metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido(pyridine-κN)bis­­[2-(quinolin-2-yl)phenyl-κ2C1,N]iridium(III) mono­hydrate

aSchool of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, People's Republic of China
*Correspondence e-mail: yding@jiangnan.edu.cn

(Received 11 July 2008; accepted 7 August 2008; online 30 August 2008)

In the neutral mononuclear iridium(III) title complex, [Ir(C15H10N)2Cl(C5H5N)]·H2O, the Ir atom is coordinated by two N atoms and two C atoms from two 2-(quinolin-2-yl)­phenyl ligands, one N atom from a pyridine ligand and one Cl atom in an octa­hedral geometry.

Related literature

For related literature, see: Adachi et al. (2000[Adachi, C., Baldo, M. A., Forrest, S. R. & Thompson, M. E. (2000). Appl. Phys. Lett. 77, 904-906.]); Baldo et al. (1998[Baldo, M. A., O'Brien, D. F., You, Y., Shoustikov, A., Sibley, S., Thompson, M. E. & Forrest, S. R. (1998). Nature (London), 395, 151-154.]); Gao et al. (2002[Gao, R., Ho, D. G., Hernandez, B., Selke, M., Murphy, D., Djurovich, P. & Thompson, M. E. (2002). J. Am. Chem. Soc. 124, 14828-14829.]); Lamansky et al. (2001a[Lamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Kwong, R., Tsyba, I., Bortz, M., Mui, B., Bau, R. & Thompson, M. E. (2001a). Inorg. Chem. 40, 1704-1711.],b[Lamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Lee, H.-E., Adachi, C., Burrows, P. E., Forrest, S. R. & Thompson, M. E. (2001b). J. Am. Chem. Soc. 123, 4304-4312.]); Liu et al. (2007[Liu, T., Xia, B.-H., Zhou, X., Zhang, H.-X., Pan, Q.-J. & Gao, J.-S. (2007). Organometallics, 26, 143-149.]).

[Scheme 1]

Experimental

Crystal data
  • [Ir(C15H10N)2Cl(C5H5N)]·H2O

  • Mr = 733.25

  • Monoclinic, P 21 /n

  • a = 9.8949 (15) Å

  • b = 17.653 (3) Å

  • c = 16.424 (3) Å

  • β = 98.545 (3)°

  • V = 2837.0 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.83 mm−1

  • T = 273 (2) K

  • 0.16 × 0.12 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.511, Tmax = 0.684

  • 14857 measured reflections

  • 5027 independent reflections

  • 3702 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.075

  • S = 1.02

  • 5027 reflections

  • 370 parameters

  • 9 restraints

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ir1—C11 1.990 (6)
Ir1—C26 1.992 (6)
Ir1—N1 2.090 (5)
Ir1—N2 2.092 (5)
Ir1—N3 2.221 (5)
Ir1—Cl1 2.5182 (16)
C11—Ir1—C26 87.3 (2)
C11—Ir1—N1 80.0 (2)
C26—Ir1—N1 93.3 (2)
C11—Ir1—N2 94.9 (2)
C26—Ir1—N2 80.0 (2)
N1—Ir1—N2 171.7 (2)
C11—Ir1—N3 173.07 (19)
C26—Ir1—N3 87.8 (2)
N1—Ir1—N3 105.16 (18)
N2—Ir1—N3 79.48 (17)
C11—Ir1—Cl1 96.67 (17)
C26—Ir1—Cl1 174.02 (16)
N1—Ir1—Cl1 83.02 (14)
N2—Ir1—Cl1 104.10 (14)
N3—Ir1—Cl1 88.68 (13)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Since the significant work by Thompson and Forrest (Adachi et al., 2000; Baldo et al., 1998), the chemistry of cyclometalated IrIII complexes has received a great deal of attention. These homoleptic complexes, (CÑ)2Ir(LX), have proven to be very efficient when used in organic light emitting diodes (OLEDs), where CÑ is a general abbreviation used hereafter for a cyclometalating ligand and LX stands for other ligands. (CÑ)2Ir(LX) complexes with different ligands have various emissions (Gao et al., 2002; Lamansky et al., 2001a, b; Liu et al., 2007).

In this paper, we report the crystal structure of the title compound, which is a neutral mononuclear complex. The IrIII atom is coordinated by two N atoms and two C atoms from two 2-phenylquinoline (pq) ligands, one N atom from a pyridine ligand and one Cl atom in an octahedral geometry (Fig. 1). The Ir1—N1 and Ir1—N2 bond lengths are 2.090 (5) and 2.092 (5)Å (Table 1) and agree well with those observed in the related (CÑ)2Ir(LX) complexes (Gao et al., 2002; Lamansky et al., 2001a). The Ir—C bond lengths of 1.990 (6) and 1.992 (6)Å are slightly shorter than the Ir—C bond length [2.003 (9) Å] in the complex [Ir(ppy)2(acac)] (ppy = 2-pyridylphenyl; acac = acetylacetone) (Lamansky et al., 2001a). The N—Ir—C angles of 80.0 (2)° are comparable to that [81.7 (4)°] in [Ir(ppy)2(acac)].

Related literature top

For related literature, see: Adachi et al. (2000); Baldo et al. (1998); Gao et al. (2002); Lamansky et al. (2001a,b); Liu et al. (2007).

Experimental top

A mixture of (pq)2IrCl (0.126 g, 0.2 mmol) and sodium bicarbonate (0.04 g, 0.5 mmol) dissolved in pyridine (12 ml) and dichloromethane (10 ml) was refluxed for 24 h and then cooled to room temperature. The solvent was removed in vacuum. The residue was washed with hexane and hot water. The crude product was separated by chromatography on silica gel with dichloromethane as eluent to give a red solid. Single crystals suitable for X-ray diffraction were obtained by slow diffusion of hexane into the dichloromethane solution.

Refinement top

H atoms bonded on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms of water molecule can not be located in difference Fourier map and they were not included in refinements.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
Chlorido(pyridine-κN)bis[2-(quinolin-2-yl)phenyl- κ2C1,N]iridium(III) monohydrate top
Crystal data top
[Ir(C15H10N)2Cl(C5H5N)]·H2OF(000) = 1440
Mr = 733.25Dx = 1.717 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3064 reflections
a = 9.8949 (15) Åθ = 2.5–23.5°
b = 17.653 (3) ŵ = 4.83 mm1
c = 16.424 (3) ÅT = 273 K
β = 98.545 (3)°Block, red
V = 2837.0 (8) Å30.16 × 0.12 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5027 independent reflections
Radiation source: fine-focus sealed tube3702 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 25.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1110
Tmin = 0.511, Tmax = 0.684k = 2021
14857 measured reflectionsl = 1619
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0276P)2 + 1.7551P]
where P = (Fo2 + 2Fc2)/3
5027 reflections(Δ/σ)max = 0.001
370 parametersΔρmax = 0.78 e Å3
9 restraintsΔρmin = 0.72 e Å3
Crystal data top
[Ir(C15H10N)2Cl(C5H5N)]·H2OV = 2837.0 (8) Å3
Mr = 733.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.8949 (15) ŵ = 4.83 mm1
b = 17.653 (3) ÅT = 273 K
c = 16.424 (3) Å0.16 × 0.12 × 0.08 mm
β = 98.545 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5027 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3702 reflections with I > 2σ(I)
Tmin = 0.511, Tmax = 0.684Rint = 0.049
14857 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0349 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.02Δρmax = 0.78 e Å3
5027 reflectionsΔρmin = 0.72 e Å3
370 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.09759 (3)0.240147 (11)0.005833 (14)0.03528 (9)
Cl10.20494 (18)0.31961 (8)0.09466 (10)0.0514 (4)
N10.0132 (5)0.3437 (2)0.0339 (3)0.0410 (13)
N20.1566 (5)0.1294 (3)0.0176 (3)0.0394 (12)
N30.2997 (5)0.2349 (2)0.0852 (3)0.0382 (11)
O10.4549 (12)0.4379 (6)0.9584 (8)0.245 (5)
C10.0782 (7)0.4038 (3)0.0794 (4)0.0442 (17)
C20.2205 (8)0.4034 (3)0.1040 (4)0.056 (2)
H20.27250.36310.08930.067*
C30.2822 (8)0.4615 (4)0.1490 (5)0.066 (2)
H30.37640.46050.16480.080*
C40.2069 (9)0.5232 (4)0.1724 (5)0.067 (2)
H40.25010.56170.20510.081*
C50.0719 (9)0.5258 (4)0.1467 (4)0.062 (2)
H50.02260.56780.15980.074*
C60.0025 (7)0.4663 (3)0.1002 (4)0.0464 (17)
C70.1381 (8)0.4686 (3)0.0732 (4)0.0566 (19)
H70.18970.50930.08740.068*
C80.1989 (8)0.4119 (3)0.0268 (4)0.0541 (18)
H80.29240.41350.00840.065*
C90.1209 (7)0.3500 (3)0.0060 (4)0.0432 (16)
C100.1786 (7)0.2886 (3)0.0478 (4)0.0425 (16)
C110.0862 (6)0.2318 (3)0.0616 (3)0.0396 (14)
C120.1354 (7)0.1741 (3)0.1161 (4)0.0469 (17)
H120.07580.13620.12790.056*
C130.2704 (8)0.1716 (4)0.1532 (4)0.0553 (19)
H130.30080.13240.18930.066*
C140.3594 (8)0.2273 (4)0.1365 (4)0.065 (2)
H140.45070.22500.16020.078*
C150.3145 (7)0.2865 (4)0.0848 (4)0.0568 (19)
H150.37450.32480.07480.068*
C160.2238 (7)0.1046 (3)0.0807 (4)0.0475 (17)
C170.2191 (8)0.1467 (4)0.1529 (4)0.064 (2)
H170.16920.19150.15910.077*
C180.2872 (10)0.1225 (5)0.2148 (5)0.086 (3)
H180.28080.14990.26360.103*
C190.3657 (10)0.0572 (6)0.2046 (7)0.098 (3)
H190.41800.04360.24490.118*
C200.3677 (10)0.0138 (5)0.1382 (6)0.093 (3)
H200.41750.03110.13420.111*
C210.2959 (8)0.0346 (4)0.0741 (5)0.062 (2)
C220.2865 (9)0.0103 (4)0.0068 (6)0.084 (3)
H220.33610.05510.00040.100*
C230.2056 (8)0.0103 (4)0.0493 (5)0.070 (2)
H230.19290.02260.09160.084*
C240.1409 (7)0.0813 (3)0.0435 (4)0.0439 (16)
C250.0577 (7)0.1094 (3)0.1027 (4)0.0447 (17)
C260.0204 (6)0.1851 (3)0.0943 (4)0.0383 (15)
C270.0564 (6)0.2134 (4)0.1515 (4)0.0507 (17)
H270.08380.26380.14770.061*
C280.0932 (7)0.1694 (5)0.2134 (4)0.060 (2)
H280.14190.19080.25190.072*
C290.0586 (8)0.0943 (5)0.2190 (5)0.065 (2)
H290.08660.06430.26000.078*
C300.0164 (8)0.0637 (4)0.1646 (4)0.061 (2)
H300.04040.01270.16820.073*
C310.4148 (7)0.2258 (3)0.0510 (4)0.0507 (17)
H310.41050.23140.00560.061*
C320.5380 (7)0.2085 (4)0.0979 (5)0.062 (2)
H320.61560.20220.07290.075*
C330.5461 (8)0.2007 (4)0.1814 (5)0.068 (2)
H330.62910.18940.21360.082*
C340.4306 (7)0.2098 (4)0.2167 (4)0.0548 (18)
H340.43290.20390.27320.066*
C350.3112 (6)0.2276 (3)0.1669 (4)0.0439 (15)
H350.23350.23520.19150.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.04334 (15)0.03234 (13)0.02941 (13)0.00102 (12)0.00295 (9)0.00188 (11)
Cl10.0700 (12)0.0461 (9)0.0389 (9)0.0098 (8)0.0114 (8)0.0051 (7)
N10.055 (4)0.035 (3)0.031 (3)0.003 (2)0.002 (3)0.005 (2)
N20.045 (3)0.037 (3)0.035 (3)0.000 (2)0.004 (2)0.001 (2)
N30.038 (3)0.039 (3)0.036 (3)0.002 (2)0.002 (2)0.001 (2)
O10.244 (5)0.245 (5)0.245 (5)0.0004 (10)0.0366 (13)0.0004 (10)
C10.063 (5)0.034 (3)0.034 (4)0.001 (3)0.004 (3)0.008 (3)
C20.073 (6)0.038 (4)0.053 (5)0.002 (3)0.006 (4)0.001 (3)
C30.082 (6)0.040 (4)0.069 (5)0.008 (4)0.016 (4)0.000 (4)
C40.093 (7)0.044 (4)0.059 (5)0.015 (4)0.010 (5)0.011 (4)
C50.106 (7)0.037 (4)0.044 (4)0.002 (4)0.015 (4)0.001 (3)
C60.068 (5)0.038 (4)0.035 (4)0.001 (3)0.012 (3)0.004 (3)
C70.079 (6)0.038 (4)0.054 (5)0.013 (4)0.015 (4)0.000 (3)
C80.059 (5)0.051 (4)0.052 (4)0.008 (4)0.005 (4)0.004 (3)
C90.058 (5)0.036 (3)0.035 (4)0.004 (3)0.008 (3)0.007 (3)
C100.053 (4)0.038 (3)0.033 (4)0.000 (3)0.004 (3)0.008 (3)
C110.049 (4)0.038 (3)0.030 (3)0.001 (3)0.000 (3)0.009 (3)
C120.057 (5)0.038 (3)0.043 (4)0.004 (3)0.003 (3)0.001 (3)
C130.073 (6)0.048 (4)0.041 (4)0.011 (4)0.005 (4)0.001 (3)
C140.060 (5)0.066 (5)0.061 (5)0.007 (4)0.017 (4)0.004 (4)
C150.054 (5)0.058 (4)0.055 (5)0.006 (3)0.004 (4)0.004 (4)
C160.054 (5)0.042 (4)0.049 (4)0.004 (3)0.013 (3)0.015 (3)
C170.095 (6)0.049 (4)0.053 (5)0.016 (4)0.026 (4)0.013 (4)
C180.118 (8)0.082 (6)0.068 (6)0.019 (6)0.049 (6)0.021 (5)
C190.107 (8)0.101 (8)0.100 (8)0.004 (6)0.059 (7)0.029 (6)
C200.111 (8)0.079 (6)0.091 (8)0.023 (6)0.025 (6)0.034 (6)
C210.067 (5)0.054 (4)0.064 (5)0.005 (4)0.009 (4)0.017 (4)
C220.105 (8)0.062 (5)0.081 (7)0.036 (5)0.002 (6)0.007 (5)
C230.092 (7)0.046 (4)0.072 (6)0.014 (4)0.011 (5)0.014 (4)
C240.054 (4)0.032 (3)0.042 (4)0.002 (3)0.003 (3)0.002 (3)
C250.052 (4)0.046 (4)0.034 (4)0.008 (3)0.001 (3)0.011 (3)
C260.035 (4)0.048 (4)0.030 (3)0.005 (3)0.002 (3)0.003 (3)
C270.044 (4)0.067 (4)0.041 (4)0.007 (3)0.005 (3)0.015 (3)
C280.035 (4)0.101 (6)0.043 (4)0.010 (4)0.008 (3)0.013 (4)
C290.058 (5)0.087 (6)0.050 (5)0.018 (4)0.007 (4)0.020 (4)
C300.076 (6)0.056 (4)0.048 (5)0.001 (4)0.003 (4)0.016 (4)
C310.053 (5)0.052 (4)0.047 (4)0.003 (3)0.007 (3)0.004 (3)
C320.042 (5)0.075 (5)0.071 (6)0.007 (4)0.011 (4)0.011 (4)
C330.050 (5)0.087 (6)0.062 (5)0.009 (4)0.009 (4)0.002 (4)
C340.058 (5)0.065 (4)0.038 (4)0.001 (4)0.003 (4)0.003 (3)
C350.047 (4)0.046 (4)0.038 (4)0.002 (3)0.005 (3)0.007 (3)
Geometric parameters (Å, º) top
Ir1—C111.990 (6)C15—H150.9300
Ir1—C261.992 (6)C16—C171.395 (9)
Ir1—N12.090 (5)C16—C211.423 (9)
Ir1—N22.092 (5)C17—C181.368 (10)
Ir1—N32.221 (5)C17—H170.9300
Ir1—Cl12.5182 (16)C18—C191.387 (12)
N1—C91.342 (7)C18—H180.9300
N1—C11.398 (7)C19—C201.331 (12)
N2—C241.340 (7)C19—H190.9300
N2—C161.382 (8)C20—C211.404 (11)
N3—C351.337 (7)C20—H200.9300
N3—C311.351 (8)C21—C221.374 (10)
C1—C61.404 (9)C22—C231.357 (10)
C1—C21.406 (9)C22—H220.9300
C2—C31.357 (8)C23—C241.404 (8)
C2—H20.9300C23—H230.9300
C3—C41.404 (10)C24—C251.452 (9)
C3—H30.9300C25—C261.389 (8)
C4—C51.341 (9)C25—C301.405 (9)
C4—H40.9300C26—C271.386 (8)
C5—C61.415 (9)C27—C281.371 (8)
C5—H50.9300C27—H270.9300
C6—C71.397 (9)C28—C291.370 (9)
C7—C81.345 (9)C28—H280.9300
C7—H70.9300C29—C301.356 (10)
C8—C91.408 (8)C29—H290.9300
C8—H80.9300C30—H300.9300
C9—C101.460 (8)C31—C321.376 (9)
C10—C151.392 (8)C31—H310.9300
C10—C111.398 (8)C32—C331.369 (9)
C11—C121.395 (8)C32—H320.9300
C12—C131.384 (8)C33—C341.366 (9)
C12—H120.9300C33—H330.9300
C13—C141.375 (9)C34—C351.370 (8)
C13—H130.9300C34—H340.9300
C14—C151.378 (9)C35—H350.9300
C14—H140.9300
C11—Ir1—C2687.3 (2)C15—C14—H14119.7
C11—Ir1—N180.0 (2)C14—C15—C10119.4 (7)
C26—Ir1—N193.3 (2)C14—C15—H15120.3
C11—Ir1—N294.9 (2)C10—C15—H15120.3
C26—Ir1—N280.0 (2)N2—C16—C17120.7 (6)
N1—Ir1—N2171.7 (2)N2—C16—C21120.6 (6)
C11—Ir1—N3173.07 (19)C17—C16—C21118.7 (7)
C26—Ir1—N387.8 (2)C18—C17—C16120.6 (8)
N1—Ir1—N3105.16 (18)C18—C17—H17119.7
N2—Ir1—N379.48 (17)C16—C17—H17119.7
C11—Ir1—Cl196.67 (17)C17—C18—C19119.9 (9)
C26—Ir1—Cl1174.02 (16)C17—C18—H18120.0
N1—Ir1—Cl183.02 (14)C19—C18—H18120.0
N2—Ir1—Cl1104.10 (14)C20—C19—C18121.2 (9)
N3—Ir1—Cl188.68 (13)C20—C19—H19119.4
C9—N1—C1118.3 (5)C18—C19—H19119.4
C9—N1—Ir1113.8 (4)C19—C20—C21121.0 (9)
C1—N1—Ir1127.9 (4)C19—C20—H20119.5
C24—N2—C16118.8 (5)C21—C20—H20119.5
C24—N2—Ir1112.8 (4)C22—C21—C20123.7 (8)
C16—N2—Ir1127.7 (4)C22—C21—C16117.9 (7)
C35—N3—C31117.0 (5)C20—C21—C16118.3 (8)
C35—N3—Ir1121.9 (4)C23—C22—C21120.6 (7)
C31—N3—Ir1120.1 (4)C23—C22—H22119.7
N1—C1—C6120.4 (6)C21—C22—H22119.7
N1—C1—C2120.8 (6)C22—C23—C24120.2 (7)
C6—C1—C2118.8 (6)C22—C23—H23119.9
C3—C2—C1120.2 (7)C24—C23—H23119.9
C3—C2—H2119.9N2—C24—C23120.9 (7)
C1—C2—H2119.9N2—C24—C25115.2 (5)
C2—C3—C4121.5 (7)C23—C24—C25123.8 (6)
C2—C3—H3119.3C26—C25—C30121.6 (7)
C4—C3—H3119.3C26—C25—C24115.5 (6)
C5—C4—C3119.0 (6)C30—C25—C24123.0 (6)
C5—C4—H4120.5C27—C26—C25116.3 (6)
C3—C4—H4120.5C27—C26—Ir1128.8 (5)
C4—C5—C6121.7 (7)C25—C26—Ir1114.7 (5)
C4—C5—H5119.1C28—C27—C26122.1 (7)
C6—C5—H5119.1C28—C27—H27118.9
C7—C6—C1119.2 (6)C26—C27—H27118.9
C7—C6—C5122.0 (6)C29—C28—C27120.4 (7)
C1—C6—C5118.8 (7)C29—C28—H28119.8
C8—C7—C6119.9 (6)C27—C28—H28119.8
C8—C7—H7120.1C30—C29—C28119.9 (7)
C6—C7—H7120.1C30—C29—H29120.1
C7—C8—C9120.0 (7)C28—C29—H29120.1
C7—C8—H8120.0C29—C30—C25119.6 (7)
C9—C8—H8120.0C29—C30—H30120.2
N1—C9—C8122.1 (6)C25—C30—H30120.2
N1—C9—C10115.0 (5)N3—C31—C32121.7 (6)
C8—C9—C10122.9 (6)N3—C31—H31119.2
C15—C10—C11121.5 (6)C32—C31—H31119.2
C15—C10—C9123.3 (6)C33—C32—C31119.9 (7)
C11—C10—C9115.2 (5)C33—C32—H32120.1
C12—C11—C10117.0 (6)C31—C32—H32120.1
C12—C11—Ir1127.9 (5)C34—C33—C32119.0 (7)
C10—C11—Ir1114.9 (4)C34—C33—H33120.5
C13—C12—C11121.9 (6)C32—C33—H33120.5
C13—C12—H12119.1C33—C34—C35118.4 (7)
C11—C12—H12119.1C33—C34—H34120.8
C14—C13—C12119.6 (6)C35—C34—H34120.8
C14—C13—H13120.2N3—C35—C34124.0 (6)
C12—C13—H13120.2N3—C35—H35118.0
C13—C14—C15120.6 (7)C34—C35—H35118.0
C13—C14—H14119.7
C11—Ir1—N1—C99.3 (4)Cl1—Ir1—C11—C1090.5 (4)
C26—Ir1—N1—C977.3 (4)C10—C11—C12—C131.9 (9)
N3—Ir1—N1—C9165.9 (4)Ir1—C11—C12—C13173.5 (5)
Cl1—Ir1—N1—C9107.4 (4)C11—C12—C13—C140.1 (10)
C11—Ir1—N1—C1173.1 (5)C12—C13—C14—C151.7 (10)
C26—Ir1—N1—C1100.3 (5)C13—C14—C15—C101.7 (11)
N3—Ir1—N1—C111.7 (5)C11—C10—C15—C140.1 (10)
Cl1—Ir1—N1—C175.0 (5)C9—C10—C15—C14178.4 (6)
C11—Ir1—N2—C2498.7 (4)C24—N2—C16—C17167.2 (6)
C26—Ir1—N2—C2412.3 (4)Ir1—N2—C16—C1722.6 (9)
N3—Ir1—N2—C2477.2 (4)C24—N2—C16—C2111.0 (9)
Cl1—Ir1—N2—C24163.2 (4)Ir1—N2—C16—C21159.2 (5)
C11—Ir1—N2—C1690.6 (5)N2—C16—C17—C18179.1 (7)
C26—Ir1—N2—C16176.9 (5)C21—C16—C17—C182.6 (11)
N3—Ir1—N2—C1693.5 (5)C16—C17—C18—C192.4 (12)
Cl1—Ir1—N2—C167.5 (5)C17—C18—C19—C205.5 (15)
C26—Ir1—N3—C3524.1 (4)C18—C19—C20—C213.4 (16)
N1—Ir1—N3—C3568.6 (4)C19—C20—C21—C22175.4 (9)
N2—Ir1—N3—C35104.4 (4)C19—C20—C21—C161.8 (13)
Cl1—Ir1—N3—C35151.0 (4)N2—C16—C21—C225.6 (10)
C26—Ir1—N3—C31144.4 (5)C17—C16—C21—C22172.7 (7)
N1—Ir1—N3—C31122.9 (4)N2—C16—C21—C20177.0 (7)
N2—Ir1—N3—C3164.1 (4)C17—C16—C21—C204.7 (10)
Cl1—Ir1—N3—C3140.5 (4)C20—C21—C22—C23174.1 (8)
C9—N1—C1—C64.5 (8)C16—C21—C22—C233.1 (12)
Ir1—N1—C1—C6173.0 (4)C21—C22—C23—C246.3 (13)
C9—N1—C1—C2174.3 (6)C16—N2—C24—C237.9 (9)
Ir1—N1—C1—C28.1 (8)Ir1—N2—C24—C23163.8 (5)
N1—C1—C2—C3179.2 (6)C16—N2—C24—C25174.1 (5)
C6—C1—C2—C31.9 (10)Ir1—N2—C24—C2514.2 (6)
C1—C2—C3—C40.0 (11)C22—C23—C24—N20.7 (11)
C2—C3—C4—C52.6 (11)C22—C23—C24—C25177.1 (7)
C3—C4—C5—C63.1 (11)N2—C24—C25—C267.9 (8)
N1—C1—C6—C71.4 (9)C23—C24—C25—C26170.0 (6)
C2—C1—C6—C7177.5 (6)N2—C24—C25—C30171.9 (6)
N1—C1—C6—C5179.7 (6)C23—C24—C25—C3010.2 (10)
C2—C1—C6—C51.4 (9)C30—C25—C26—C271.7 (9)
C4—C5—C6—C7180.0 (7)C24—C25—C26—C27178.5 (5)
C4—C5—C6—C11.1 (10)C30—C25—C26—Ir1177.2 (5)
C1—C6—C7—C81.1 (10)C24—C25—C26—Ir13.0 (7)
C5—C6—C7—C8177.7 (6)C11—Ir1—C26—C2781.6 (6)
C6—C7—C8—C90.6 (10)N1—Ir1—C26—C271.8 (6)
C1—N1—C9—C85.2 (9)N2—Ir1—C26—C27177.1 (6)
Ir1—N1—C9—C8172.7 (5)N3—Ir1—C26—C27103.2 (5)
C1—N1—C9—C10174.1 (5)N1—Ir1—C26—C25176.8 (4)
Ir1—N1—C9—C108.0 (6)N2—Ir1—C26—C258.0 (4)
C7—C8—C9—N12.7 (10)N3—Ir1—C26—C2571.7 (4)
C7—C8—C9—C10176.5 (6)C25—C26—C27—C280.4 (9)
N1—C9—C10—C15177.8 (6)Ir1—C26—C27—C28174.5 (5)
C8—C9—C10—C151.5 (10)C26—C27—C28—C292.3 (10)
N1—C9—C10—C110.8 (8)C27—C28—C29—C302.2 (11)
C8—C9—C10—C11179.9 (6)C28—C29—C30—C250.2 (11)
C15—C10—C11—C121.9 (9)C26—C25—C30—C291.8 (10)
C9—C10—C11—C12176.7 (5)C24—C25—C30—C29178.5 (6)
C15—C10—C11—Ir1174.1 (5)C35—N3—C31—C321.1 (9)
C9—C10—C11—Ir17.3 (7)Ir1—N3—C31—C32167.9 (5)
C26—Ir1—C11—C1290.5 (6)N3—C31—C32—C330.5 (10)
N1—Ir1—C11—C12175.7 (6)C31—C32—C33—C340.5 (11)
N2—Ir1—C11—C1210.8 (6)C32—C33—C34—C351.1 (11)
Cl1—Ir1—C11—C1294.1 (5)C31—N3—C35—C341.8 (9)
C26—Ir1—C11—C1085.0 (5)Ir1—N3—C35—C34167.0 (5)
N1—Ir1—C11—C108.8 (4)C33—C34—C35—N31.9 (10)
N2—Ir1—C11—C10164.7 (4)

Experimental details

Crystal data
Chemical formula[Ir(C15H10N)2Cl(C5H5N)]·H2O
Mr733.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)9.8949 (15), 17.653 (3), 16.424 (3)
β (°) 98.545 (3)
V3)2837.0 (8)
Z4
Radiation typeMo Kα
µ (mm1)4.83
Crystal size (mm)0.16 × 0.12 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.511, 0.684
No. of measured, independent and
observed [I > 2σ(I)] reflections
14857, 5027, 3702
Rint0.049
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.075, 1.02
No. of reflections5027
No. of parameters370
No. of restraints9
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.72

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Ir1—C111.990 (6)Ir1—N22.092 (5)
Ir1—C261.992 (6)Ir1—N32.221 (5)
Ir1—N12.090 (5)Ir1—Cl12.5182 (16)
C11—Ir1—C2687.3 (2)N1—Ir1—N3105.16 (18)
C11—Ir1—N180.0 (2)N2—Ir1—N379.48 (17)
C26—Ir1—N193.3 (2)C11—Ir1—Cl196.67 (17)
C11—Ir1—N294.9 (2)C26—Ir1—Cl1174.02 (16)
C26—Ir1—N280.0 (2)N1—Ir1—Cl183.02 (14)
N1—Ir1—N2171.7 (2)N2—Ir1—Cl1104.10 (14)
C11—Ir1—N3173.07 (19)N3—Ir1—Cl188.68 (13)
C26—Ir1—N387.8 (2)
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 20571033), the Program for New Century Excellent Talents in Universities (NCET-06–0483) and by the China Post-Doctoral Science Foundation.

References

First citationAdachi, C., Baldo, M. A., Forrest, S. R. & Thompson, M. E. (2000). Appl. Phys. Lett. 77, 904–906.  Web of Science CrossRef CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBaldo, M. A., O'Brien, D. F., You, Y., Shoustikov, A., Sibley, S., Thompson, M. E. & Forrest, S. R. (1998). Nature (London), 395, 151–154.  CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, R., Ho, D. G., Hernandez, B., Selke, M., Murphy, D., Djurovich, P. & Thompson, M. E. (2002). J. Am. Chem. Soc. 124, 14828–14829.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Kwong, R., Tsyba, I., Bortz, M., Mui, B., Bau, R. & Thompson, M. E. (2001a). Inorg. Chem. 40, 1704–1711.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLamansky, S., Djurovich, P., Murphy, D., Abdel-Razzaq, F., Lee, H.-E., Adachi, C., Burrows, P. E., Forrest, S. R. & Thompson, M. E. (2001b). J. Am. Chem. Soc. 123, 4304–4312.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, T., Xia, B.-H., Zhou, X., Zhang, H.-X., Pan, Q.-J. & Gao, J.-S. (2007). Organometallics, 26, 143–149.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds