organic compounds
2,2,6,6-Tetramethylpiperidinium pentachlorobenzenethiolate
aDepartment of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicz Street, 80952-PL Gdańsk, Poland
*Correspondence e-mail: kasiab29@wp.pl
In the 9H20N+·C6Cl5S−, two cation–anion pairs are linked by N—H⋯S hydrogen bonds to produce a cyclic aggregate of R42(8) type. The dimers are interconnected via π–π stacking [centroid–centroid distance = 3.851(2) Å] and weak C—H⋯Cl hydrogen-bonding interactions.
of the title compound, CRelated literature
For the structures of similar salts and comparison of bond distances, see: Baranowska et al. (2008); Dołęga et al. (2008); Baranowska (2007); Pladzyk & Baranowska (2007); Baranowska, Chojnacki, Konitz et al. (2006); Baranowska, Chojnacki, Gosiewska & Wojnowski (2006); Baranowska et al. (2003). For the graph-set description of hydrogen-bonding patterns, see: Bernstein et al. (1995); Etter (1990). For synthesis techniques, see: Perrin & Armarego (1988).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808025877/im2076sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808025877/im2076Isup2.hkl
All manipulations were carried out under an atmosphere of nitrogen using standard Schlenk techniques. The solvents were purified and dried by standard methods (Perrin & Armarego, 1988).
C6Cl5SH (0.570 g, 2 mmol) was dissolved in tetrahydrofurane (ca 10 ml). Traces of impurities were removed by filtration under an argon atmosphere. Next, a portion of 2,2,6,6-tetramethylpiperidine (0338 ml, 2 mmol) was added at room temperature. The color of the mixture changed to dark red. Slow crystallization from THF at 5° C yielded yellow crystals suitable for X-ray diffraction.
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. Structure of [C6Cl5S(-)H2N(+)C5H6Me4]2, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. C-bound H atoms have been omitted for clarity. | |
Fig. 2. The crystal packing of (I), viewed approximately down the a axis. |
C9H20N+·C6Cl5S− | Z = 2 |
Mr = 423.63 | F(000) = 436 |
Triclinic, P1 | Dx = 1.529 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.4230 (5) Å | Cell parameters from 6782 reflections |
b = 10.5081 (4) Å | θ = 2.0–32.2° |
c = 11.6142 (6) Å | µ = 0.90 mm−1 |
α = 110.946 (4)° | T = 120 K |
β = 102.614 (4)° | Prism, yellow |
γ = 95.286 (4)° | 0.21 × 0.14 × 0.09 mm |
V = 920.39 (8) Å3 |
Oxford Diffraction KM4 CCD diffractometer | 3161 independent reflections |
Graphite monochromator | 2930 reflections with I > 2σ(I) |
Detector resolution: 8.1883 pixels mm-1 | Rint = 0.019 |
0.75° wide ω scans | θmax = 25.1°, θmin = 2.0° |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006) | h = −10→10 |
Tmin = 0.779, Tmax = 0.866 | k = −12→12 |
5583 measured reflections | l = −13→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.097 | All H-atom parameters refined |
S = 1.21 | w = 1/[σ2(Fo2) + (0.0605P)2 + 0.2069P] where P = (Fo2 + 2Fc2)/3 |
3161 reflections | (Δ/σ)max < 0.001 |
279 parameters | Δρmax = 0.67 e Å−3 |
0 restraints | Δρmin = −0.44 e Å−3 |
C9H20N+·C6Cl5S− | γ = 95.286 (4)° |
Mr = 423.63 | V = 920.39 (8) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.4230 (5) Å | Mo Kα radiation |
b = 10.5081 (4) Å | µ = 0.90 mm−1 |
c = 11.6142 (6) Å | T = 120 K |
α = 110.946 (4)° | 0.21 × 0.14 × 0.09 mm |
β = 102.614 (4)° |
Oxford Diffraction KM4 CCD diffractometer | 3161 independent reflections |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006) | 2930 reflections with I > 2σ(I) |
Tmin = 0.779, Tmax = 0.866 | Rint = 0.019 |
5583 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.097 | All H-atom parameters refined |
S = 1.21 | Δρmax = 0.67 e Å−3 |
3161 reflections | Δρmin = −0.44 e Å−3 |
279 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.93273 (6) | 0.07455 (4) | 0.24695 (4) | 0.02718 (15) | |
Cl2 | 0.82093 (6) | −0.14335 (4) | −0.03115 (4) | 0.02729 (15) | |
Cl3 | 0.58390 (6) | −0.08459 (5) | −0.24491 (4) | 0.03127 (16) | |
Cl4 | 0.44756 (6) | 0.19129 (5) | −0.17487 (4) | 0.02934 (15) | |
Cl5 | 0.57116 (6) | 0.41671 (5) | 0.09814 (4) | 0.02804 (15) | |
S1 | 0.80012 (6) | 0.36293 (4) | 0.32284 (4) | 0.02321 (15) | |
C1 | 0.7446 (2) | 0.23869 (17) | 0.16726 (15) | 0.0186 (4) | |
C2 | 0.7987 (2) | 0.11030 (17) | 0.13157 (16) | 0.0191 (4) | |
C3 | 0.7504 (2) | 0.01128 (17) | 0.00666 (17) | 0.0203 (4) | |
C4 | 0.6429 (2) | 0.03617 (18) | −0.08959 (15) | 0.0211 (4) | |
C5 | 0.5855 (2) | 0.16113 (18) | −0.05775 (16) | 0.0207 (4) | |
C6 | 0.6375 (2) | 0.26039 (18) | 0.06694 (17) | 0.0197 (4) | |
N1 | 0.89358 (18) | 0.38134 (15) | 0.61365 (13) | 0.0176 (3) | |
C7 | 0.7556 (2) | 0.43976 (19) | 0.66962 (16) | 0.0238 (4) | |
C8 | 0.8123 (3) | 0.4751 (2) | 0.81401 (17) | 0.0300 (4) | |
C9 | 0.8679 (2) | 0.3550 (2) | 0.84610 (18) | 0.0309 (4) | |
C10 | 1.0115 (2) | 0.31139 (19) | 0.79179 (17) | 0.0246 (4) | |
C11 | 0.9685 (2) | 0.26709 (17) | 0.64589 (16) | 0.0208 (4) | |
C12 | 0.7388 (3) | 0.5705 (2) | 0.64296 (19) | 0.0299 (4) | |
C13 | 0.5913 (2) | 0.3374 (2) | 0.60334 (19) | 0.0309 (4) | |
C14 | 0.8482 (3) | 0.12818 (19) | 0.57438 (19) | 0.0281 (4) | |
C15 | 1.1256 (2) | 0.25939 (19) | 0.60015 (18) | 0.0252 (4) | |
H14B | 0.758 (3) | 0.125 (2) | 0.611 (2) | 0.030 (5)* | |
H13B | 0.566 (3) | 0.305 (2) | 0.510 (2) | 0.029 (5)* | |
H15C | 1.177 (2) | 0.190 (2) | 0.6161 (19) | 0.025 (5)* | |
H13A | 0.511 (3) | 0.388 (3) | 0.627 (2) | 0.039 (6)* | |
H13C | 0.586 (3) | 0.253 (3) | 0.622 (2) | 0.036 (6)* | |
H14A | 0.802 (3) | 0.112 (2) | 0.486 (2) | 0.026 (5)* | |
H15A | 1.208 (3) | 0.347 (2) | 0.6435 (19) | 0.022 (5)* | |
H15B | 1.102 (3) | 0.235 (2) | 0.513 (2) | 0.037 (6)* | |
H14C | 0.908 (3) | 0.061 (2) | 0.580 (2) | 0.034 (6)* | |
H12B | 0.838 (3) | 0.636 (3) | 0.679 (3) | 0.049 (7)* | |
H10B | 1.046 (3) | 0.235 (2) | 0.808 (2) | 0.031 (5)* | |
H10A | 1.105 (3) | 0.388 (2) | 0.8295 (19) | 0.026 (5)* | |
H12C | 0.703 (3) | 0.549 (2) | 0.552 (2) | 0.029 (5)* | |
H9B | 0.780 (3) | 0.277 (2) | 0.810 (2) | 0.035 (6)* | |
H1B | 0.974 (3) | 0.452 (2) | 0.640 (2) | 0.024 (5)* | |
H12A | 0.661 (3) | 0.616 (2) | 0.682 (2) | 0.032 (6)* | |
H1A | 0.860 (3) | 0.349 (2) | 0.528 (2) | 0.024 (5)* | |
H9A | 0.896 (3) | 0.382 (2) | 0.935 (2) | 0.032 (5)* | |
H8A | 0.906 (3) | 0.553 (2) | 0.851 (2) | 0.025 (5)* | |
H8B | 0.728 (3) | 0.501 (2) | 0.846 (2) | 0.040 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0345 (3) | 0.0226 (2) | 0.0221 (2) | 0.00649 (19) | −0.00126 (19) | 0.01083 (18) |
Cl2 | 0.0355 (3) | 0.0198 (2) | 0.0260 (3) | 0.00788 (19) | 0.0098 (2) | 0.0066 (2) |
Cl3 | 0.0350 (3) | 0.0329 (3) | 0.0166 (2) | 0.0010 (2) | 0.00332 (19) | 0.00236 (19) |
Cl4 | 0.0234 (3) | 0.0430 (3) | 0.0236 (2) | 0.0058 (2) | 0.00059 (19) | 0.0187 (2) |
Cl5 | 0.0284 (3) | 0.0250 (3) | 0.0323 (3) | 0.01072 (19) | 0.0055 (2) | 0.0130 (2) |
S1 | 0.0333 (3) | 0.0174 (2) | 0.0158 (2) | 0.00052 (18) | 0.00399 (19) | 0.00531 (18) |
C1 | 0.0201 (8) | 0.0188 (8) | 0.0169 (8) | −0.0004 (6) | 0.0056 (7) | 0.0075 (7) |
C2 | 0.0193 (8) | 0.0206 (8) | 0.0187 (8) | 0.0019 (7) | 0.0038 (7) | 0.0105 (7) |
C3 | 0.0212 (9) | 0.0178 (8) | 0.0223 (9) | 0.0012 (7) | 0.0072 (7) | 0.0081 (7) |
C4 | 0.0215 (9) | 0.0241 (9) | 0.0144 (8) | −0.0020 (7) | 0.0050 (7) | 0.0052 (7) |
C5 | 0.0156 (8) | 0.0294 (9) | 0.0195 (8) | 0.0016 (7) | 0.0032 (7) | 0.0139 (7) |
C6 | 0.0184 (8) | 0.0200 (8) | 0.0227 (8) | 0.0023 (6) | 0.0066 (7) | 0.0104 (7) |
N1 | 0.0209 (8) | 0.0174 (7) | 0.0148 (7) | 0.0040 (6) | 0.0035 (6) | 0.0072 (6) |
C7 | 0.0224 (9) | 0.0317 (9) | 0.0188 (8) | 0.0106 (7) | 0.0067 (7) | 0.0094 (7) |
C8 | 0.0248 (10) | 0.0456 (12) | 0.0189 (9) | 0.0122 (9) | 0.0069 (8) | 0.0097 (8) |
C9 | 0.0293 (10) | 0.0452 (12) | 0.0177 (9) | 0.0010 (9) | 0.0032 (8) | 0.0150 (8) |
C10 | 0.0260 (10) | 0.0246 (9) | 0.0227 (9) | 0.0028 (8) | 0.0004 (7) | 0.0126 (7) |
C11 | 0.0239 (9) | 0.0182 (8) | 0.0209 (8) | 0.0057 (7) | 0.0025 (7) | 0.0100 (7) |
C12 | 0.0333 (11) | 0.0302 (10) | 0.0270 (10) | 0.0163 (9) | 0.0078 (9) | 0.0098 (8) |
C13 | 0.0206 (10) | 0.0465 (12) | 0.0268 (10) | 0.0061 (9) | 0.0032 (8) | 0.0175 (9) |
C14 | 0.0321 (11) | 0.0211 (9) | 0.0284 (10) | 0.0008 (8) | 0.0012 (8) | 0.0117 (8) |
C15 | 0.0267 (10) | 0.0222 (9) | 0.0243 (10) | 0.0086 (8) | 0.0036 (8) | 0.0073 (8) |
Cl1—C2 | 1.7286 (16) | C8—H8B | 0.89 (3) |
Cl2—C3 | 1.7228 (18) | C9—C10 | 1.516 (3) |
Cl3—C4 | 1.7225 (16) | C9—H9B | 0.95 (2) |
Cl4—C5 | 1.7283 (16) | C9—H9A | 0.94 (2) |
Cl5—C6 | 1.7246 (18) | C10—C11 | 1.535 (2) |
S1—C1 | 1.7377 (16) | C10—H10B | 0.94 (2) |
C1—C6 | 1.411 (2) | C10—H10A | 0.97 (2) |
C1—C2 | 1.413 (2) | C11—C15 | 1.528 (3) |
C2—C3 | 1.392 (2) | C11—C14 | 1.530 (2) |
C3—C4 | 1.396 (3) | C12—H12B | 0.94 (3) |
C4—C5 | 1.394 (3) | C12—H12C | 0.96 (2) |
C5—C6 | 1.391 (2) | C12—H12A | 0.95 (3) |
N1—C7 | 1.525 (2) | C13—H13B | 0.98 (2) |
N1—C11 | 1.529 (2) | C13—H13A | 0.92 (3) |
N1—H1B | 0.87 (2) | C13—H13C | 0.98 (2) |
N1—H1A | 0.90 (2) | C14—H14B | 0.95 (2) |
C7—C12 | 1.524 (3) | C14—H14A | 0.96 (2) |
C7—C13 | 1.528 (3) | C14—H14C | 0.91 (3) |
C7—C8 | 1.533 (2) | C15—H15C | 0.94 (2) |
C8—C9 | 1.524 (3) | C15—H15A | 0.99 (2) |
C8—H8A | 0.98 (2) | C15—H15B | 0.93 (2) |
C6—C1—C2 | 115.27 (15) | C10—C9—H9A | 111.4 (14) |
C6—C1—S1 | 120.91 (13) | C8—C9—H9A | 108.9 (13) |
C2—C1—S1 | 123.81 (13) | H9B—C9—H9A | 108.0 (19) |
C3—C2—C1 | 122.83 (15) | C9—C10—C11 | 112.65 (15) |
C3—C2—Cl1 | 118.24 (13) | C9—C10—H10B | 112.4 (14) |
C1—C2—Cl1 | 118.93 (13) | C11—C10—H10B | 105.7 (13) |
C2—C3—C4 | 120.12 (16) | C9—C10—H10A | 109.9 (12) |
C2—C3—Cl2 | 120.71 (13) | C11—C10—H10A | 107.8 (12) |
C4—C3—Cl2 | 119.16 (14) | H10B—C10—H10A | 108.1 (18) |
C5—C4—C3 | 118.69 (16) | C15—C11—N1 | 105.70 (13) |
C5—C4—Cl3 | 120.68 (13) | C15—C11—C14 | 109.75 (15) |
C3—C4—Cl3 | 120.62 (14) | N1—C11—C14 | 110.28 (14) |
C6—C5—C4 | 120.59 (16) | C15—C11—C10 | 110.55 (14) |
C6—C5—Cl4 | 120.17 (14) | N1—C11—C10 | 107.83 (13) |
C4—C5—Cl4 | 119.24 (13) | C14—C11—C10 | 112.49 (15) |
C5—C6—C1 | 122.46 (16) | C7—C12—H12B | 112.2 (16) |
C5—C6—Cl5 | 118.30 (13) | C7—C12—H12C | 111.0 (13) |
C1—C6—Cl5 | 119.22 (13) | H12B—C12—H12C | 109 (2) |
C7—N1—C11 | 120.66 (13) | C7—C12—H12A | 110.5 (14) |
C7—N1—H1B | 104.8 (14) | H12B—C12—H12A | 105 (2) |
C11—N1—H1B | 106.9 (14) | H12C—C12—H12A | 108.8 (19) |
C7—N1—H1A | 109.8 (13) | C7—C13—H13B | 111.6 (12) |
C11—N1—H1A | 106.0 (13) | C7—C13—H13A | 105.4 (15) |
H1B—N1—H1A | 108.1 (18) | H13B—C13—H13A | 106 (2) |
C12—C7—N1 | 106.27 (15) | C7—C13—H13C | 114.9 (13) |
C12—C7—C13 | 108.56 (16) | H13B—C13—H13C | 105.8 (18) |
N1—C7—C13 | 110.89 (15) | H13A—C13—H13C | 113 (2) |
C12—C7—C8 | 110.81 (16) | C11—C14—H14B | 111.3 (13) |
N1—C7—C8 | 106.89 (14) | C11—C14—H14A | 111.4 (12) |
C13—C7—C8 | 113.20 (16) | H14B—C14—H14A | 107.1 (18) |
C9—C8—C7 | 113.09 (16) | C11—C14—H14C | 106.6 (14) |
C9—C8—H8A | 108.4 (12) | H14B—C14—H14C | 111 (2) |
C7—C8—H8A | 107.6 (12) | H14A—C14—H14C | 109.9 (19) |
C9—C8—H8B | 110.8 (15) | C11—C15—H15C | 110.0 (12) |
C7—C8—H8B | 107.1 (15) | C11—C15—H15A | 113.3 (12) |
H8A—C8—H8B | 110 (2) | H15C—C15—H15A | 107.1 (17) |
C10—C9—C8 | 110.57 (16) | C11—C15—H15B | 111.8 (14) |
C10—C9—H9B | 107.8 (14) | H15C—C15—H15B | 105.8 (19) |
C8—C9—H9B | 110.1 (14) | H15A—C15—H15B | 108.5 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···S1i | 0.87 (2) | 2.44 (2) | 3.301 (2) | 170 (2) |
N1—H1A···S1 | 0.90 (2) | 2.39 (2) | 3.226 (2) | 157 (2) |
C14—H14C···Cl1ii | 0.91 (3) | 3.02 (2) | 3.803 (2) | 145 (2) |
C15—H15B···Cl1 | 0.93 (2) | 2.88 (2) | 3.748 (2) | 156 (2) |
C13—H13B···Cl3iii | 0.98 (2) | 3.02 (2) | 3.905 (2) | 151 (2) |
C13—H13C···Cl4iv | 0.98 (2) | 3.08 (2) | 3.782 (2) | 129 (2) |
C9—H9B···Cl4iv | 0.95 (2) | 2.92 (2) | 3.708 (2) | 141 (2) |
C15—H15C···Cl4v | 0.94 (2) | 2.94 (2) | 3.646 (2) | 133 (2) |
C8—H8B···Cl5vi | 0.89 (3) | 2.87 (3) | 3.748 (2) | 169 (2) |
C10—H10A···Cl5i | 0.97 (2) | 3.02 (2) | 3.966 (2) | 167 (2) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+2, −y, −z+1; (iii) −x+1, −y, −z; (iv) x, y, z+1; (v) x+1, y, z+1; (vi) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C9H20N+·C6Cl5S− |
Mr | 423.63 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 120 |
a, b, c (Å) | 8.4230 (5), 10.5081 (4), 11.6142 (6) |
α, β, γ (°) | 110.946 (4), 102.614 (4), 95.286 (4) |
V (Å3) | 920.39 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.90 |
Crystal size (mm) | 0.21 × 0.14 × 0.09 |
Data collection | |
Diffractometer | Oxford Diffraction KM4 CCD diffractometer |
Absorption correction | Analytical (CrysAlis RED; Oxford Diffraction, 2006) |
Tmin, Tmax | 0.779, 0.866 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5583, 3161, 2930 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.097, 1.21 |
No. of reflections | 3161 |
No. of parameters | 279 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.67, −0.44 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···S1i | 0.87 (2) | 2.44 (2) | 3.301 (2) | 170 (2) |
N1—H1A···S1 | 0.90 (2) | 2.39 (2) | 3.226 (2) | 157 (2) |
C14—H14C···Cl1ii | 0.91 (3) | 3.02 (2) | 3.803 (2) | 145 (2) |
C15—H15B···Cl1 | 0.93 (2) | 2.88 (2) | 3.748 (2) | 156 (2) |
C13—H13B···Cl3iii | 0.98 (2) | 3.02 (2) | 3.905 (2) | 151 (2) |
C13—H13C···Cl4iv | 0.98 (2) | 3.08 (2) | 3.782 (2) | 129 (2) |
C9—H9B···Cl4iv | 0.95 (2) | 2.92 (2) | 3.708 (2) | 141 (2) |
C15—H15C···Cl4v | 0.94 (2) | 2.94 (2) | 3.646 (2) | 133 (2) |
C8—H8B···Cl5vi | 0.89 (3) | 2.87 (3) | 3.748 (2) | 169 (2) |
C10—H10A···Cl5i | 0.97 (2) | 3.02 (2) | 3.966 (2) | 167 (2) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+2, −y, −z+1; (iii) −x+1, −y, −z; (iv) x, y, z+1; (v) x+1, y, z+1; (vi) −x+1, −y+1, −z+1. |
Acknowledgements
The authors thank Dr Anna Dołęga and Dr Jarosław Chojnacki for helpful discussions during the preparation of the manuscript.
References
Baranowska, K. (2007). Acta Cryst. E63, o2653–o2655. Web of Science CSD CrossRef IUCr Journals Google Scholar
Baranowska, K., Chojnacki, J., Becker, B. & Wojnowski, W. (2003). Acta Cryst. E59, o765–o766. Web of Science CSD CrossRef IUCr Journals Google Scholar
Baranowska, K., Chojnacki, J., Gosiewska, M. & Wojnowski, W. (2006). Z. Anorg. Allg. Chem. 632, 1086–1090. Web of Science CSD CrossRef CAS Google Scholar
Baranowska, K., Chojnacki, J., Konitz, A., Wojnowski, W. & Becker, B. (2006). Polyhedron, 25, 1555–1560. Web of Science CSD CrossRef CAS Google Scholar
Baranowska, K., Liadis, K. & Wojnowski, W. (2008). Acta Cryst. E64, o1329. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Dołęga, A., Pladzyk, A., Baranowska, K. & Wieczerzak, M. (2008). Inorg. Chem. Commun. 11, 847–850. Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Perrin, D. D. & Armarego, W. L. F. (1988). Purification of Laboratory Chemicals. Oxford: Pergamon Press. Google Scholar
Pladzyk, A. & Baranowska, K. (2007). Acta Cryst. E63, m1594. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The crystal structure of the title compound shows an asymmetric unit consisting of one pentachlorobenzenethiolate anion and one 2,2,6,6-tetramethylpiperidinium cation. The ammonium thiolate forms a dimer [C6Cl5S(-) H2N(+)C5H6Me4]2 (Fig. 1) in which four charge-assisted (+)N—H···S(-) hydrogen bonds form a stable core. This pattern of an eight-membered ring system with four donors and two acceptors is known as R42(8), using Etter's graph set analysis (Etter, 1990; Bernstein et al., 1995). In the crystal the dimers pack as seperate units bound together by van der Waals forces and weak C—H···Cl hydrogen bonds (Fig. 2). Similar (thiol-amine)2 ring formation has been observed in other ammonium salts (Baranowska et al., 2008; Baranowska, 2007; Baranowska, Chojnacki, Konitz et al., 2006; Baranowska, Chojnacki, Gosiewska & Wojnowski, 2006). The dimers are interconnected via π–π stacking interactions between Cg1 and Cg2, where Cg1 is the centroid of the C1–C6 ring and Cg2 is the centroid of the C1–C6 ring at (1-x, -y, -z). The centroid-to-centroid (CC) distance is 3.851 (2) Å and the angle subtended by the plane normal to CC is 25.03°. Interactions of the C—H···Cl type are weak with the shortest H···Cl distance measuring to 2.86 Å.
The N···S distances lie in the range 3.226 (2)–3.301 (2) Å and are therefore comparable with values observed in zinc and cobalt silanethiolates complexes (Dołęga et al., 2008; Pladzyk & Baranowska, 2007) or aromatic thiolates (Baranowska, 2007; Baranowska et al. 2003).