metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1111-m1112

Bis(2,2′-bi­pyridine-κ2N,N′)(4-methyl­benzoato-κ2O,O′)copper(II) iodide hemihydrate

aCollege of Chemistry, South China University of Technology, Guangzhou 510640, People's Republic of China
*Correspondence e-mail: ghdeng@126.com

(Received 19 July 2008; accepted 30 July 2008; online 6 August 2008)

The title compound, [Cu(C8H7O2)(C10H8N2)2]I·0.5H2O, was obtained by the hydro­thermal reaction of copper(I) iodide, 4-methyl­benzoic acid and 2,2′-bipyridine. The initial reactant of CuI was oxidized to CuII. The asymmetric unit contains two independent complex mol­ecules, two I ions and one water molecule. Each CuII atom is coordinated by two O atoms from a 4-methyl­benzoate ligand and four N atoms from two 2,2′-bipyridine ligands, displaying a distorted octa­hedral geometry. The structure involves O—H⋯I hydrogen bonds between the water mol­ecule and iodide ions and ππ stacking inter­actions between the benzene and pyridyl rings [centroid–centroid distance = 3.79 (1) Å] and between the pyridyl rings [centroid–centroid distance = 3.87 (1) Å].

Related literature

For related literature, see: Ma & Deng (2008[Ma, D.-Y. & Deng, G.-H. (2008). Acta Cryst. C64, m271-m273.]); Mao et al. (2001[Mao, Z.-W., Heinemann, F. W., Liehr, G. & van Eldik, R. (2001). J. Chem. Soc. Dalton Trans. pp. 3652-3662.]); Song et al. (2008a[Song, W.-D., Gu, C.-S., Hao, X.-M. & Yan, J.-B. (2008a). Acta Cryst. E64, m522.],b[Song, W.-D., Wang, H. & Ji, L.-L. (2008b). Acta Cryst. E64, m548.],c[Song, W.-D., Wang, H. & Miao, Y.-L. (2008c). Acta Cryst. E64, m716.],d[Song, W.-D., Yan, J.-B. & Hao, X.-M. (2008d). Acta Cryst. E64, m919-m920.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C8H7O2)(C10H8N2)2]I·0.5H2O

  • Mr = 646.96

  • Triclinic, [P \overline 1]

  • a = 14.6698 (4) Å

  • b = 15.3588 (4) Å

  • c = 15.4224 (7) Å

  • α = 100.943 (2)°

  • β = 114.345 (2)°

  • γ = 111.996 (2)°

  • V = 2680.64 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.00 mm−1

  • T = 296 (2) K

  • 0.37 × 0.30 × 0.26 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.525, Tmax = 0.624

  • 29909 measured reflections

  • 9564 independent reflections

  • 6740 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.149

  • S = 1.03

  • 9564 reflections

  • 660 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 1.55 e Å−3

  • Δρmin = −1.53 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.976 (4)
Cu1—O2 2.769 (4)
Cu1—N6 1.987 (4)
Cu1—N3 2.000 (4)
Cu1—N5 2.060 (4)
Cu1—N4 2.192 (4)
Cu2—O3 1.974 (3)
Cu2—O4 2.832 (3)
Cu2—N8 1.997 (4)
Cu2—N2 2.001 (4)
Cu2—N7 2.038 (4)
Cu2—N1 2.181 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯I1i 0.82 3.15 3.935 (8) 161
O1W—H2W⋯I1ii 0.82 2.76 3.568 (8) 170
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a building block, 4-methylbenzoate ligand is an excellent candidate for the construction of supramolecular complexes (Ma & Deng, 2008; Song et al., 2008a,b,c,d). Recently, we obtained the title mononuclear complex by the hydrothermal reaction of CuI, 4-methylbenzoic acid and 2,2'-bipyridine.

As illustrated in Fig. 1, the asymmetric unit of the title compound contains two independent complex molecules, two I ions and one lattice water molecule. Each CuII atom has a distorted octahedral coordination geometry, involving two carboxylate O atoms from one 4-methylbenzoate ligand, and four N atoms from two 2,2'-bipyridine ligands. One Cu—O distance is distinctly longer than the others for each CuII atom (Table 1), but still within the range of a significant interaction (Mao et al. 2001). Judged from the blue crystals, the initial reactant of CuI was thus oxidated to CuII in the hydrothermal reaction. The structure involves O—H···I hydrogen bonds between the water molecule and I ions (Table 2) and ππ stacking interactions (Fig. 2). The centroid–centroid distances are 3.79 (1)Å between the adjacent phenyl and pyridyl rings, and 3.87 (1)Å between the adjacent pyridyl rings.

Related literature top

For related literature, see: Ma & Deng (2008); Mao et al. (2001); Song et al. (2008a,b,c,d).

Experimental top

A mixture of CuI (0.1 g, 0.5 mmol), 4-methylbenzoic acid (0.068 g, 0.5 mmol), 2,2'-bipyridine (0.078 g, 0.5 mmol) and H2O (10 ml) was placed in a 23 ml Teflon-lined reactor, which was heated to 433 K for 3 d and then cooled to room temperature at a rate of 10 K h-1. Block colorless crystals were obtained.

Refinement top

C-bound H atoms were positioned geometrically and refined as riding, with C—H = 0.93 (CH) and 0.96 (CH3) Å, and with Uiso(H) = 1.2Ueq(C) for CH group or 1.5Ueq(C) for CH3 group. H atoms of water molecule were tentatively located in difference Fourier maps and refined with distance restraints of O–H = 0.84 (1) and H···H = 1.35 (1) Å, and with Uiso(H) = 1.5Ueq(O). The highest residual electron density was 1.14 Å from atom I1 and the deepest hole 0.81 Å from atom I1.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A packing view of the title compound. Hydrogen bonds are depicted as dashed lines.
Bis(2,2'-bipyridine-κ2N,N')(4-methylbenzoato- κ2O,O')copper(II) iodide hemihydrate top
Crystal data top
[Cu(C8H7O2)(C10H8N2)2]I·0.5H2OZ = 4
Mr = 646.96F(000) = 1288
Triclinic, P1Dx = 1.603 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 14.6698 (4) ÅCell parameters from 5300 reflections
b = 15.3588 (4) Åθ = 1.3–28.0°
c = 15.4224 (7) ŵ = 2.00 mm1
α = 100.943 (2)°T = 296 K
β = 114.345 (2)°Block, blue
γ = 111.996 (2)°0.37 × 0.30 × 0.26 mm
V = 2680.64 (19) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9564 independent reflections
Radiation source: fine-focus sealed tube6740 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 25.2°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1717
Tmin = 0.525, Tmax = 0.624k = 1818
29909 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0774P)2 + 2.4876P]
where P = (Fo2 + 2Fc2)/3
9564 reflections(Δ/σ)max < 0.001
660 parametersΔρmax = 1.56 e Å3
3 restraintsΔρmin = 1.53 e Å3
Crystal data top
[Cu(C8H7O2)(C10H8N2)2]I·0.5H2Oγ = 111.996 (2)°
Mr = 646.96V = 2680.64 (19) Å3
Triclinic, P1Z = 4
a = 14.6698 (4) ÅMo Kα radiation
b = 15.3588 (4) ŵ = 2.00 mm1
c = 15.4224 (7) ÅT = 296 K
α = 100.943 (2)°0.37 × 0.30 × 0.26 mm
β = 114.345 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9564 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6740 reflections with I > 2σ(I)
Tmin = 0.525, Tmax = 0.624Rint = 0.037
29909 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0473 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.03Δρmax = 1.56 e Å3
9564 reflectionsΔρmin = 1.53 e Å3
660 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5583 (5)0.0992 (4)0.8879 (4)0.0588 (14)
H10.62320.08840.88440.071*
C20.5284 (6)0.1583 (5)0.9396 (5)0.0685 (16)
H20.57260.18620.97070.082*
C30.4332 (6)0.1746 (5)0.9441 (5)0.0787 (19)
H30.41150.21370.97870.094*
C40.3693 (5)0.1328 (5)0.8973 (5)0.0698 (17)
H40.30350.14390.89920.084*
C50.4036 (4)0.0738 (4)0.8470 (4)0.0515 (12)
C60.3422 (4)0.0237 (4)0.7958 (4)0.0543 (13)
C70.2355 (6)0.0438 (5)0.7799 (6)0.083 (2)
H70.19760.09160.79980.099*
C80.1861 (6)0.0083 (7)0.7338 (7)0.100 (3)
H80.11390.00470.72210.121*
C90.2416 (7)0.0782 (7)0.7056 (6)0.091 (2)
H90.20950.11510.67670.110*
C100.3481 (5)0.0941 (5)0.7206 (5)0.0719 (17)
H100.38620.14080.69970.086*
C110.3340 (4)0.0838 (4)0.5409 (4)0.0536 (13)
H110.29000.06450.56050.064*
C120.2824 (5)0.1491 (4)0.4398 (4)0.0617 (15)
H120.20520.17260.39130.074*
C130.3469 (5)0.1793 (4)0.4111 (4)0.0632 (15)
H130.31300.22500.34330.076*
C140.4609 (5)0.1414 (4)0.4830 (4)0.0573 (13)
H140.50560.16000.46400.069*
C150.5095 (4)0.0754 (3)0.5840 (4)0.0441 (11)
C160.6312 (4)0.0306 (3)0.6684 (4)0.0443 (11)
C170.7116 (5)0.0489 (4)0.6564 (5)0.0617 (14)
H170.69100.08990.59120.074*
C180.8221 (5)0.0065 (5)0.7407 (5)0.0733 (17)
H180.87650.01890.73340.088*
C190.8507 (5)0.0547 (5)0.8365 (5)0.0703 (16)
H190.92420.08300.89500.084*
C200.7693 (4)0.0734 (4)0.8442 (4)0.0595 (14)
H200.78940.11630.90830.071*
C210.6656 (4)0.2547 (4)0.8568 (4)0.0494 (12)
C220.7626 (4)0.3594 (4)0.9370 (4)0.0472 (12)
C230.8244 (5)0.3793 (5)1.0407 (4)0.0666 (16)
H230.80660.32611.06230.080*
C240.9126 (5)0.4775 (5)1.1130 (5)0.0778 (18)
H240.95200.48911.18290.093*
C250.9441 (5)0.5588 (4)1.0854 (5)0.0642 (16)
C260.8836 (5)0.5382 (4)0.9817 (5)0.0664 (16)
H260.90370.59110.96000.080*
C270.7936 (5)0.4407 (4)0.9084 (4)0.0577 (13)
H270.75310.42970.83870.069*
C281.0395 (6)0.6647 (5)1.1648 (6)0.099 (2)
H28A1.00740.70231.18590.148*
H28B1.08010.69921.13530.148*
H28C1.09240.66051.22430.148*
C361.0037 (6)0.3445 (7)0.4202 (7)0.105 (3)
H36A0.99980.30900.35920.158*
H36B1.01050.30800.46440.158*
H36C1.07010.41270.45730.158*
C300.8952 (5)0.3506 (5)0.3882 (5)0.0709 (17)
C310.8731 (6)0.4128 (7)0.3403 (6)0.098 (3)
H310.92830.45400.32880.118*
C320.7725 (5)0.4176 (5)0.3080 (5)0.0744 (18)
H320.76070.46060.27510.089*
C330.6900 (4)0.3575 (4)0.3255 (4)0.0432 (11)
C340.7122 (4)0.2956 (4)0.3758 (4)0.0521 (12)
H340.65800.25510.38860.063*
C350.5819 (4)0.3622 (4)0.2935 (4)0.0461 (11)
C370.6852 (4)0.6225 (4)0.4203 (5)0.0648 (15)
H370.71210.60570.37830.078*
C380.7636 (5)0.6975 (4)0.5194 (5)0.0746 (18)
H380.84240.73180.54380.090*
C390.7249 (5)0.7213 (4)0.5815 (5)0.0669 (16)
H390.77750.76970.65010.080*
C400.6076 (5)0.6734 (4)0.5428 (4)0.0562 (13)
H400.57980.69010.58400.067*
C410.5320 (4)0.6000 (3)0.4412 (4)0.0441 (11)
C420.4036 (4)0.5452 (3)0.3899 (3)0.0417 (11)
C430.3480 (5)0.5727 (4)0.4316 (4)0.0569 (13)
H430.38980.62750.49600.068*
C440.2272 (5)0.5173 (5)0.3759 (5)0.0681 (16)
H440.18670.53580.40150.082*
C450.1691 (5)0.4352 (4)0.2830 (5)0.0627 (15)
H450.08860.39550.24570.075*
C460.2306 (4)0.4124 (4)0.2458 (4)0.0506 (12)
H460.19020.35670.18240.061*
C470.2668 (5)0.2356 (4)0.1058 (5)0.0598 (14)
H470.28490.22710.16780.072*
C480.1841 (5)0.1508 (4)0.0136 (6)0.0715 (17)
H480.14740.08610.01260.086*
C490.1574 (5)0.1646 (5)0.0771 (6)0.082 (2)
H490.10130.10870.14080.098*
C500.2138 (5)0.2621 (5)0.0742 (4)0.0706 (17)
H500.19660.27170.13560.085*
C510.2964 (4)0.3448 (4)0.0223 (4)0.0499 (12)
C520.3624 (4)0.4512 (4)0.0340 (4)0.0481 (12)
C290.8130 (5)0.2930 (4)0.4069 (5)0.0606 (14)
H290.82610.25140.44140.073*
C530.3479 (5)0.4781 (5)0.0497 (4)0.0609 (14)
H530.29210.42940.11770.073*
C540.4170 (6)0.5774 (5)0.0305 (5)0.0700 (17)
H540.40960.59680.08560.084*
C550.4974 (5)0.6486 (5)0.0704 (5)0.0643 (15)
H550.54490.71650.08470.077*
C560.5062 (5)0.6173 (4)0.1499 (4)0.0533 (13)
H560.56040.66550.21830.064*
Cu20.44994 (5)0.45165 (4)0.24535 (4)0.04330 (16)
Cu10.53604 (5)0.04754 (4)0.76873 (5)0.04622 (17)
I10.04839 (6)0.20792 (5)0.62512 (4)0.1112 (2)
I20.98058 (3)0.14574 (3)0.13668 (3)0.07583 (16)
N10.4398 (3)0.5204 (3)0.1327 (3)0.0449 (9)
N20.3228 (3)0.3298 (3)0.1110 (3)0.0483 (10)
N30.3964 (4)0.0430 (3)0.7649 (3)0.0544 (11)
N40.4981 (3)0.0577 (3)0.8433 (3)0.0498 (10)
N50.4459 (3)0.0467 (3)0.6130 (3)0.0440 (9)
N60.6613 (3)0.0313 (3)0.7616 (3)0.0479 (10)
N70.3464 (3)0.4665 (3)0.2964 (3)0.0416 (9)
N80.5707 (3)0.5723 (3)0.3818 (3)0.0478 (10)
O10.6478 (3)0.1823 (3)0.8889 (3)0.0568 (9)
O20.6079 (3)0.2405 (3)0.7651 (3)0.0674 (10)
O30.5675 (3)0.4192 (3)0.2437 (3)0.0522 (8)
O40.5122 (3)0.3137 (3)0.3162 (3)0.0597 (9)
O1W0.8745 (9)0.9386 (6)0.5468 (7)0.201 (4)
H2W0.90821.00130.56630.301*
H1W0.89000.91910.50420.301*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.063 (3)0.062 (3)0.066 (4)0.034 (3)0.041 (3)0.030 (3)
C20.075 (4)0.066 (4)0.066 (4)0.034 (3)0.039 (3)0.031 (3)
C30.093 (5)0.070 (4)0.078 (4)0.029 (4)0.062 (4)0.028 (3)
C40.069 (4)0.064 (4)0.067 (4)0.018 (3)0.050 (3)0.011 (3)
C50.049 (3)0.045 (3)0.048 (3)0.015 (2)0.031 (3)0.004 (2)
C60.042 (3)0.056 (3)0.049 (3)0.017 (2)0.027 (3)0.001 (2)
C70.058 (4)0.090 (5)0.097 (5)0.035 (4)0.049 (4)0.020 (4)
C80.060 (4)0.124 (7)0.101 (6)0.050 (5)0.041 (4)0.011 (5)
C90.079 (5)0.106 (6)0.091 (5)0.071 (5)0.034 (4)0.023 (4)
C100.067 (4)0.069 (4)0.076 (4)0.046 (3)0.032 (3)0.013 (3)
C110.049 (3)0.054 (3)0.048 (3)0.023 (2)0.022 (3)0.018 (2)
C120.051 (3)0.065 (4)0.045 (3)0.021 (3)0.016 (3)0.017 (3)
C130.068 (4)0.068 (4)0.043 (3)0.028 (3)0.029 (3)0.015 (3)
C140.065 (4)0.055 (3)0.056 (3)0.030 (3)0.037 (3)0.017 (3)
C150.047 (3)0.040 (2)0.050 (3)0.021 (2)0.029 (2)0.022 (2)
C160.048 (3)0.043 (3)0.053 (3)0.027 (2)0.032 (2)0.022 (2)
C170.059 (3)0.062 (3)0.070 (4)0.034 (3)0.038 (3)0.019 (3)
C180.059 (4)0.083 (4)0.087 (5)0.043 (3)0.042 (4)0.029 (4)
C190.042 (3)0.085 (4)0.070 (4)0.030 (3)0.025 (3)0.021 (3)
C200.041 (3)0.065 (3)0.055 (3)0.022 (3)0.022 (3)0.015 (3)
C210.044 (3)0.054 (3)0.048 (3)0.022 (2)0.031 (3)0.009 (2)
C220.039 (3)0.043 (3)0.049 (3)0.016 (2)0.023 (2)0.008 (2)
C230.060 (4)0.069 (4)0.052 (3)0.019 (3)0.027 (3)0.023 (3)
C240.056 (4)0.084 (5)0.047 (3)0.017 (3)0.014 (3)0.010 (3)
C250.041 (3)0.056 (3)0.067 (4)0.015 (3)0.026 (3)0.000 (3)
C260.054 (3)0.049 (3)0.083 (5)0.021 (3)0.034 (3)0.019 (3)
C270.055 (3)0.054 (3)0.056 (3)0.027 (3)0.026 (3)0.016 (3)
C280.057 (4)0.075 (4)0.098 (5)0.013 (3)0.026 (4)0.008 (4)
C360.064 (4)0.188 (8)0.124 (6)0.083 (5)0.063 (5)0.107 (7)
C300.055 (3)0.109 (5)0.072 (4)0.048 (3)0.039 (3)0.053 (4)
C310.059 (4)0.168 (7)0.121 (6)0.064 (5)0.062 (4)0.109 (6)
C320.057 (4)0.097 (5)0.088 (5)0.041 (3)0.041 (3)0.061 (4)
C330.038 (3)0.052 (3)0.039 (3)0.022 (2)0.021 (2)0.016 (2)
C340.050 (3)0.056 (3)0.060 (3)0.027 (2)0.037 (3)0.025 (3)
C350.042 (3)0.055 (3)0.031 (2)0.025 (2)0.015 (2)0.006 (2)
C370.041 (3)0.061 (3)0.071 (4)0.022 (3)0.025 (3)0.007 (3)
C380.036 (3)0.057 (3)0.088 (5)0.020 (3)0.015 (3)0.000 (3)
C390.051 (3)0.053 (3)0.058 (3)0.023 (3)0.009 (3)0.003 (3)
C400.053 (3)0.055 (3)0.044 (3)0.024 (3)0.019 (3)0.010 (2)
C410.042 (3)0.039 (2)0.039 (3)0.017 (2)0.015 (2)0.015 (2)
C420.042 (3)0.039 (2)0.039 (3)0.018 (2)0.020 (2)0.017 (2)
C430.056 (3)0.053 (3)0.054 (3)0.021 (3)0.033 (3)0.014 (2)
C440.070 (4)0.066 (4)0.080 (4)0.032 (3)0.054 (4)0.023 (3)
C450.048 (3)0.060 (3)0.075 (4)0.021 (3)0.038 (3)0.018 (3)
C460.042 (3)0.045 (3)0.053 (3)0.015 (2)0.023 (2)0.014 (2)
C470.051 (3)0.051 (3)0.067 (4)0.026 (3)0.029 (3)0.013 (3)
C480.051 (3)0.050 (3)0.084 (5)0.015 (3)0.032 (3)0.005 (3)
C490.044 (3)0.067 (4)0.077 (5)0.011 (3)0.020 (3)0.015 (3)
C500.049 (3)0.087 (5)0.045 (3)0.026 (3)0.019 (3)0.003 (3)
C510.040 (3)0.061 (3)0.041 (3)0.027 (2)0.020 (2)0.007 (2)
C520.044 (3)0.064 (3)0.043 (3)0.035 (2)0.025 (2)0.016 (2)
C290.062 (3)0.076 (4)0.070 (4)0.045 (3)0.041 (3)0.043 (3)
C530.067 (4)0.084 (4)0.044 (3)0.049 (3)0.029 (3)0.026 (3)
C540.092 (5)0.094 (5)0.062 (4)0.066 (4)0.048 (4)0.046 (4)
C550.081 (4)0.067 (4)0.075 (4)0.046 (3)0.052 (4)0.041 (3)
C560.062 (3)0.053 (3)0.053 (3)0.034 (3)0.032 (3)0.025 (3)
Cu20.0401 (3)0.0434 (3)0.0389 (3)0.0195 (3)0.0192 (3)0.0103 (2)
Cu10.0409 (3)0.0460 (3)0.0491 (4)0.0218 (3)0.0244 (3)0.0136 (3)
I10.1320 (5)0.1664 (6)0.0966 (4)0.1121 (5)0.0670 (4)0.0762 (4)
I20.0619 (3)0.0608 (3)0.0672 (3)0.01033 (19)0.0296 (2)0.0105 (2)
N10.045 (2)0.053 (2)0.040 (2)0.029 (2)0.0223 (19)0.0163 (18)
N20.042 (2)0.043 (2)0.046 (2)0.0190 (18)0.0195 (19)0.0059 (18)
N30.046 (2)0.055 (3)0.054 (3)0.028 (2)0.024 (2)0.009 (2)
N40.046 (2)0.051 (2)0.051 (2)0.021 (2)0.031 (2)0.015 (2)
N50.044 (2)0.039 (2)0.045 (2)0.0182 (18)0.023 (2)0.0153 (17)
N60.042 (2)0.046 (2)0.053 (3)0.0201 (19)0.027 (2)0.017 (2)
N70.040 (2)0.043 (2)0.039 (2)0.0192 (18)0.0207 (18)0.0167 (17)
N80.040 (2)0.049 (2)0.049 (2)0.0215 (19)0.023 (2)0.0126 (19)
O10.058 (2)0.046 (2)0.059 (2)0.0213 (17)0.0337 (19)0.0136 (17)
O20.068 (2)0.065 (2)0.048 (2)0.022 (2)0.029 (2)0.0106 (18)
O30.053 (2)0.060 (2)0.051 (2)0.0343 (17)0.0282 (17)0.0239 (17)
O40.048 (2)0.084 (3)0.058 (2)0.0359 (19)0.0337 (19)0.031 (2)
O1W0.325 (12)0.176 (7)0.233 (9)0.142 (8)0.225 (10)0.116 (7)
Geometric parameters (Å, º) top
C1—N41.322 (6)C31—H310.9300
C1—C21.384 (8)C32—C331.385 (7)
C1—H10.9300C32—H320.9300
C2—C31.357 (9)C33—C341.384 (7)
C2—H20.9300C33—C351.489 (6)
C3—C41.372 (9)C34—C291.372 (7)
C3—H30.9300C34—H340.9300
C4—C51.387 (8)C35—O41.243 (6)
C4—H40.9300C35—O31.289 (6)
C5—N41.341 (6)C37—N81.342 (6)
C5—C61.480 (8)C37—C381.370 (8)
C6—N31.340 (7)C37—H370.9300
C6—C71.377 (8)C38—C391.358 (9)
C7—C81.377 (11)C38—H380.9300
C7—H70.9300C39—C401.377 (8)
C8—C91.348 (11)C39—H390.9300
C8—H80.9300C40—C411.384 (7)
C9—C101.395 (9)C40—H400.9300
C9—H90.9300C41—N81.344 (6)
C10—N31.344 (7)C41—C421.487 (6)
C10—H100.9300C42—N71.351 (6)
C11—N51.346 (6)C42—C431.358 (7)
C11—C121.369 (7)C43—C441.393 (8)
C11—H110.9300C43—H430.9300
C12—C131.380 (8)C44—C451.368 (8)
C12—H120.9300C44—H440.9300
C13—C141.364 (8)C45—C461.360 (7)
C13—H130.9300C45—H450.9300
C14—C151.380 (7)C46—N71.338 (6)
C14—H140.9300C46—H460.9300
C15—N51.357 (6)C47—N21.336 (7)
C15—C161.476 (7)C47—C481.371 (8)
C16—N61.345 (6)C47—H470.9300
C16—C171.384 (7)C48—C491.370 (10)
C17—C181.375 (8)C48—H480.9300
C17—H170.9300C49—C501.394 (9)
C18—C191.382 (9)C49—H490.9300
C18—H180.9300C50—C511.393 (7)
C19—C201.372 (8)C50—H500.9300
C19—H190.9300C51—N21.349 (6)
C20—N61.344 (6)C51—C521.484 (7)
C20—H200.9300C52—N11.339 (6)
C21—O21.233 (6)C52—C531.387 (7)
C21—O11.284 (6)C29—H290.9300
C21—C221.490 (7)C53—C541.366 (8)
C22—C231.373 (7)C53—H530.9300
C22—C271.381 (7)C54—C551.372 (8)
C23—C241.380 (8)C54—H540.9300
C23—H230.9300C55—C561.375 (7)
C24—C251.373 (9)C55—H550.9300
C24—H240.9300C56—N11.336 (6)
C25—C261.369 (8)C56—H560.9300
C25—C281.492 (8)Cu1—O11.976 (4)
C26—C271.381 (8)Cu1—O22.769 (4)
C26—H260.9300Cu1—N61.987 (4)
C27—H270.9300Cu1—N32.000 (4)
C28—H28A0.9600Cu1—N52.060 (4)
C28—H28B0.9600Cu1—N42.192 (4)
C28—H28C0.9600Cu2—O31.974 (3)
C36—C301.506 (8)Cu2—O42.832 (3)
C36—H36A0.9600Cu2—N81.997 (4)
C36—H36B0.9600Cu2—N22.001 (4)
C36—H36C0.9600Cu2—N72.038 (4)
C30—C311.367 (8)Cu2—N12.181 (4)
C30—C291.379 (8)O1W—H2W0.8200
C31—C321.385 (8)O1W—H1W0.8200
N4—C1—C2122.5 (5)C37—C38—H38120.4
N4—C1—H1118.7C38—C39—C40119.8 (5)
C2—C1—H1118.7C38—C39—H39120.1
C3—C2—C1118.7 (6)C40—C39—H39120.1
C3—C2—H2120.6C39—C40—C41118.5 (5)
C1—C2—H2120.6C39—C40—H40120.7
C2—C3—C4119.3 (6)C41—C40—H40120.7
C2—C3—H3120.3N8—C41—C40121.6 (5)
C4—C3—H3120.3N8—C41—C42115.0 (4)
C3—C4—C5119.5 (6)C40—C41—C42123.5 (5)
C3—C4—H4120.2N7—C42—C43122.7 (4)
C5—C4—H4120.2N7—C42—C41113.9 (4)
N4—C5—C4120.7 (5)C43—C42—C41123.4 (4)
N4—C5—C6115.5 (4)C42—C43—C44118.7 (5)
C4—C5—C6123.8 (5)C42—C43—H43120.7
N3—C6—C7121.3 (6)C44—C43—H43120.7
N3—C6—C5116.0 (4)C45—C44—C43118.8 (5)
C7—C6—C5122.8 (6)C45—C44—H44120.6
C6—C7—C8118.7 (7)C43—C44—H44120.6
C6—C7—H7120.7C46—C45—C44119.2 (5)
C8—C7—H7120.7C46—C45—H45120.4
C9—C8—C7120.6 (7)C44—C45—H45120.4
C9—C8—H8119.7N7—C46—C45123.0 (5)
C7—C8—H8119.7N7—C46—H46118.5
C8—C9—C10118.8 (7)C45—C46—H46118.5
C8—C9—H9120.6N2—C47—C48123.2 (6)
C10—C9—H9120.6N2—C47—H47118.4
N3—C10—C9120.8 (7)C48—C47—H47118.4
N3—C10—H10119.6C49—C48—C47117.8 (6)
C9—C10—H10119.6C49—C48—H48121.1
N5—C11—C12122.4 (5)C47—C48—H48121.1
N5—C11—H11118.8C48—C49—C50120.3 (6)
C12—C11—H11118.8C48—C49—H49119.8
C11—C12—C13118.8 (5)C50—C49—H49119.8
C11—C12—H12120.6C51—C50—C49118.7 (6)
C13—C12—H12120.6C51—C50—H50120.6
C14—C13—C12119.5 (5)C49—C50—H50120.6
C14—C13—H13120.3N2—C51—C50120.2 (5)
C12—C13—H13120.3N2—C51—C52116.7 (4)
C13—C14—C15119.7 (5)C50—C51—C52123.0 (5)
C13—C14—H14120.1N1—C52—C53121.9 (5)
C15—C14—H14120.1N1—C52—C51114.6 (4)
N5—C15—C14121.0 (5)C53—C52—C51123.5 (5)
N5—C15—C16114.4 (4)C34—C29—C30121.6 (5)
C14—C15—C16124.6 (5)C34—C29—H29119.2
N6—C16—C17120.4 (5)C30—C29—H29119.2
N6—C16—C15115.3 (4)C54—C53—C52118.8 (5)
C17—C16—C15124.3 (5)C54—C53—H53120.6
C18—C17—C16120.1 (6)C52—C53—H53120.6
C18—C17—H17119.9C53—C54—C55119.7 (5)
C16—C17—H17119.9C53—C54—H54120.1
C17—C18—C19118.7 (6)C55—C54—H54120.1
C17—C18—H18120.7C54—C55—C56118.6 (6)
C19—C18—H18120.7C54—C55—H55120.7
C20—C19—C18119.3 (6)C56—C55—H55120.7
C20—C19—H19120.4N1—C56—C55122.6 (5)
C18—C19—H19120.4N1—C56—H56118.7
N6—C20—C19121.7 (5)C55—C56—H56118.7
N6—C20—H20119.1O1—Cu1—O252.46 (16)
C19—C20—H20119.1O1—Cu1—N692.58 (16)
O2—C21—O1123.2 (5)O1—Cu1—N394.78 (16)
O2—C21—C22120.5 (5)O2—Cu1—N696.13 (16)
O1—C21—C22116.3 (5)O2—Cu1—N390.52 (16)
C23—C22—C27117.5 (5)N6—Cu1—N3172.15 (16)
C23—C22—C21122.2 (5)O1—Cu1—N5152.67 (15)
C27—C22—C21120.3 (5)O2—Cu1—N5101.75 (16)
C22—C23—C24120.7 (6)N6—Cu1—N580.38 (16)
C22—C23—H23119.7N3—Cu1—N594.23 (16)
C24—C23—H23119.7O1—Cu1—N4102.51 (15)
C25—C24—C23122.3 (6)O2—Cu1—N4152.05 (16)
C25—C24—H24118.9N6—Cu1—N497.40 (16)
C23—C24—H24118.9N3—Cu1—N478.34 (17)
C26—C25—C24116.8 (5)N5—Cu1—N4104.56 (15)
C26—C25—C28121.7 (6)O3—Cu2—O451.67 (15)
C24—C25—C28121.6 (6)O3—Cu2—N890.84 (15)
C25—C26—C27121.7 (6)O3—Cu2—N291.78 (15)
C25—C26—H26119.1O4—Cu2—N893.70 (15)
C27—C26—H26119.1O4—Cu2—N286.63 (15)
C26—C27—C22121.0 (5)N8—Cu2—N2176.92 (16)
C26—C27—H27119.5O3—Cu2—N7156.24 (15)
C22—C27—H27119.5O4—Cu2—N7106.46 (15)
C25—C28—H28A109.5N8—Cu2—N780.59 (16)
C25—C28—H28B109.5N2—Cu2—N796.37 (16)
H28A—C28—H28B109.5O3—Cu2—N194.97 (14)
C25—C28—H28C109.5O4—Cu2—N1143.21 (15)
H28A—C28—H28C109.5N8—Cu2—N1102.89 (16)
H28B—C28—H28C109.5N2—Cu2—N178.49 (16)
C30—C36—H36A109.5N7—Cu2—N1108.50 (14)
C30—C36—H36B109.5C56—N1—C52118.4 (4)
H36A—C36—H36B109.5C56—N1—Cu2128.6 (3)
C30—C36—H36C109.5C52—N1—Cu2112.8 (3)
H36A—C36—H36C109.5C47—N2—C51119.7 (4)
H36B—C36—H36C109.5C47—N2—Cu2123.0 (4)
C31—C30—C29116.7 (5)C51—N2—Cu2117.3 (3)
C31—C30—C36122.4 (6)C6—N3—C10119.8 (5)
C29—C30—C36120.9 (6)C6—N3—Cu1117.7 (3)
C30—C31—C32123.3 (6)C10—N3—Cu1122.0 (4)
C30—C31—H31118.4C1—N4—C5119.2 (5)
C32—C31—H31118.4C1—N4—Cu1129.0 (3)
C33—C32—C31119.1 (5)C5—N4—Cu1111.7 (3)
C33—C32—H32120.5C11—N5—C15118.6 (4)
C31—C32—H32120.5C11—N5—Cu1127.7 (3)
C34—C33—C32118.3 (5)C15—N5—Cu1113.7 (3)
C34—C33—C35121.2 (4)C20—N6—C16119.8 (4)
C32—C33—C35120.5 (5)C20—N6—Cu1124.0 (4)
C29—C34—C33121.1 (5)C16—N6—Cu1116.1 (3)
C29—C34—H34119.5C46—N7—C42117.5 (4)
C33—C34—H34119.5C46—N7—Cu2127.8 (3)
O4—C35—O3123.7 (4)C42—N7—Cu2114.5 (3)
O4—C35—C33120.0 (4)C37—N8—C41118.6 (4)
O3—C35—C33116.3 (4)C37—N8—Cu2125.8 (4)
N8—C37—C38122.2 (6)C41—N8—Cu2115.5 (3)
N8—C37—H37118.9C21—O1—Cu1110.0 (3)
C38—C37—H37118.9C35—O3—Cu2111.0 (3)
C39—C38—C37119.2 (5)H2W—O1W—H1W103.5
C39—C38—H38120.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···I1i0.823.153.935 (8)161
O1W—H2W···I1ii0.822.763.568 (8)170
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C8H7O2)(C10H8N2)2]I·0.5H2O
Mr646.96
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)14.6698 (4), 15.3588 (4), 15.4224 (7)
α, β, γ (°)100.943 (2), 114.345 (2), 111.996 (2)
V3)2680.64 (19)
Z4
Radiation typeMo Kα
µ (mm1)2.00
Crystal size (mm)0.37 × 0.30 × 0.26
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.525, 0.624
No. of measured, independent and
observed [I > 2σ(I)] reflections
29909, 9564, 6740
Rint0.037
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.149, 1.03
No. of reflections9564
No. of parameters660
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.56, 1.53

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O11.976 (4)Cu2—O31.974 (3)
Cu1—O22.769 (4)Cu2—O42.832 (3)
Cu1—N61.987 (4)Cu2—N81.997 (4)
Cu1—N32.000 (4)Cu2—N22.001 (4)
Cu1—N52.060 (4)Cu2—N72.038 (4)
Cu1—N42.192 (4)Cu2—N12.181 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···I1i0.823.153.935 (8)161
O1W—H2W···I1ii0.822.763.568 (8)170
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.
 

Acknowledgements

The authors acknowledge South China University of Technology for supporting this work.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationMa, D.-Y. & Deng, G.-H. (2008). Acta Cryst. C64, m271–m273.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMao, Z.-W., Heinemann, F. W., Liehr, G. & van Eldik, R. (2001). J. Chem. Soc. Dalton Trans. pp. 3652–3662.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, W.-D., Gu, C.-S., Hao, X.-M. & Yan, J.-B. (2008a). Acta Cryst. E64, m522.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSong, W.-D., Wang, H. & Ji, L.-L. (2008b). Acta Cryst. E64, m548.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSong, W.-D., Wang, H. & Miao, Y.-L. (2008c). Acta Cryst. E64, m716.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSong, W.-D., Yan, J.-B. & Hao, X.-M. (2008d). Acta Cryst. E64, m919–m920.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 9| September 2008| Pages m1111-m1112
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds