metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1211-m1212

Di­chlorido(5,5′-di­methyl-2,2′-bi­pyridine-κ2N,N′)zinc(II)

aIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran, and bDepartment of Chemistry, Shahid Beheshti University, Tehran 1983963113, Iran
*Correspondence e-mail: v_amani2002@yahoo.com

(Received 22 August 2008; accepted 22 August 2008; online 30 August 2008)

The asymmetric unit of the title compound, [ZnCl2(C12H12N2)], contains two independent mol­ecules. The ZnII atoms are four-coordinated in distorted tetra­hedral configurations by two N atoms from 5,5′-dimethyl-2,2′-bipyridine and two terminal Cl atoms. In the crystal structure, inter­molecular C—H⋯Cl hydrogen bonds link the mol­ecules. There are C—H⋯π contacts between the methyl groups and the pyridine and five-membered rings containing ZnII atoms; ππ contacts also exist between the pyridine rings [centroid–centroid distances = 3.665 (5) and 3.674 (5) Å].

Related literature

For related literature, see: Gruia et al. (2007[Gruia, L. M., Rochon, F. D. & Beauchamp, A. L. (2007). Inorg. Chim. Acta, 360, 1825-1840.]); Khan & Tuck (1984[Khan, M. A. & Tuck, D. G. (1984). Acta Cryst. C40, 60-62.]); Khavasi et al. (2008[Khavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848-1854.]); Kozhevnikov et al. (2006[Kozhevnikov, D. N., Shabunina, O. V., Kopchuk, D. S., Slepukhin, P. A. & Kozhevnikov, V. N. (2006). Tetrahedron Lett. 47, 7025-7029.]); Liu et al. (2004[Liu, Q. D., Wang, R. & Wang, S. (2004). Dalton Trans. pp. 2073-2079.]); Lundberg (1966[Lundberg, B. K. S. (1966). Acta Cryst. 21, 901-909.]); Preston & Kennard (1969[Preston, H. S. & Kennard, C. H. L. (1969). J. Chem. Soc. A, pp. 1965-1968.]); Qin et al. (1999[Qin, J., Su, N., Dai, C., Yang, C., Liu, D., Day, M. W., Wu, B. & Chen, C. (1999). Polyhedron, 18, 3461-3464.]); Reimann et al. (1966[Reimann, C. W., Block, S. & Perloff, A. (1966). Inorg. Chem. 5, 1185-1189.]); Steffen & Palenik (1976[Steffen, W. L. & Palenik, G. J. (1976). Acta Cryst. B32, 298-300.], 1977[Steffen, W. L. & Palenik, G. J. (1977). Inorg. Chem. 16, 1119-1127.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C12H12N2)]

  • Mr = 320.53

  • Orthorhombic, P n a 21

  • a = 16.267 (2) Å

  • b = 11.1704 (16) Å

  • c = 14.9328 (14) Å

  • V = 2713.4 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.18 mm−1

  • T = 298 (2) K

  • 0.28 × 0.20 × 0.07 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS, Madison, Wisconsin, USA.]) Tmin = 0.612, Tmax = 0.860

  • 14309 measured reflections

  • 7167 independent reflections

  • 4463 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.150

  • S = 1.07

  • 7167 reflections

  • 307 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3320 Friedel pairs

  • Flack parameter: 0.07 (3)

Table 1
Selected geometric parameters (Å, °)

Zn1—Cl1 2.206 (2)
Zn1—Cl2 2.215 (2)
Zn2—Cl3 2.211 (2)
Zn2—Cl4 2.207 (3)
Zn1—N1 2.058 (6)
Zn1—N2 2.057 (6)
Zn2—N3 2.063 (6)
Zn2—N4 2.066 (6)
N1—Zn1—N2 80.5 (2)
N1—Zn1—Cl1 112.2 (2)
N1—Zn1—Cl2 117.23 (18)
N2—Zn1—Cl1 115.64 (18)
N2—Zn1—Cl2 111.4 (2)
Cl1—Zn1—Cl2 115.28 (10)
N3—Zn2—N4 79.7 (3)
N3—Zn2—Cl3 112.09 (18)
N3—Zn2—Cl4 114.47 (17)
N4—Zn2—Cl4 112.8 (2)
N4—Zn2—Cl3 115.01 (18)
Cl4—Zn2—Cl3 117.19 (9)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl3i 0.93 2.82 3.516 (8) 132
C16—H16⋯Cl3ii 0.93 2.83 3.638 (10) 146
C3—H3ACg5 0.96 3.10 3.719 (6) 124
C11—H11ACg2iii 0.96 2.83 3.688 (5) 150
C15—H15CCg1iv 0.96 2.84 3.704 (6) 150
C23—H23CCg4 0.96 3.11 3.690 (6) 120
Symmetry codes: (i) [x+{\script{1\over 2}}, -y-{\script{3\over 2}}, z]; (ii) [x+{\script{1\over 2}}, -y-{\script{5\over 2}}, z]; (iii) x, y+1, z; (iv) x, y-1, z. Cg1, Cg2, Cg4 and Cg5 are the centroids of atoms Zn1/N1/C6/C7/N2, N1/C1/C2/C4–C6, Zn2/N3/C18/C19/N4 and N3/C13/C14/C16–C18, respectively.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

There are several ZnII complexes, with formula, [ZnCl2(N—N)], such as [ZnCl2(bipy)], (II), (Khan & Tuck, 1984), [ZnCl2(biim)], (III), (Gruia et al., 2007), [ZnCl2(phbipy)], (IV), (Kozhevnikov et al., 2006), [ZnCl2(phen)], (V), (Reimann et al., 1966), [ZnCl2(dmphen)], (VI), (Preston & Kennard, 1969), [ZnCl2(dpdmbip)], (VII), (Liu et al., 2004) and [ZnCl2(dm4bt)], (VIII), (Khavasi et al., 2008) [where bipy is 2,2'-bipyridine, biim is 2,2'-biimidazole, phbipy is 5-phenyl-2,2'-bi- pyridine, phen is 1,10-phenanthroline, dmphen is 2,9-dimethyl-1,10-phenanthro- line, dpdmbip is 4,4'-diphenyl-6,6'-dimethyl-2,2'-bipyrimidine and dm4bt is 2,2'-dimethyl-4,4'-bithiazole] have been synthesized and characterized by single-crystal X-ray diffraction methods. There are also several ZnII complexes, with formula, [ZnCl2L2], such as [ZnCl2(py)2], (IX), (Steffen & Palenik, 1976), [ZnCl2(4-cypy)2], (X), (Steffen & Palenik, 1977), [ZnCl2(2-ampy)2], (XI), (Qin et al., 1999) and [ZnCl2(im)2], (XII), (Lundberg, 1966), [where py is pyridine, 4-cypy is 4-cyanopyridine, 2-ampy is 2-aminopyridine and im is imidazole] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

The asymmetric unit of (I), (Fig. 1), contains two independent molecules. The ZnII atoms are four-coordinated in distorted tetrahedral configurations (Table 1) by two N atoms from 5,5'-dimethyl-2,2'-bipyridine and two terminal Cl. The Zn-Cl and Zn-N bond lengths and angles (Table 1) are within normal ranges, as in (II), (V) and (VIII).

In the crystal structure, intermolecular C-H···Cl hydrogen bonds (Table 2) link the molecules, in which they may be effective in the stabilization of the structure. There also exist C—H···π contacts (Table 1) between the methyl groups and pyridine, (Zn1/N1/N2/C6/C7) and (Zn2/N3/N4/C18/C19) rings. The ππ contacts between the pyridine rings, Cg3···Cg6i and Cg4···Cg5ii [symmetry codes: (i) x, y, z; (ii) x, 1 + y, z, where Cg3, Cg4, Cg5 and Cg6 are centroids of the rings (N1/C1/C2/C4-C6), (N2/C7-C10/C12), (N3/C13/C14/C16-C18) and (N4/C19-C22/C24), respectively] further stabilize the structure, with centroid-centroid distances of 3.665 (5) and 3.674 (5) Å, respectively.

Related literature top

For related literature, see: Gruia et al. (2007); Khan & Tuck (1984); Khavasi et al. (2008); Kozhevnikov et al. (2006); Liu et al. (2004); Lundberg (1966); Preston & Kennard (1969); Qin et al. (1999); Reimann et al. (1966); Steffen & Palenik (1976, 1977).

Experimental top

For the preparation of the title compound, a solution of 5,5'-dimethyl-2,2' -bipyridine (0.25 g, 1.33 mmol) in methanol (100 ml) was added to a solution of ZnCl2 (0.18 g, 1.33 mmol) in methanol (100 ml) and the resulting colorless solution was stirred for 5 min at room temperature, and then left to evaporate slowly at room temperature. After one week, colorless block crystals of the title compound were isolated (yield; 0.32 g, 73.4%, m.p. < 573 K).

Refinement top

H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound.
Dichlorido(5,5'-dimethyl-2,2'-bipyridine-κ2N,N')zinc(II) top
Crystal data top
[ZnCl2(C12H12N2)]F(000) = 1296
Mr = 320.53Dx = 1.569 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2610 reflections
a = 16.267 (2) Åθ = 2.2–29.3°
b = 11.1704 (16) ŵ = 2.18 mm1
c = 14.9328 (14) ÅT = 298 K
V = 2713.4 (6) Å3Block, colorless
Z = 80.28 × 0.20 × 0.07 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
7167 independent reflections
Radiation source: fine-focus sealed tube4463 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ϕ and ω scansθmax = 29.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 2213
Tmin = 0.612, Tmax = 0.860k = 1315
14309 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.0545P)2 + 2.0209P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.045
7167 reflectionsΔρmax = 0.29 e Å3
307 parametersΔρmin = 0.30 e Å3
1 restraintAbsolute structure: Flack (1983), 3320 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (3)
Crystal data top
[ZnCl2(C12H12N2)]V = 2713.4 (6) Å3
Mr = 320.53Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 16.267 (2) ŵ = 2.18 mm1
b = 11.1704 (16) ÅT = 298 K
c = 14.9328 (14) Å0.28 × 0.20 × 0.07 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
7167 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
4463 reflections with I > 2σ(I)
Tmin = 0.612, Tmax = 0.860Rint = 0.066
14309 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.150Δρmax = 0.29 e Å3
S = 1.08Δρmin = 0.30 e Å3
7167 reflectionsAbsolute structure: Flack (1983), 3320 Friedel pairs
307 parametersAbsolute structure parameter: 0.07 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.27268 (5)0.87606 (8)0.43784 (5)0.0530 (4)
Zn20.77530 (5)1.11325 (7)0.47118 (5)0.0521 (3)
Cl10.33658 (15)0.9839 (2)0.33543 (19)0.0872 (8)
Cl20.35350 (12)0.7899 (2)0.53825 (16)0.0671 (6)
Cl30.84859 (13)1.0208 (2)0.36748 (16)0.0644 (6)
Cl40.84271 (14)1.2264 (2)0.56774 (19)0.0823 (8)
N10.1798 (4)0.7734 (5)0.3840 (4)0.0508 (16)
N20.1730 (4)0.9564 (5)0.4975 (4)0.0508 (15)
N30.6710 (4)1.1912 (5)0.4188 (4)0.0521 (14)
N40.6855 (4)1.0095 (6)0.5312 (5)0.0503 (15)
C10.1882 (5)0.6828 (7)0.3260 (5)0.0541 (18)
H10.24080.66080.30810.065*
C20.1206 (6)0.6198 (7)0.2909 (6)0.060 (2)
C30.1361 (7)0.5168 (8)0.2285 (6)0.089 (3)
H3A0.16890.45760.25840.107*
H3B0.08460.48190.21080.107*
H3C0.16480.54490.17640.107*
C40.0441 (6)0.6540 (9)0.3175 (6)0.071 (2)
H40.00180.61460.29490.085*
C50.0340 (5)0.7457 (9)0.3773 (6)0.062 (2)
H50.01830.76740.39630.075*
C60.1031 (5)0.8063 (7)0.4095 (5)0.0524 (19)
C70.1007 (4)0.9082 (7)0.4741 (6)0.0459 (17)
C80.0275 (5)0.9510 (8)0.5090 (5)0.061 (2)
H80.02260.91680.49300.073*
C90.0309 (5)1.0467 (9)0.5686 (6)0.069 (3)
H90.01771.07730.59210.082*
C100.1045 (7)1.0967 (8)0.5934 (6)0.062 (3)
C110.1117 (7)1.1986 (8)0.6598 (6)0.082 (3)
H11A0.13681.26640.63110.098*
H11B0.05791.22020.68070.098*
H11C0.14491.17390.70960.098*
C120.1746 (5)1.0486 (7)0.5547 (6)0.057 (2)
H120.22521.08200.56940.068*
C130.6682 (5)1.2826 (7)0.3606 (6)0.059 (2)
H130.71781.31660.34290.071*
C140.5966 (6)1.3302 (9)0.3250 (6)0.067 (2)
C150.5985 (7)1.4306 (9)0.2602 (6)0.089 (3)
H15A0.62851.40680.20780.107*
H15B0.54341.45160.24380.107*
H15C0.62511.49850.28710.107*
C160.5243 (6)1.2783 (9)0.3560 (7)0.074 (3)
H160.47411.30870.33700.089*
C170.5255 (5)1.1830 (9)0.4141 (6)0.074 (2)
H170.47651.14730.43220.089*
C180.6005 (5)1.1398 (8)0.4458 (7)0.0552 (19)
C190.6087 (4)1.0390 (7)0.5074 (5)0.0501 (17)
C200.5433 (5)0.9743 (9)0.5441 (7)0.072 (3)
H200.48940.99620.53100.086*
C210.5580 (6)0.8791 (8)0.5990 (5)0.069 (2)
H210.51400.83390.61990.083*
C220.6369 (6)0.8486 (7)0.6240 (5)0.0578 (19)
C230.6548 (6)0.7477 (8)0.6847 (6)0.080 (3)
H23A0.68480.77650.73570.096*
H23B0.60420.71200.70420.096*
H23C0.68710.68910.65360.096*
C240.6992 (5)0.9174 (7)0.5874 (5)0.0572 (18)
H240.75330.89900.60230.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0310 (4)0.0557 (5)0.0721 (10)0.0013 (4)0.0036 (4)0.0035 (4)
Zn20.0336 (4)0.0550 (5)0.0678 (9)0.0005 (4)0.0026 (4)0.0006 (4)
Cl10.0615 (14)0.0871 (16)0.113 (2)0.0035 (12)0.0292 (13)0.0328 (14)
Cl20.0426 (10)0.0783 (13)0.0805 (15)0.0030 (9)0.0096 (9)0.0048 (11)
Cl30.0490 (11)0.0682 (12)0.0759 (14)0.0025 (9)0.0060 (9)0.0081 (10)
Cl40.0550 (13)0.0829 (15)0.109 (2)0.0089 (11)0.0215 (12)0.0355 (14)
N10.038 (3)0.049 (3)0.065 (4)0.002 (3)0.007 (3)0.012 (3)
N20.037 (3)0.047 (3)0.069 (4)0.003 (3)0.011 (3)0.009 (3)
N30.041 (3)0.057 (3)0.058 (4)0.001 (3)0.001 (3)0.011 (3)
N40.034 (3)0.063 (4)0.055 (4)0.002 (3)0.003 (3)0.008 (3)
C10.045 (4)0.057 (4)0.061 (4)0.002 (3)0.008 (3)0.002 (3)
C20.065 (5)0.062 (5)0.053 (5)0.006 (4)0.016 (4)0.013 (4)
C30.135 (10)0.068 (6)0.066 (6)0.018 (6)0.023 (6)0.001 (4)
C40.067 (6)0.080 (6)0.066 (5)0.028 (5)0.016 (4)0.006 (5)
C50.035 (4)0.088 (6)0.063 (5)0.004 (4)0.002 (3)0.010 (5)
C60.046 (4)0.058 (4)0.054 (4)0.010 (3)0.005 (3)0.021 (3)
C70.027 (3)0.056 (4)0.055 (5)0.003 (3)0.007 (3)0.017 (4)
C80.046 (4)0.073 (5)0.065 (5)0.012 (4)0.008 (3)0.014 (4)
C90.051 (5)0.093 (7)0.062 (5)0.025 (5)0.021 (4)0.027 (5)
C100.081 (7)0.057 (4)0.048 (5)0.023 (5)0.013 (4)0.022 (4)
C110.102 (8)0.073 (6)0.071 (6)0.026 (5)0.017 (5)0.005 (5)
C120.041 (4)0.059 (5)0.071 (5)0.002 (3)0.000 (3)0.017 (4)
C130.058 (5)0.056 (5)0.064 (5)0.001 (4)0.009 (4)0.008 (4)
C140.069 (6)0.070 (5)0.061 (5)0.029 (5)0.013 (4)0.019 (4)
C150.112 (9)0.082 (7)0.073 (6)0.028 (6)0.029 (6)0.006 (5)
C160.052 (5)0.093 (7)0.078 (6)0.032 (5)0.014 (4)0.013 (5)
C170.037 (4)0.098 (7)0.089 (6)0.006 (4)0.012 (4)0.016 (5)
C180.048 (4)0.059 (4)0.058 (5)0.008 (4)0.010 (4)0.020 (4)
C190.033 (3)0.068 (4)0.049 (4)0.001 (3)0.002 (3)0.018 (3)
C200.039 (4)0.098 (7)0.078 (6)0.011 (4)0.005 (4)0.032 (5)
C210.078 (6)0.076 (6)0.053 (5)0.021 (5)0.005 (4)0.006 (4)
C220.077 (6)0.054 (4)0.042 (4)0.005 (4)0.008 (3)0.008 (3)
C230.093 (7)0.076 (6)0.071 (6)0.018 (5)0.013 (5)0.007 (5)
C240.050 (4)0.066 (5)0.055 (4)0.005 (4)0.002 (3)0.002 (4)
Geometric parameters (Å, º) top
Zn1—Cl12.206 (2)C11—H11B0.9600
Zn1—Cl22.215 (2)C11—H11C0.9600
Zn2—Cl32.211 (2)C12—N21.338 (10)
Zn2—Cl42.207 (3)C12—H120.9300
Zn1—N12.058 (6)C13—N31.341 (10)
Zn1—N22.057 (6)C13—C141.386 (11)
Zn2—N32.063 (6)C13—H130.9300
Zn2—N42.066 (6)C14—C161.389 (13)
C1—N11.339 (10)C14—C151.482 (13)
C1—C21.406 (12)C15—H15A0.9600
C1—H10.9300C15—H15B0.9600
C2—C41.362 (14)C15—H15C0.9600
C2—C31.502 (12)C16—C171.374 (13)
C3—H3A0.9600C16—H160.9300
C3—H3B0.9600C17—C181.397 (11)
C3—H3C0.9600C17—H170.9300
C4—C51.369 (13)C18—N31.343 (10)
C4—H40.9300C18—C191.460 (12)
C5—C61.396 (11)C19—N41.341 (9)
C5—H50.9300C19—C201.397 (11)
C6—N11.357 (10)C20—C211.364 (13)
C6—C71.491 (11)C20—H200.9300
C7—N21.339 (9)C21—C221.379 (14)
C7—C81.387 (10)C21—H210.9300
C8—C91.392 (12)C22—C241.384 (12)
C8—H80.9300C22—C231.476 (12)
C9—C101.372 (14)C23—H23A0.9600
C9—H90.9300C23—H23B0.9600
C10—C121.386 (13)C23—H23C0.9600
C10—C111.514 (13)C24—N41.348 (10)
C11—H11A0.9600C24—H240.9300
N1—Zn1—N280.5 (2)N3—C13—C14124.8 (8)
N1—Zn1—Cl1112.2 (2)N3—C13—H13117.6
N1—Zn1—Cl2117.23 (18)C14—C13—H13117.6
N2—Zn1—Cl1115.64 (18)C13—C14—C16115.0 (9)
N2—Zn1—Cl2111.4 (2)C13—C14—C15121.6 (9)
Cl1—Zn1—Cl2115.28 (10)C16—C14—C15123.4 (9)
N3—Zn2—N479.7 (3)C14—C15—H15A109.4
N3—Zn2—Cl3112.09 (18)C14—C15—H15B109.5
N3—Zn2—Cl4114.47 (17)H15A—C15—H15B109.5
N4—Zn2—Cl4112.8 (2)C14—C15—H15C109.5
N4—Zn2—Cl3115.01 (18)H15A—C15—H15C109.5
Cl4—Zn2—Cl3117.19 (9)H15B—C15—H15C109.5
N1—C1—C2122.6 (8)C17—C16—C14121.4 (8)
N1—C1—H1118.7C17—C16—H16119.3
C2—C1—H1118.7C14—C16—H16119.3
C4—C2—C1117.7 (8)C16—C17—C18119.6 (9)
C4—C2—C3123.4 (9)C16—C17—H17120.2
C1—C2—C3118.9 (9)C18—C17—H17120.2
C2—C3—H3A109.5N3—C18—C17119.7 (9)
C2—C3—H3B109.5N3—C18—C19116.2 (7)
H3A—C3—H3B109.5C17—C18—C19124.1 (8)
C2—C3—H3C109.5N4—C19—C20118.6 (8)
H3A—C3—H3C109.5N4—C19—C18116.2 (7)
H3B—C3—H3C109.5C20—C19—C18125.2 (8)
C2—C4—C5120.8 (8)C21—C20—C19120.3 (9)
C2—C4—H4119.6C21—C20—H20119.9
C5—C4—H4119.6C19—C20—H20119.9
C4—C5—C6119.4 (8)C20—C21—C22121.4 (9)
C4—C5—H5120.3C20—C21—H21119.3
C6—C5—H5120.3C22—C21—H21119.3
N1—C6—C5120.8 (8)C21—C22—C24115.9 (8)
N1—C6—C7114.4 (7)C21—C22—C23122.7 (9)
C5—C6—C7124.8 (8)C24—C22—C23121.3 (9)
N2—C7—C8121.1 (8)C22—C23—H23A109.5
N2—C7—C6116.9 (7)C22—C23—H23B109.5
C8—C7—C6122.0 (8)H23A—C23—H23B109.5
C7—C8—C9118.2 (8)C22—C23—H23C109.5
C7—C8—H8120.9H23A—C23—H23C109.5
C9—C8—H8120.9H23B—C23—H23C109.5
C10—C9—C8121.3 (8)N4—C24—C22123.2 (8)
C10—C9—H9119.4N4—C24—H24118.4
C8—C9—H9119.4C22—C24—H24118.4
C9—C10—C12116.6 (9)C1—N1—C6118.8 (7)
C9—C10—C11123.3 (9)C1—N1—Zn1126.7 (5)
C12—C10—C11120.2 (10)C6—N1—Zn1114.5 (5)
C10—C11—H11A109.4C12—N2—C7119.4 (7)
C10—C11—H11B109.5C12—N2—Zn1126.8 (5)
H11A—C11—H11B109.5C7—N2—Zn1113.8 (5)
C10—C11—H11C109.5C13—N3—C18119.4 (7)
H11A—C11—H11C109.5C13—N3—Zn2126.6 (5)
H11B—C11—H11C109.5C18—N3—Zn2114.0 (6)
N2—C12—C10123.4 (8)C19—N4—C24120.5 (7)
N2—C12—H12118.3C19—N4—Zn2114.0 (5)
C10—C12—H12118.3C24—N4—Zn2125.5 (5)
N1—C1—C2—C40.3 (13)N2—Zn1—N1—C1179.1 (6)
N1—C1—C2—C3177.9 (7)Cl1—Zn1—N1—C165.2 (7)
C1—C2—C4—C50.8 (13)Cl2—Zn1—N1—C171.6 (7)
C3—C2—C4—C5177.4 (9)N2—Zn1—N1—C61.4 (5)
C2—C4—C5—C61.5 (14)Cl1—Zn1—N1—C6112.5 (5)
C4—C5—C6—N11.7 (12)Cl2—Zn1—N1—C6110.7 (5)
C4—C5—C6—C7179.5 (8)C10—C12—N2—C71.2 (12)
N1—C6—C7—N21.5 (9)C10—C12—N2—Zn1178.9 (6)
C5—C6—C7—N2179.6 (8)C8—C7—N2—C120.8 (12)
N1—C6—C7—C8178.1 (7)C6—C7—N2—C12179.6 (6)
C5—C6—C7—C80.8 (11)C8—C7—N2—Zn1179.3 (6)
N2—C7—C8—C90.6 (12)C6—C7—N2—Zn10.3 (9)
C6—C7—C8—C9179.8 (7)N1—Zn1—N2—C12179.6 (7)
C7—C8—C9—C100.8 (13)Cl1—Zn1—N2—C1270.3 (7)
C8—C9—C10—C121.2 (12)Cl2—Zn1—N2—C1264.0 (7)
C8—C9—C10—C11178.3 (8)N1—Zn1—N2—C70.5 (6)
C9—C10—C12—N21.4 (12)Cl1—Zn1—N2—C7109.6 (5)
C11—C10—C12—N2178.1 (8)Cl2—Zn1—N2—C7116.2 (6)
N3—C13—C14—C161.8 (12)C14—C13—N3—C180.1 (12)
N3—C13—C14—C15179.3 (8)C14—C13—N3—Zn2178.1 (6)
C13—C14—C16—C173.1 (13)C17—C18—N3—C130.8 (13)
C15—C14—C16—C17178.1 (9)C19—C18—N3—C13178.5 (7)
C14—C16—C17—C182.6 (15)C17—C18—N3—Zn2179.0 (7)
C16—C17—C18—N30.5 (15)C19—C18—N3—Zn20.3 (10)
C16—C17—C18—C19179.8 (8)N4—Zn2—N3—C13178.9 (7)
N3—C18—C19—N40.8 (11)Cl4—Zn2—N3—C1370.6 (7)
C17—C18—C19—N4179.9 (8)Cl3—Zn2—N3—C1366.0 (6)
N3—C18—C19—C20179.3 (7)N4—Zn2—N3—C180.8 (6)
C17—C18—C19—C201.4 (14)Cl4—Zn2—N3—C18111.3 (6)
N4—C19—C20—C213.6 (12)Cl3—Zn2—N3—C18112.1 (6)
C18—C19—C20—C21178.0 (8)C20—C19—N4—C241.7 (10)
C19—C20—C21—C224.0 (13)C18—C19—N4—C24179.7 (7)
C20—C21—C22—C242.4 (12)C20—C19—N4—Zn2179.9 (6)
C20—C21—C22—C23178.8 (8)C18—C19—N4—Zn21.5 (8)
C21—C22—C24—N40.5 (11)C22—C24—N4—C190.3 (11)
C23—C22—C24—N4179.4 (7)C22—C24—N4—Zn2178.3 (5)
C2—C1—N1—C60.5 (11)N3—Zn2—N4—C191.3 (5)
C2—C1—N1—Zn1178.2 (6)Cl4—Zn2—N4—C19113.6 (5)
C5—C6—N1—C11.2 (10)Cl3—Zn2—N4—C19108.4 (5)
C7—C6—N1—C1179.8 (6)N3—Zn2—N4—C24179.4 (6)
C5—C6—N1—Zn1179.1 (6)Cl4—Zn2—N4—C2468.3 (6)
C7—C6—N1—Zn11.9 (7)Cl3—Zn2—N4—C2469.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl3i0.932.823.516 (8)132
C16—H16···Cl3ii0.932.833.638 (10)146
C3—H3A···Cg50.963.103.719 (6)124
C11—H11A···Cg2iii0.962.833.688 (5)150
C15—H15C···Cg1iv0.962.843.704 (6)150
C23—H23C···Cg40.963.113.690 (6)120
Symmetry codes: (i) x+1/2, y3/2, z; (ii) x+1/2, y5/2, z; (iii) x, y+1, z; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formula[ZnCl2(C12H12N2)]
Mr320.53
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)298
a, b, c (Å)16.267 (2), 11.1704 (16), 14.9328 (14)
V3)2713.4 (6)
Z8
Radiation typeMo Kα
µ (mm1)2.18
Crystal size (mm)0.28 × 0.20 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.612, 0.860
No. of measured, independent and
observed [I > 2σ(I)] reflections
14309, 7167, 4463
Rint0.066
(sin θ/λ)max1)0.689
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.150, 1.08
No. of reflections7167
No. of parameters307
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.30
Absolute structureFlack (1983), 3320 Friedel pairs
Absolute structure parameter0.07 (3)

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Zn1—Cl12.206 (2)Zn1—N12.058 (6)
Zn1—Cl22.215 (2)Zn1—N22.057 (6)
Zn2—Cl32.211 (2)Zn2—N32.063 (6)
Zn2—Cl42.207 (3)Zn2—N42.066 (6)
N1—Zn1—N280.5 (2)N3—Zn2—N479.7 (3)
N1—Zn1—Cl1112.2 (2)N3—Zn2—Cl3112.09 (18)
N1—Zn1—Cl2117.23 (18)N3—Zn2—Cl4114.47 (17)
N2—Zn1—Cl1115.64 (18)N4—Zn2—Cl4112.8 (2)
N2—Zn1—Cl2111.4 (2)N4—Zn2—Cl3115.01 (18)
Cl1—Zn1—Cl2115.28 (10)Cl4—Zn2—Cl3117.19 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl3i0.932.823.516 (8)132.00
C16—H16···Cl3ii0.932.833.638 (10)146.00
C3—H3A···Cg50.963.103.719 (6)123.79
C11—H11A···Cg2iii0.962.833.688 (5)149.98
C15—H15C···Cg1iv0.962.843.704 (6)150.43
C23—H23C···Cg40.963.113.690 (6)120.16
Symmetry codes: (i) x+1/2, y3/2, z; (ii) x+1/2, y5/2, z; (iii) x, y+1, z; (iv) x, y1, z.
 

Acknowledgements

We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGruia, L. M., Rochon, F. D. & Beauchamp, A. L. (2007). Inorg. Chim. Acta, 360, 1825–1840.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhan, M. A. & Tuck, D. G. (1984). Acta Cryst. C40, 60–62.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKhavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848–1854.  Web of Science CSD CrossRef CAS Google Scholar
First citationKozhevnikov, D. N., Shabunina, O. V., Kopchuk, D. S., Slepukhin, P. A. & Kozhevnikov, V. N. (2006). Tetrahedron Lett. 47, 7025–7029.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Q. D., Wang, R. & Wang, S. (2004). Dalton Trans. pp. 2073–2079.  Web of Science CSD CrossRef PubMed Google Scholar
First citationLundberg, B. K. S. (1966). Acta Cryst. 21, 901–909.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPreston, H. S. & Kennard, C. H. L. (1969). J. Chem. Soc. A, pp. 1965–1968.  Google Scholar
First citationQin, J., Su, N., Dai, C., Yang, C., Liu, D., Day, M. W., Wu, B. & Chen, C. (1999). Polyhedron, 18, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationReimann, C. W., Block, S. & Perloff, A. (1966). Inorg. Chem. 5, 1185–1189.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteffen, W. L. & Palenik, G. J. (1976). Acta Cryst. B32, 298–300.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSteffen, W. L. & Palenik, G. J. (1977). Inorg. Chem. 16, 1119–1127.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1211-m1212
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds