metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1135-m1136

[μ-2,8-Di­methyl-1,4,5,6,7,10,11,12-octa­hydro­diimidazo[4,5-h;4′,5′-c][1,6]diaze­cine-5,11-di­acetato]bis­­[di­aqua­nitrato­copper(II)] trihydrate

aDepartamento de Química Inorgánica y Nuclear, Facultad de Química, UNAM, 04510 México, DF, Mexico, and bDEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, NL, Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

(Received 16 July 2008; accepted 28 July 2008; online 6 August 2008)

The title compound, [Cu2(C16H20N6O4)(NO3)2(H2O)4]·3H2O, crystallizes with two dinuclear CuII complex mol­ecules, each lying on an inversion center, and six solvent water mol­ecules per unit cell. The central 1,6-diazecine ring adopts the common chair conformation invariably found in the family of complexes bearing such ligands. The CuII atoms have an octa­hedral geometry, with a very strong tetra­gonal distortion due to the Jahn–Teller effect. Axial sites are occupied by a nitrate ion and a water mol­ecule. The Cu⋯Cu separations [7.3580 (9) and 7.3341 (9) Å] are compatible with a potential catecholase activity. Neighboring mol­ecules in the crystal structure are connected via O—H⋯O hydrogen bonds formed by water mol­ecules and carboxyl­ate O atoms. N—H⋯O hydrogen bonds are also present.

Related literature

For the X-ray characterized dinuclear CuII complexes based on related bis­(amino­imidazole) ligands, which were designed as models of the catechol oxidaze active site, see: Driessen et al. (2005[Driessen, W. L., Rehorst, D., Reedijk, J., Mutikainen, I. & Turpeinen, U. (2005). Inorg. Chim. Acta, 358, 2167-2173.]); Gasque et al. (2005[Gasque, L., Olguín, J. & Bernès, S. (2005). Acta Cryst. E61, m274-m276.], 2008[Gasque, L., Ugalde-Saldívar, V. M., Membrillo, I., Olguín, J., Mijangos, E., Bernès, S. & González, I. (2008). J. Inorg. Biochem. 102, 1227-1235.]); Mendoza-Díaz et al. (2002[Mendoza-Díaz, G., Driessen, W. L., Reedijk, J., Gorter, S., Gasque, L. & Thompson, K. R. (2002). Inorg. Chim. Acta, 339, 51-59.]); Sosa et al. (2005[Sosa, A. M., Ugalde-Saldívar, V. M., González, I. & Gasque, L. (2005). J. Electroanal. Chem. 579, 103-111.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C16H20N6O4)(NO3)2(H2O)4]·3H2O

  • Mr = 737.59

  • Triclinic, [P \overline 1]

  • a = 7.7983 (9) Å

  • b = 8.7523 (11) Å

  • c = 22.509 (2) Å

  • α = 91.802 (10)°

  • β = 93.479 (9)°

  • γ = 114.023 (11)°

  • V = 1398.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.61 mm−1

  • T = 296 (1) K

  • 0.24 × 0.20 × 0.18 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: ψ scan (XSCANS; Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.638, Tmax = 0.750

  • 12145 measured reflections

  • 6396 independent reflections

  • 5139 reflections with I > 2σ(I)

  • Rint = 0.028

  • 3 standard reflections every 97 reflections intensity decay: 2.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.082

  • S = 1.02

  • 6396 reflections

  • 433 parameters

  • 22 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O10 1.9484 (16)
Cu1—O14 1.9533 (16)
Cu1—N1 1.9789 (18)
Cu1—N7 2.0619 (17)
Cu1—O15 2.601 (2)
Cu1—O43 2.607 (2)
Cu2—O30 1.9632 (15)
Cu2—O34 1.9697 (17)
Cu2—N21 1.9903 (18)
Cu2—N27 2.0690 (17)
Cu2—O35 2.4221 (19)
Cu2—O53 2.5994 (19)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O42i 0.86 2.00 2.853 (3) 173
N23—H23A⋯O52ii 0.86 2.07 2.927 (3) 173
O14—H14A⋯O61iii 0.84 (1) 1.81 (1) 2.613 (3) 158 (3)
O14—H14B⋯O30 0.85 (1) 1.94 (1) 2.782 (2) 178 (3)
O15—H15A⋯O31 0.84 (1) 1.89 (1) 2.701 (2) 160 (3)
O15—H15B⋯O63iii 0.84 (1) 1.98 (2) 2.769 (3) 155 (3)
O34—H34A⋯O62 0.84 (1) 1.98 (1) 2.819 (3) 174 (3)
O34—H34B⋯O63 0.84 (1) 1.86 (1) 2.665 (3) 160 (3)
O35—H35A⋯O10 0.84 (3) 2.02 (3) 2.855 (2) 174 (3)
O35—H35B⋯O15iv 0.84 (3) 2.11 (3) 2.938 (3) 166 (3)
O61—H61A⋯O11v 0.84 (3) 1.98 (2) 2.787 (3) 161 (4)
O61—H61B⋯O62iv 0.85 (3) 2.22 (4) 2.770 (3) 123 (4)
O62—H62A⋯O31v 0.84 (1) 1.94 (1) 2.777 (3) 173 (4)
O62—H62B⋯O52 0.84 (1) 2.24 (2) 3.023 (3) 154 (3)
O63—H63A⋯O11v 0.84 (1) 1.93 (1) 2.751 (3) 167 (3)
O63—H63B⋯O43 0.84 (3) 2.07 (3) 2.898 (3) 170 (3)
O63—H63B⋯O42 0.84 (3) 2.49 (2) 3.120 (3) 133 (3)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z; (iii) x-1, y, z; (iv) x+1, y, z; (v) x, y-1, z.

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Several dinucleating ligands containing imidazole and amines condensed via the Mannich reaction have been recently described, as well as their dicopper complexes (Driessen et al., 2005; Gasque et al., 2005; Mendoza-Díaz et al., 2002; Sosa et al., 2005), which exhibit interesting magnetic properties and a significant catecholase activity (Gasque et al., 2008). The complex presented here is an analogue of the first dicopper complex of this family reported (Mendoza-Díaz et al., 2002), in which perchlorate ion has been substituted by nitrate. As nitrate ions have a stronger ability to coordinate metal ions, the present complex is found to have six-coordinated CuII centers, while perchlorate ions afforded a cationic complex including five-coordinated metal centers.

The asymmetric unit of the title compound is formed by two half-complexes, placed close to inversion centers, and three lattice water molecules, lying on general positions. The triclinic unit cell thus contains two dinuclar centrosymmetric complexes (Figs. 1 and 2), which have similar structures. The bis(aminoimidazole) ligand coordinates two CuII atoms, via imidazole and tertiary N atoms, and one carboxylate O atom. Each CuII atom completes its coordination environment with two water molecules and one monodentate nitrate ion. The resulting coordination geometry is octahedral, with a very strong distortion due to the Jahn-Teller effect: Cu—O axial bond lengths are in the range of 2.4221 (19)–2.607 (2) Å, while the longest equatorial bond measures 2.0690 (17) Å (Table 1). The central 1,6-diazecine 10-membered ring displays a chair conformation, with a total puckering amplitude of 1.441 (2) and 1.434 (2) Å for Cu1- and Cu2-complex, respectively. The Cu···Cu separations, 7.3580 (9) and 7.3341 (9) Å, are probably compatible with a catecholase activity for this molecular compound (Gasque et al., 2008).

Lattice water molecules are active into forming a number of rather strong hydrogen bonds (Table 2), connecting neighboring molecules in the crystal. Strongest hydrogen bonds involve all water molecules, as both donor and acceptor, and carboxylate O atoms as acceptor groups (Fig. 3).

Related literature top

For the X-ray characterized dinuclear CuII complexes based on related bis(aminoimidazole) ligands, which were designed as models of the catechol oxidaze active site, see: Driessen et al. (2005); Gasque et al. (2005, 2008); Mendoza-Díaz et al. (2002); Sosa et al. (2005).

Experimental top

The diazecine derivative was prepared as described previously (Mendoza-Díaz et al., 2002). To prepare the title compound, Cu(NO3)2.2.5H2O (0.232 g, 1 mmol) were dissolved in 20 ml of water, and an aqueous solution containing the ligand (0.251 g, 0.5 mmol) was added dropwise with stirring. The final pH was 2, at which the solution was left to stand. Blue crystals were collected after two days. Analysis, calculated for C16H34Cu2N8O17: C 26.05, H 4.61, N 15.20%; found: C 26.67, H 4.55, N 15.55%.

Refinement top

Water H atoms were located in a difference Fourier map and refined with distance restraints of O—H = 0.85 (1) and H···H = 1.34 (1) Å, and with Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically and refined as riding atoms, with N—H = 0.86 and C—H = 0.96 (CH3) and 0.97 Å (CH2), and with Uiso(H) = 1.2Ueq(C,N) or Uiso(H) = 1.5Ueq(methyl C).

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure of the first independent molecule. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) -x, 2-y, 1-z.]
[Figure 2] Fig. 2. Structure of the second independent molecule. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry code: (ii) 1-x, 2-y, -z.]
[Figure 3] Fig. 3. A part of the crystal packing, viewed down the [100] direction. C- and N–bonded H atoms have been omitted for clarity. Dashed lines represent hydrogen bonds involving water molecules and carboxylate O atoms.
[µ-2,8-Dimethyl-1,4,5,6,7,10,11,12-octahydrodiimidazo\[4,5-h;4',5'- c][1,6]diazecine-5,11-diacetato]bis[diaquanitratocopper(II)] trihydrate top
Crystal data top
[Cu2(C16H20N6O4)(NO3)2(H2O)4]·3H2OZ = 2
Mr = 737.59F(000) = 760
Triclinic, P1Dx = 1.752 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7983 (9) ÅCell parameters from 74 reflections
b = 8.7523 (11) Åθ = 3.8–12.5°
c = 22.509 (2) ŵ = 1.61 mm1
α = 91.802 (10)°T = 296 K
β = 93.479 (9)°Prism, blue
γ = 114.023 (11)°0.24 × 0.20 × 0.18 mm
V = 1398.0 (3) Å3
Data collection top
Bruker P4
diffractometer
5139 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 27.5°, θmin = 2.6°
2θ/ω scansh = 97
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
k = 1011
Tmin = 0.638, Tmax = 0.750l = 2929
12145 measured reflections3 standard reflections every 97 reflections
6396 independent reflections intensity decay: 2.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0357P)2 + 0.6951P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
6396 reflectionsΔρmax = 0.50 e Å3
433 parametersΔρmin = 0.48 e Å3
22 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0028 (5)
Primary atom site location: structure-invariant direct methods
Crystal data top
[Cu2(C16H20N6O4)(NO3)2(H2O)4]·3H2Oγ = 114.023 (11)°
Mr = 737.59V = 1398.0 (3) Å3
Triclinic, P1Z = 2
a = 7.7983 (9) ÅMo Kα radiation
b = 8.7523 (11) ŵ = 1.61 mm1
c = 22.509 (2) ÅT = 296 K
α = 91.802 (10)°0.24 × 0.20 × 0.18 mm
β = 93.479 (9)°
Data collection top
Bruker P4
diffractometer
5139 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XSCANS; Siemens, 1996)
Rint = 0.028
Tmin = 0.638, Tmax = 0.7503 standard reflections every 97 reflections
12145 measured reflections intensity decay: 2.5%
6396 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03122 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.50 e Å3
6396 reflectionsΔρmin = 0.48 e Å3
433 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.08644 (4)0.89792 (3)0.348009 (11)0.02579 (9)
N10.0982 (3)0.7671 (2)0.40361 (8)0.0248 (4)
C20.1523 (3)0.6214 (3)0.42879 (10)0.0256 (4)
N30.2240 (3)0.6329 (2)0.48134 (8)0.0258 (4)
H3A0.26800.55350.50520.031*
C40.2147 (3)0.7941 (3)0.49036 (9)0.0238 (4)
C50.1392 (3)0.8745 (3)0.44130 (9)0.0231 (4)
C60.0845 (3)1.0489 (3)0.42218 (9)0.0234 (4)
H6A0.08501.12280.45510.028*
H6B0.17101.05130.38980.028*
N70.1104 (3)1.1013 (2)0.40212 (8)0.0236 (4)
C80.1656 (3)1.2389 (3)0.36114 (10)0.0275 (5)
H8A0.22461.34600.38380.033*
H8B0.05501.23580.33800.033*
C90.3037 (3)1.2185 (3)0.31942 (10)0.0294 (5)
O100.2858 (2)1.06789 (19)0.30833 (7)0.0303 (3)
O110.4199 (3)1.3415 (2)0.29801 (9)0.0502 (5)
C120.1377 (4)0.4685 (3)0.40444 (12)0.0388 (6)
H12A0.02850.49960.38220.058*
H12B0.24840.40380.37870.058*
H12C0.12670.40280.43660.058*
C130.2580 (3)0.8638 (3)0.54610 (9)0.0262 (4)
H13A0.37850.78520.55780.031*
H13B0.27000.96730.53770.031*
O140.0602 (3)0.7270 (2)0.28594 (7)0.0337 (4)
H14A0.048 (2)0.651 (3)0.2794 (12)0.051*
H14B0.087 (4)0.770 (3)0.2528 (7)0.051*
O150.1735 (3)0.9468 (2)0.28392 (8)0.0421 (4)
H15A0.126 (4)0.955 (4)0.2509 (8)0.063*
H15B0.263 (3)0.851 (2)0.2816 (14)0.063*
Cu20.35494 (4)0.83718 (3)0.145370 (11)0.02455 (8)
N210.5757 (3)0.8507 (2)0.10232 (8)0.0246 (4)
C220.6423 (3)0.7446 (3)0.08044 (10)0.0273 (5)
N230.7269 (3)0.8023 (2)0.03001 (8)0.0258 (4)
H23A0.78060.75420.00860.031*
C240.7128 (3)0.9526 (3)0.01846 (9)0.0225 (4)
C250.6218 (3)0.9813 (3)0.06424 (9)0.0218 (4)
C260.5580 (3)1.1153 (3)0.08005 (9)0.0225 (4)
H26A0.57081.18790.04740.027*
H26B0.63141.18270.11520.027*
N270.3561 (2)1.0257 (2)0.09200 (7)0.0213 (3)
C280.2817 (3)1.1241 (3)0.12900 (10)0.0267 (5)
H28A0.22821.18360.10360.032*
H28B0.38311.20590.15520.032*
C290.1307 (3)1.0060 (3)0.16603 (10)0.0278 (5)
O300.1386 (2)0.86562 (19)0.17597 (7)0.0293 (3)
O310.0133 (3)1.0514 (2)0.18558 (8)0.0415 (4)
C320.6350 (4)0.5899 (3)0.10759 (12)0.0416 (6)
H32A0.58640.58310.14600.062*
H32B0.75950.59270.11190.062*
H32C0.55440.49370.08230.062*
C330.7703 (3)1.0501 (3)0.03551 (9)0.0248 (4)
H33A0.89681.06300.04270.030*
H33B0.77511.16120.02720.030*
O340.3272 (3)0.6462 (2)0.19384 (8)0.0351 (4)
H34A0.222 (2)0.564 (3)0.1904 (12)0.053*
H34B0.364 (4)0.668 (4)0.2303 (6)0.053*
O350.5368 (3)1.0386 (2)0.22603 (8)0.0393 (4)
H35A0.466 (3)1.044 (4)0.2520 (10)0.059*
H35B0.628 (3)1.029 (4)0.2450 (12)0.059*
N410.3385 (3)0.7364 (2)0.43818 (9)0.0332 (4)
O410.2854 (4)0.7699 (3)0.48506 (9)0.0635 (6)
O420.3741 (3)0.6098 (2)0.43267 (9)0.0426 (4)
O430.3583 (3)0.8284 (3)0.39489 (8)0.0487 (5)
N510.1540 (3)0.4932 (2)0.04767 (9)0.0320 (4)
O510.2721 (3)0.5612 (3)0.01204 (9)0.0540 (5)
O520.0845 (3)0.3372 (2)0.05034 (9)0.0449 (5)
O530.1045 (3)0.5808 (2)0.08235 (8)0.0425 (4)
O610.7678 (4)0.4526 (3)0.24970 (14)0.0846 (10)
H61A0.657 (3)0.398 (5)0.259 (2)0.127*
H61B0.819 (4)0.384 (3)0.250 (2)0.127*
O620.0134 (3)0.3570 (2)0.17744 (9)0.0484 (5)
H62A0.015 (5)0.260 (2)0.1804 (14)0.073*
H62B0.006 (5)0.371 (4)0.1406 (6)0.073*
O630.4948 (3)0.6773 (2)0.30304 (8)0.0404 (4)
H63A0.477 (5)0.5775 (18)0.3072 (14)0.061*
H63B0.448 (5)0.709 (4)0.3310 (11)0.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03386 (16)0.02060 (13)0.02290 (14)0.00971 (11)0.01201 (11)0.00325 (10)
N10.0294 (10)0.0231 (9)0.0225 (9)0.0105 (8)0.0069 (7)0.0032 (7)
C20.0292 (11)0.0233 (10)0.0246 (11)0.0104 (9)0.0057 (9)0.0047 (8)
N30.0300 (10)0.0217 (9)0.0246 (9)0.0082 (7)0.0082 (7)0.0066 (7)
C40.0232 (10)0.0216 (10)0.0250 (10)0.0069 (8)0.0054 (8)0.0026 (8)
C50.0225 (10)0.0228 (10)0.0233 (10)0.0081 (8)0.0043 (8)0.0021 (8)
C60.0256 (11)0.0249 (10)0.0220 (10)0.0119 (9)0.0060 (8)0.0038 (8)
N70.0294 (10)0.0211 (8)0.0214 (9)0.0103 (7)0.0089 (7)0.0046 (7)
C80.0361 (12)0.0221 (10)0.0256 (11)0.0117 (9)0.0111 (9)0.0064 (8)
C90.0338 (12)0.0280 (11)0.0265 (11)0.0114 (10)0.0102 (9)0.0064 (9)
O100.0363 (9)0.0257 (8)0.0298 (8)0.0116 (7)0.0150 (7)0.0051 (6)
O110.0573 (12)0.0308 (9)0.0619 (13)0.0124 (9)0.0368 (10)0.0140 (9)
C120.0554 (16)0.0271 (12)0.0382 (14)0.0197 (11)0.0143 (12)0.0054 (10)
C130.0254 (11)0.0285 (11)0.0248 (11)0.0101 (9)0.0085 (8)0.0034 (8)
O140.0437 (10)0.0272 (8)0.0259 (8)0.0088 (7)0.0127 (7)0.0000 (7)
O150.0395 (11)0.0469 (11)0.0327 (9)0.0092 (8)0.0114 (8)0.0047 (8)
Cu20.02862 (15)0.02653 (14)0.02214 (14)0.01350 (11)0.00965 (10)0.00828 (10)
N210.0261 (9)0.0271 (9)0.0228 (9)0.0123 (8)0.0054 (7)0.0070 (7)
C220.0281 (11)0.0315 (11)0.0257 (11)0.0148 (9)0.0056 (9)0.0064 (9)
N230.0288 (10)0.0296 (9)0.0242 (9)0.0163 (8)0.0076 (7)0.0040 (7)
C240.0211 (10)0.0252 (10)0.0218 (10)0.0098 (8)0.0032 (8)0.0037 (8)
C250.0205 (10)0.0237 (10)0.0209 (10)0.0086 (8)0.0026 (8)0.0044 (8)
C260.0230 (10)0.0224 (10)0.0220 (10)0.0085 (8)0.0055 (8)0.0035 (8)
N270.0230 (9)0.0220 (8)0.0201 (8)0.0097 (7)0.0067 (7)0.0032 (7)
C280.0314 (12)0.0297 (11)0.0243 (10)0.0166 (9)0.0099 (9)0.0052 (9)
C290.0300 (12)0.0333 (12)0.0226 (11)0.0145 (10)0.0075 (9)0.0046 (9)
O300.0343 (9)0.0302 (8)0.0265 (8)0.0146 (7)0.0128 (6)0.0076 (6)
O310.0460 (11)0.0491 (11)0.0446 (10)0.0310 (9)0.0265 (8)0.0172 (8)
C320.0576 (17)0.0428 (14)0.0415 (14)0.0350 (13)0.0172 (12)0.0187 (12)
C330.0215 (10)0.0290 (11)0.0228 (10)0.0083 (9)0.0061 (8)0.0053 (8)
O340.0404 (10)0.0308 (9)0.0314 (9)0.0109 (7)0.0053 (7)0.0111 (7)
O350.0399 (10)0.0510 (11)0.0328 (9)0.0241 (9)0.0069 (8)0.0005 (8)
N410.0346 (11)0.0308 (10)0.0348 (11)0.0136 (9)0.0039 (9)0.0068 (8)
O410.1023 (19)0.0726 (15)0.0410 (12)0.0576 (14)0.0303 (12)0.0161 (10)
O420.0498 (11)0.0284 (9)0.0530 (11)0.0177 (8)0.0129 (9)0.0093 (8)
O430.0711 (14)0.0503 (11)0.0392 (10)0.0368 (11)0.0161 (9)0.0207 (9)
N510.0358 (11)0.0319 (10)0.0311 (10)0.0174 (9)0.0023 (8)0.0005 (8)
O510.0574 (13)0.0541 (12)0.0461 (12)0.0165 (10)0.0171 (10)0.0033 (9)
O520.0558 (12)0.0292 (9)0.0502 (11)0.0183 (8)0.0008 (9)0.0021 (8)
O530.0532 (12)0.0388 (10)0.0416 (10)0.0249 (9)0.0074 (9)0.0008 (8)
O610.0627 (16)0.0583 (15)0.101 (2)0.0102 (12)0.0429 (15)0.0296 (15)
O620.0574 (12)0.0403 (11)0.0497 (12)0.0196 (10)0.0189 (10)0.0102 (9)
O630.0469 (11)0.0366 (10)0.0365 (10)0.0144 (9)0.0103 (8)0.0094 (8)
Geometric parameters (Å, º) top
Cu1—O101.9484 (16)C33—N27ii1.514 (3)
Cu1—O141.9533 (16)N41—O411.226 (3)
Cu1—N11.9789 (18)N41—O421.251 (3)
Cu1—N72.0619 (17)N41—O431.260 (3)
Cu1—O152.601 (2)N51—O511.233 (3)
Cu1—O432.607 (2)N51—O521.253 (3)
N1—C21.327 (3)N51—O531.259 (3)
N1—C51.390 (3)N3—H3A0.8600
C2—N31.357 (3)C6—H6A0.9700
C2—C121.480 (3)C6—H6B0.9700
N3—C41.391 (3)C8—H8A0.9700
C4—C51.361 (3)C8—H8B0.9700
C4—C131.494 (3)C12—H12A0.9600
C5—C61.493 (3)C12—H12B0.9600
C6—N71.501 (3)C12—H12C0.9600
N7—C81.477 (3)C13—H13A0.9700
N7—C13i1.519 (3)C13—H13B0.9700
C8—C91.530 (3)O14—H14A0.84 (1)
C9—O111.226 (3)O14—H14B0.85 (1)
C9—O101.282 (3)O15—H15A0.84 (1)
C13—N7i1.519 (3)O15—H15B0.84 (1)
Cu2—O301.9632 (15)N23—H23A0.8600
Cu2—O341.9697 (17)C26—H26A0.9700
Cu2—N211.9903 (18)C26—H26B0.9700
Cu2—N272.0690 (17)C28—H28A0.9700
Cu2—O352.4221 (19)C28—H28B0.9700
Cu2—O532.5994 (19)C32—H32A0.9600
N21—C221.330 (3)C32—H32B0.9600
N21—C251.391 (3)C32—H32C0.9600
C22—N231.355 (3)C33—H33A0.9700
C22—C321.484 (3)C33—H33B0.9700
N23—C241.395 (3)O34—H34A0.84 (1)
C24—C251.359 (3)O34—H34B0.84 (1)
C24—C331.492 (3)O35—H35A0.84 (3)
C25—C261.490 (3)O35—H35B0.84 (3)
C26—N271.492 (3)O61—H61A0.84 (3)
N27—C281.480 (3)O61—H61B0.85 (3)
N27—C33ii1.514 (3)O62—H62A0.84 (1)
C28—C291.527 (3)O62—H62B0.84 (1)
C29—O311.234 (3)O63—H63A0.84 (1)
C29—O301.281 (3)O63—H63B0.84 (3)
O10—Cu1—O1491.21 (7)N27—C28—C29109.37 (17)
O10—Cu1—N1166.48 (7)O31—C29—O30124.2 (2)
O14—Cu1—N1102.13 (7)O31—C29—C28119.3 (2)
O10—Cu1—N782.87 (7)O30—C29—C28116.51 (19)
O14—Cu1—N7170.59 (7)C29—O30—Cu2114.94 (14)
N1—Cu1—N784.17 (7)C24—C33—N27ii115.46 (17)
O10—Cu1—O1591.86 (7)O41—N41—O42120.3 (2)
O14—Cu1—O1586.02 (7)O41—N41—O43120.8 (2)
N1—Cu1—O1591.24 (7)O42—N41—O43118.9 (2)
N7—Cu1—O1586.87 (7)N41—O43—Cu1122.73 (16)
O10—Cu1—O4384.37 (7)O51—N51—O52120.4 (2)
O14—Cu1—O4384.84 (7)O51—N51—O53120.0 (2)
N1—Cu1—O4394.57 (7)O52—N51—O53119.5 (2)
N7—Cu1—O43101.77 (7)N51—O53—Cu2120.63 (15)
O15—Cu1—O43170.03 (6)C2—N3—H3A125.6
C2—N1—C5106.92 (17)C4—N3—H3A125.6
C2—N1—Cu1139.08 (15)C5—C6—H6A110.6
C5—N1—Cu1109.98 (13)N7—C6—H6A110.6
N1—C2—N3109.50 (18)C5—C6—H6B110.6
N1—C2—C12126.2 (2)N7—C6—H6B110.6
N3—C2—C12124.3 (2)H6A—C6—H6B108.8
C2—N3—C4108.79 (17)N7—C8—H8A109.9
C5—C4—N3105.16 (18)C9—C8—H8A109.9
C5—C4—C13128.95 (19)N7—C8—H8B109.9
N3—C4—C13125.51 (19)C9—C8—H8B109.9
C4—C5—N1109.61 (18)H8A—C8—H8B108.3
C4—C5—C6134.29 (19)C2—C12—H12A109.5
N1—C5—C6116.00 (18)C2—C12—H12B109.5
C5—C6—N7105.46 (16)H12A—C12—H12B109.5
C8—N7—C6114.66 (17)C2—C12—H12C109.5
C8—N7—C13i111.73 (17)H12A—C12—H12C109.5
C6—N7—C13i112.48 (16)H12B—C12—H12C109.5
C8—N7—Cu1102.92 (12)C4—C13—H13A108.8
C6—N7—Cu1102.80 (12)N7i—C13—H13A108.8
C13i—N7—Cu1111.46 (13)C4—C13—H13B108.8
N7—C8—C9108.93 (17)N7i—C13—H13B108.8
O11—C9—O10124.0 (2)H13A—C13—H13B107.7
O11—C9—C8120.1 (2)Cu1—O14—H14A115.2 (19)
O10—C9—C8115.84 (19)Cu1—O14—H14B111 (2)
C9—O10—Cu1114.73 (14)H14A—O14—H14B105 (2)
C4—C13—N7i113.84 (18)Cu1—O15—H15A98 (2)
O30—Cu2—O3494.11 (7)Cu1—O15—H15B102 (2)
O30—Cu2—N21166.65 (7)H15A—O15—H15B105 (2)
O34—Cu2—N2199.21 (7)C22—N23—H23A125.6
O30—Cu2—N2782.21 (7)C24—N23—H23A125.6
O34—Cu2—N27174.38 (7)C25—C26—H26A110.6
N21—Cu2—N2784.44 (7)N27—C26—H26A110.6
O30—Cu2—O3584.72 (7)C25—C26—H26B110.6
O34—Cu2—O3592.25 (7)N27—C26—H26B110.6
N21—Cu2—O3595.62 (7)H26A—C26—H26B108.8
N27—Cu2—O3591.64 (7)N27—C28—H28A109.8
O30—Cu2—O5385.36 (6)C29—C28—H28A109.8
O34—Cu2—O5376.31 (7)N27—C28—H28B109.8
N21—Cu2—O5396.84 (7)C29—C28—H28B109.8
N27—Cu2—O5399.08 (6)H28A—C28—H28B108.2
O35—Cu2—O53164.27 (6)C22—C32—H32A109.5
C22—N21—C25106.61 (17)C22—C32—H32B109.5
C22—N21—Cu2137.21 (15)H32A—C32—H32B109.5
C25—N21—Cu2109.28 (13)C22—C32—H32C109.5
N21—C22—N23109.61 (19)H32A—C32—H32C109.5
N21—C22—C32126.3 (2)H32B—C32—H32C109.5
N23—C22—C32124.1 (2)C24—C33—H33A108.4
C22—N23—C24108.84 (18)N27ii—C33—H33A108.4
C25—C24—N23104.89 (18)C24—C33—H33B108.4
C25—C24—C33128.23 (19)N27ii—C33—H33B108.4
N23—C24—C33126.66 (19)H33A—C33—H33B107.5
C24—C25—N21110.02 (18)Cu2—O34—H34A117 (2)
C24—C25—C26134.12 (19)Cu2—O34—H34B117 (2)
N21—C25—C26115.81 (17)H34A—O34—H34B109 (2)
C25—C26—N27105.47 (16)Cu2—O35—H35A110 (2)
C28—N27—C26114.94 (16)Cu2—O35—H35B121 (2)
C28—N27—C33ii111.27 (17)H35A—O35—H35B105 (2)
C26—N27—C33ii112.37 (15)H61A—O61—H61B106 (2)
C28—N27—Cu2104.14 (12)H62A—O62—H62B103 (2)
C26—N27—Cu2103.68 (12)H63A—O63—H63B108 (2)
C33ii—N27—Cu2109.74 (12)
O10—Cu1—N1—C2126.5 (3)N27—Cu2—N21—C254.30 (14)
O14—Cu1—N1—C244.1 (2)O35—Cu2—N21—C2586.81 (14)
N7—Cu1—N1—C2143.0 (2)O53—Cu2—N21—C25102.81 (14)
O15—Cu1—N1—C2130.3 (2)C25—N21—C22—N230.5 (2)
O43—Cu1—N1—C241.6 (2)Cu2—N21—C22—N23145.56 (18)
O10—Cu1—N1—C526.7 (4)C25—N21—C22—C32176.9 (2)
O14—Cu1—N1—C5162.71 (14)Cu2—N21—C22—C3237.1 (4)
N7—Cu1—N1—C510.21 (14)N21—C22—N23—C240.5 (3)
O15—Cu1—N1—C576.52 (14)C32—C22—N23—C24178.0 (2)
O43—Cu1—N1—C5111.60 (14)C22—N23—C24—C251.3 (2)
C5—N1—C2—N30.7 (2)C22—N23—C24—C33173.7 (2)
Cu1—N1—C2—N3152.96 (18)N23—C24—C25—N211.6 (2)
C5—N1—C2—C12179.5 (2)C33—C24—C25—N21173.3 (2)
Cu1—N1—C2—C1226.8 (4)N23—C24—C25—C26179.1 (2)
N1—C2—N3—C40.2 (3)C33—C24—C25—C264.2 (4)
C12—C2—N3—C4179.6 (2)C22—N21—C25—C241.3 (2)
C2—N3—C4—C51.1 (2)Cu2—N21—C25—C24154.94 (15)
C2—N3—C4—C13172.3 (2)C22—N21—C25—C26179.31 (18)
N3—C4—C5—N11.5 (2)Cu2—N21—C25—C2623.0 (2)
C13—C4—C5—N1171.5 (2)C24—C25—C26—N27129.3 (2)
N3—C4—C5—C6177.7 (2)N21—C25—C26—N2748.0 (2)
C13—C4—C5—C64.7 (4)C25—C26—N27—C28158.64 (17)
C2—N1—C5—C41.4 (2)C25—C26—N27—C33ii72.8 (2)
Cu1—N1—C5—C4160.57 (15)C25—C26—N27—Cu245.67 (16)
C2—N1—C5—C6178.42 (19)O30—Cu2—N27—C2830.55 (13)
Cu1—N1—C5—C616.4 (2)N21—Cu2—N27—C28149.39 (14)
C4—C5—C6—N7131.6 (3)O35—Cu2—N27—C2853.90 (13)
N1—C5—C6—N744.5 (2)O53—Cu2—N27—C28114.55 (13)
C5—C6—N7—C8158.05 (17)O30—Cu2—N27—C26151.13 (12)
C5—C6—N7—C13i72.8 (2)N21—Cu2—N27—C2628.80 (12)
C5—C6—N7—Cu147.16 (17)O35—Cu2—N27—C2666.69 (12)
O10—Cu1—N7—C831.67 (14)O53—Cu2—N27—C26124.87 (12)
N1—Cu1—N7—C8152.16 (14)O30—Cu2—N27—C33ii88.64 (13)
O15—Cu1—N7—C860.59 (13)N21—Cu2—N27—C33ii91.42 (13)
O43—Cu1—N7—C8114.37 (13)O35—Cu2—N27—C33ii173.09 (12)
O10—Cu1—N7—C6151.08 (13)O53—Cu2—N27—C33ii4.64 (13)
N1—Cu1—N7—C632.75 (13)C26—N27—C28—C29148.41 (18)
O15—Cu1—N7—C658.82 (12)C33ii—N27—C28—C2982.4 (2)
O43—Cu1—N7—C6126.22 (12)Cu2—N27—C28—C2935.70 (19)
O10—Cu1—N7—C13i88.21 (13)N27—C28—C29—O31158.3 (2)
N1—Cu1—N7—C13i87.95 (13)N27—C28—C29—O3023.4 (3)
O15—Cu1—N7—C13i179.52 (13)O31—C29—O30—Cu2174.47 (19)
O43—Cu1—N7—C13i5.51 (14)C28—C29—O30—Cu23.7 (2)
C6—N7—C8—C9149.67 (18)O34—Cu2—O30—C29164.11 (16)
C13i—N7—C8—C980.8 (2)N21—Cu2—O30—C2919.9 (4)
Cu1—N7—C8—C938.8 (2)N27—Cu2—O30—C2920.16 (15)
N7—C8—C9—O11152.6 (2)O35—Cu2—O30—C2972.23 (16)
N7—C8—C9—O1028.6 (3)O53—Cu2—O30—C29120.00 (16)
O11—C9—O10—Cu1179.2 (2)C25—C24—C33—N27ii101.2 (3)
C8—C9—O10—Cu10.5 (3)N23—C24—C33—N27ii72.7 (3)
O14—Cu1—O10—C9154.16 (17)O41—N41—O43—Cu156.3 (3)
N1—Cu1—O10—C935.0 (4)O42—N41—O43—Cu1123.81 (19)
N7—Cu1—O10—C918.51 (16)O10—Cu1—O43—N41167.17 (19)
O15—Cu1—O10—C968.10 (17)O14—Cu1—O43—N41101.09 (19)
O43—Cu1—O10—C9121.15 (17)N1—Cu1—O43—N410.70 (19)
C5—C4—C13—N7i99.9 (3)N7—Cu1—O43—N4185.68 (19)
N3—C4—C13—N7i71.9 (3)O51—N51—O53—Cu249.7 (3)
O30—Cu2—N21—C22141.4 (3)O52—N51—O53—Cu2129.25 (19)
O34—Cu2—N21—C2234.5 (2)O30—Cu2—O53—N51179.93 (17)
N27—Cu2—N21—C22141.1 (2)O34—Cu2—O53—N5184.69 (17)
O35—Cu2—N21—C22127.8 (2)N21—Cu2—O53—N5113.17 (18)
O53—Cu2—N21—C2242.6 (2)N27—Cu2—O53—N5198.60 (17)
O30—Cu2—N21—C254.0 (4)O35—Cu2—O53—N51129.0 (2)
O34—Cu2—N21—C25179.99 (14)
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O42iii0.862.002.853 (3)173
N23—H23A···O52iv0.862.072.927 (3)173
O14—H14A···O61v0.84 (1)1.81 (1)2.613 (3)158 (3)
O14—H14B···O300.85 (1)1.94 (1)2.782 (2)178 (3)
O15—H15A···O310.84 (1)1.89 (1)2.701 (2)160 (3)
O15—H15B···O63v0.84 (1)1.98 (2)2.769 (3)155 (3)
O34—H34A···O620.84 (1)1.98 (1)2.819 (3)174 (3)
O34—H34B···O630.84 (1)1.86 (1)2.665 (3)160 (3)
O35—H35A···O100.84 (3)2.02 (3)2.855 (2)174 (3)
O35—H35B···O15vi0.84 (3)2.11 (3)2.938 (3)166 (3)
O61—H61A···O11vii0.84 (3)1.98 (2)2.787 (3)161 (4)
O61—H61B···O62vi0.85 (3)2.22 (4)2.770 (3)123 (4)
O62—H62A···O31vii0.84 (1)1.94 (1)2.777 (3)173 (4)
O62—H62B···O520.84 (1)2.24 (2)3.023 (3)154 (3)
O63—H63A···O11vii0.84 (1)1.93 (1)2.751 (3)167 (3)
O63—H63B···O430.84 (3)2.07 (3)2.898 (3)170 (3)
O63—H63B···O420.84 (3)2.49 (2)3.120 (3)133 (3)
Symmetry codes: (iii) x, y+1, z+1; (iv) x+1, y+1, z; (v) x1, y, z; (vi) x+1, y, z; (vii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cu2(C16H20N6O4)(NO3)2(H2O)4]·3H2O
Mr737.59
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.7983 (9), 8.7523 (11), 22.509 (2)
α, β, γ (°)91.802 (10), 93.479 (9), 114.023 (11)
V3)1398.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.61
Crystal size (mm)0.24 × 0.20 × 0.18
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionψ scan
(XSCANS; Siemens, 1996)
Tmin, Tmax0.638, 0.750
No. of measured, independent and
observed [I > 2σ(I)] reflections
12145, 6396, 5139
Rint0.028
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.082, 1.02
No. of reflections6396
No. of parameters433
No. of restraints22
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.48

Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006).

Selected bond lengths (Å) top
Cu1—O101.9484 (16)Cu2—O301.9632 (15)
Cu1—O141.9533 (16)Cu2—O341.9697 (17)
Cu1—N11.9789 (18)Cu2—N211.9903 (18)
Cu1—N72.0619 (17)Cu2—N272.0690 (17)
Cu1—O152.601 (2)Cu2—O352.4221 (19)
Cu1—O432.607 (2)Cu2—O532.5994 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O42i0.862.002.853 (3)172.8
N23—H23A···O52ii0.862.072.927 (3)172.6
O14—H14A···O61iii0.84 (1)1.81 (1)2.613 (3)158 (3)
O14—H14B···O300.85 (1)1.94 (1)2.782 (2)178 (3)
O15—H15A···O310.84 (1)1.89 (1)2.701 (2)160 (3)
O15—H15B···O63iii0.84 (1)1.98 (2)2.769 (3)155 (3)
O34—H34A···O620.84 (1)1.98 (1)2.819 (3)174 (3)
O34—H34B···O630.84 (1)1.86 (1)2.665 (3)160 (3)
O35—H35A···O100.84 (3)2.02 (3)2.855 (2)174 (3)
O35—H35B···O15iv0.84 (3)2.11 (3)2.938 (3)166 (3)
O61—H61A···O11v0.84 (3)1.98 (2)2.787 (3)161 (4)
O61—H61B···O62iv0.85 (3)2.22 (4)2.770 (3)123 (4)
O62—H62A···O31v0.84 (1)1.94 (1)2.777 (3)173 (4)
O62—H62B···O520.84 (1)2.24 (2)3.023 (3)154 (3)
O63—H63A···O11v0.84 (1)1.93 (1)2.751 (3)167 (3)
O63—H63B···O430.84 (3)2.07 (3)2.898 (3)170 (3)
O63—H63B···O420.84 (3)2.49 (2)3.120 (3)133 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z; (iii) x1, y, z; (iv) x+1, y, z; (v) x, y1, z.
 

Acknowledgements

SB thanks Universidad de Puebla, Mexico, for diffractometer time.

References

First citationDriessen, W. L., Rehorst, D., Reedijk, J., Mutikainen, I. & Turpeinen, U. (2005). Inorg. Chim. Acta, 358, 2167–2173.  Web of Science CSD CrossRef CAS Google Scholar
First citationGasque, L., Olguín, J. & Bernès, S. (2005). Acta Cryst. E61, m274–m276.  CSD CrossRef IUCr Journals Google Scholar
First citationGasque, L., Ugalde-Saldívar, V. M., Membrillo, I., Olguín, J., Mijangos, E., Bernès, S. & González, I. (2008). J. Inorg. Biochem. 102, 1227–1235.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMendoza-Díaz, G., Driessen, W. L., Reedijk, J., Gorter, S., Gasque, L. & Thompson, K. R. (2002). Inorg. Chim. Acta, 339, 51–59.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSosa, A. M., Ugalde-Saldívar, V. M., González, I. & Gasque, L. (2005). J. Electroanal. Chem. 579, 103–111.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1135-m1136
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds