7 (3)
C1—N1—C14120.3 (2)C14—C15—C16119.6 (3)
C13—N1—C14119.2 (2)C14—C15—H15120.2
C6—C1—N1121.0 (3)C16—C15—H15120.2
C6—C1—C2122.2 (3)C15—C16—C17121.1 (3)
N1—C1—C2116.8 (2)C15—C16—H16119.4
C1—C2—C3113.8 (2)C17—C16—H16119.4
C1—C2—H2A108.8C18—C17—C16118.2 (3)
C3—C2—H2A108.8C18—C17—C20121.7 (3)
C1—C2—H2B108.8C16—C17—C20120.1 (3)
C3—C2—H2B108.8C17—C18—C19121.2 (3)
H2A—C2—H2B107.7C17—C18—H18119.4
C4—C3—C28109.9 (3)C19—C18—H18119.4
C4—C3—C2107.7 (3)C14—C19—C18119.6 (3)
C28—C3—C2110.8 (3)C14—C19—H19120.2
C4—C3—C27109.9 (3)C18—C19—H19120.2
C28—C3—C27109.4 (3)C17—C20—H20A109.5
C2—C3—C27109.1 (3)C17—C20—H20B109.5
C5—C4—C3114.0 (3)H20A—C20—H20B109.5
C5—C4—H4A108.8C17—C20—H20C109.5
C3—C4—H4A108.8H20A—C20—H20C109.5
C5—C4—H4B108.8H20B—C20—H20C109.5
C3—C4—H4B108.8C22—C21—C26118.3 (3)
H4A—C4—H4B107.7C22—C21—C7121.3 (3)
O1—C5—C6120.6 (3)C26—C21—C7120.4 (3)
O1—C5—C4120.4 (3)C21—C22—C23120.5 (3)
C6—C5—C4119.0 (3)C21—C22—H22119.7
C1—C6—C5119.9 (3)C23—C22—H22119.7
C1—C6—C7122.4 (3)C24—C23—C22118.5 (3)
C5—C6—C7117.7 (2)C24—C23—H23120.8
C8—C7—C6109.9 (2)C22—C23—H23120.8
C8—C7—C21113.0 (2)C25—C24—C23122.8 (3)
C6—C7—C21110.1 (2)C25—C24—F1119.1 (4)
C8—C7—H7107.9C23—C24—F1118.1 (4)
C6—C7—H7107.9C24—C25—C26118.7 (4)
C21—C7—H7107.9C24—C25—H25120.6
C13—C8—C9120.2 (3)C26—C25—H25120.6
C13—C8—C7122.7 (3)C25—C26—C21121.2 (3)
C9—C8—C7117.0 (2)C25—C26—H26119.4
O2—C9—C8121.3 (3)C21—C26—H26119.4
O2—C9—C10120.4 (3)C3—C27—H27A109.5
C8—C9—C10118.2 (3)C3—C27—H27B109.5
C9—C10—C11113.7 (3)H27A—C27—H27B109.5
C9—C10—H10A108.8C3—C27—H27C109.5
C11—C10—H10A108.8H27A—C27—H27C109.5
C9—C10—H10B108.8H27B—C27—H27C109.5
C11—C10—H10B108.8C3—C28—H28A109.5
H10A—C10—H10B107.7C3—C28—H28B109.5
C10—C11—C12108.8 (3)H28A—C28—H28B109.5
C10—C11—C30110.3 (3)C3—C28—H28C109.5
C12—C11—C30109.5 (3)H28A—C28—H28C109.5
C10—C11—C29109.7 (3)H28B—C28—H28C109.5
C12—C11—C29108.6 (3)C11—C29—H29A109.5
C30—C11—C29110.0 (4)C11—C29—H29B109.5
C13—C12—C11113.9 (3)H29A—C29—H29B109.5
C13—C12—H12A108.8C11—C29—H29C109.5
C11—C12—H12A108.8H29A—C29—H29C109.5
C13—C12—H12B108.8H29B—C29—H29C109.5
C11—C12—H12B108.8C11—C30—H30A109.5
H12A—C12—H12B107.7C11—C30—H30B109.5
C8—C13—N1120.7 (3)H30A—C30—H30B109.5
C8—C13—C12122.8 (3)C11—C30—H30C109.5
N1—C13—C12116.4 (2)H30A—C30—H30C109.5
C19—C14—C15120.2 (3)H30B—C30—H30C109.5
C19—C14—N1120.1 (3)
C13—N1—C1—C69.2 (4)C30—C11—C12—C1373.3 (4)
C14—N1—C1—C6177.1 (3)C29—C11—C12—C13166.6 (3)
C13—N1—C1—C2170.4 (3)C9—C8—C13—N1174.7 (3)
C14—N1—C1—C22.5 (4)C7—C8—C13—N12.9 (4)
C6—C1—C2—C321.9 (4)C9—C8—C13—C123.1 (5)
N1—C1—C2—C3158.5 (3)C7—C8—C13—C12179.4 (3)
C1—C2—C3—C449.8 (3)C1—N1—C13—C811.6 (4)
C1—C2—C3—C2870.4 (4)C14—N1—C13—C8179.6 (3)
C1—C2—C3—C27169.1 (3)C1—N1—C13—C12166.3 (3)
C28—C3—C4—C568.6 (3)C14—N1—C13—C121.7 (4)
C2—C3—C4—C552.1 (3)C11—C12—C13—C820.7 (5)
C27—C3—C4—C5170.8 (3)C11—C12—C13—N1161.5 (3)
C3—C4—C5—O1155.5 (3)C1—N1—C14—C19101.5 (3)
C3—C4—C5—C626.6 (4)C13—N1—C14—C1990.5 (3)
N1—C1—C6—C5172.3 (2)C1—N1—C14—C1579.2 (4)
C2—C1—C6—C57.2 (4)C13—N1—C14—C1588.8 (3)
N1—C1—C6—C77.6 (4)C19—C14—C15—C160.3 (5)
C2—C1—C6—C7172.8 (3)N1—C14—C15—C16179.0 (3)
O1—C5—C6—C1173.0 (3)C14—C15—C16—C170.2 (5)
C4—C5—C6—C14.9 (4)C15—C16—C17—C180.3 (5)
O1—C5—C6—C76.9 (4)C15—C16—C17—C20178.5 (3)
C4—C5—C6—C7175.2 (3)C16—C17—C18—C190.6 (5)
C1—C6—C7—C819.6 (4)C20—C17—C18—C19178.3 (3)
C5—C6—C7—C8160.3 (2)C15—C14—C19—C180.5 (5)
C1—C6—C7—C21105.5 (3)N1—C14—C19—C18178.8 (3)
C5—C6—C7—C2174.6 (3)C17—C18—C19—C140.7 (5)
C6—C7—C8—C1317.3 (4)C8—C7—C21—C22110.1 (3)
C21—C7—C8—C13106.2 (3)C6—C7—C21—C22126.5 (3)
C6—C7—C8—C9160.4 (2)C8—C7—C21—C2670.8 (4)
C21—C7—C8—C976.2 (3)C6—C7—C21—C2652.6 (4)
C13—C8—C9—O2179.3 (3)C26—C21—C22—C230.8 (5)
C7—C8—C9—O21.5 (4)C7—C21—C22—C23178.3 (3)
C13—C8—C9—C102.6 (5)C21—C22—C23—C240.2 (5)
C7—C8—C9—C10175.1 (3)C22—C23—C24—C251.1 (6)
O2—C9—C10—C11151.3 (3)C22—C23—C24—F1179.0 (3)
C8—C9—C10—C1132.0 (4)C23—C24—C25—C261.0 (6)
C9—C10—C11—C1253.0 (4)F1—C24—C25—C26179.2 (3)
C9—C10—C11—C3067.1 (4)C24—C25—C26—C210.1 (6)
C9—C10—C11—C29171.6 (3)C22—C21—C26—C251.0 (5)
C10—C11—C12—C1347.2 (4)C7—C21—C26—C25178.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O1i0.932.453.336 (3)159
Symmetry code: (i) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC30H32FNO2
Mr457.58
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)15.1533 (15), 10.9643 (12), 16.1053 (15)
β (°) 102.317 (2)
V3)2614.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.37 × 0.25 × 0.21
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.972, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
13238, 4605, 2277
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.152, 1.02
No. of reflections4605
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.21

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O1i0.932.453.336 (3)159.00
Symmetry code: (i) x+2, y+1, z.
 

Acknowledgements

We thank the Foundation of Xuzhou Institute of Technology (grant No. XKY2007241) for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationMandi, Y., Regely, K., Ocsovszky, I., Barbe, J., Galy, J. P. & Molnar, J. (1994). Anticancer Res. 14, 2633–2636.  CAS PubMed Web of Science Google Scholar
First citationNasim, A. & Brychcy, T. (1979). Mutat. Res. 65, 261–288.  CrossRef CAS PubMed Web of Science Google Scholar
First citationReil, E., Scoll, M., Masson, K. & Oettmeier, W. (1994). Biochem. Soc. Trans. 22, s62.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThull, U. & Testa, B. (1994). Biochem. Pharmacol. 47, 2307–2310.  CrossRef CAS PubMed Web of Science Google Scholar
First citationTu, S. J., Miao, C. B., Gao, Y., Fang, F., Zhuang, Q. Y., Feng, Y. J. & Shi, D. Q. (2004). Synlett, 2, 255–258.  Web of Science CSD CrossRef Google Scholar
First citationWysocka-Skrzela, B. & Ledochowski, A. (1976). Rocz. Chem. 50, 127–131.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds