organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2,6,6-Tetra­methyl­piperidinium penta­chloro­benzene­thiol­ate

aDepartment of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicz Street, 80952-PL Gdańsk, Poland
*Correspondence e-mail: kasiab29@wp.pl

(Received 4 July 2008; accepted 11 August 2008; online 20 August 2008)

In the crystal structure of the title compound, C9H20N+·C6Cl5S, two cation–anion pairs are linked by N—H⋯S hydrogen bonds to produce a cyclic aggregate of R42(8) type. The dimers are interconnected via ππ stacking [centroid–centroid distance = 3.851(2) Å] and weak C—H⋯Cl hydrogen-bonding inter­actions.

Related literature

For the structures of similar salts and comparison of bond distances, see: Baranowska et al. (2008[Baranowska, K., Liadis, K. & Wojnowski, W. (2008). Acta Cryst. E64, o1329.]); Dołęga et al. (2008[Dołęga, A., Pladzyk, A., Baranowska, K. & Wieczerzak, M. (2008). Inorg. Chem. Commun. 11, 847-850.]); Baranowska (2007[Baranowska, K. (2007). Acta Cryst. E63, o2653-o2655.]); Pladzyk & Baranowska (2007[Pladzyk, A. & Baranowska, K. (2007). Acta Cryst. E63, m1594.]); Baranowska, Chojnacki, Konitz et al. (2006[Baranowska, K., Chojnacki, J., Konitz, A., Wojnowski, W. & Becker, B. (2006). Polyhedron, 25, 1555-1560.]); Baranowska, Chojnacki, Gosiewska & Wojnowski (2006[Baranowska, K., Chojnacki, J., Gosiewska, M. & Wojnowski, W. (2006). Z. Anorg. Allg. Chem. 632, 1086-1090.]); Baranowska et al. (2003[Baranowska, K., Chojnacki, J., Becker, B. & Wojnowski, W. (2003). Acta Cryst. E59, o765-o766.]). For the graph-set description of hydrogen-bonding patterns, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]). For synthesis techniques, see: Perrin & Armarego (1988[Perrin, D. D. & Armarego, W. L. F. (1988). Purification of Laboratory Chemicals. Oxford: Pergamon Press.]).

[Scheme 1]

Experimental

Crystal data
  • C9H20N+·C6Cl5S

  • Mr = 423.63

  • Triclinic, [P \overline 1]

  • a = 8.4230 (5) Å

  • b = 10.5081 (4) Å

  • c = 11.6142 (6) Å

  • α = 110.946 (4)°

  • β = 102.614 (4)°

  • γ = 95.286 (4)°

  • V = 920.39 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 120 (2) K

  • 0.21 × 0.14 × 0.09 mm

Data collection
  • Oxford Diffraction KM4 CCD diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.779, Tmax = 0.866

  • 5583 measured reflections

  • 3161 independent reflections

  • 2930 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.097

  • S = 1.21

  • 3161 reflections

  • 279 parameters

  • All H-atom parameters refined

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯S1i 0.87 (2) 2.44 (2) 3.301 (2) 170 (2)
N1—H1A⋯S1 0.90 (2) 2.39 (2) 3.226 (2) 157 (2)
C14—H14C⋯Cl1ii 0.91 (3) 3.02 (2) 3.803 (2) 145 (2)
C15—H15B⋯Cl1 0.93 (2) 2.88 (2) 3.748 (2) 156 (2)
C13—H13B⋯Cl3iii 0.98 (2) 3.02 (2) 3.905 (2) 151 (2)
C13—H13C⋯Cl4iv 0.98 (2) 3.08 (2) 3.782 (2) 129 (2)
C9—H9B⋯Cl4iv 0.95 (2) 2.92 (2) 3.708 (2) 141 (2)
C15—H15C⋯Cl4v 0.94 (2) 2.94 (2) 3.646 (2) 133 (2)
C8—H8B⋯Cl5vi 0.89 (3) 2.87 (3) 3.748 (2) 169 (2)
C10—H10A⋯Cl5i 0.97 (2) 3.02 (2) 3.966 (2) 167 (2)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+2, -y, -z+1; (iii) -x+1, -y, -z; (iv) x, y, z+1; (v) x+1, y, z+1; (vi) -x+1, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The crystal structure of the title compound shows an asymmetric unit consisting of one pentachlorobenzenethiolate anion and one 2,2,6,6-tetramethylpiperidinium cation. The ammonium thiolate forms a dimer [C6Cl5S(-) H2N(+)C5H6Me4]2 (Fig. 1) in which four charge-assisted (+)N—H···S(-) hydrogen bonds form a stable core. This pattern of an eight-membered ring system with four donors and two acceptors is known as R42(8), using Etter's graph set analysis (Etter, 1990; Bernstein et al., 1995). In the crystal the dimers pack as seperate units bound together by van der Waals forces and weak C—H···Cl hydrogen bonds (Fig. 2). Similar (thiol-amine)2 ring formation has been observed in other ammonium salts (Baranowska et al., 2008; Baranowska, 2007; Baranowska, Chojnacki, Konitz et al., 2006; Baranowska, Chojnacki, Gosiewska & Wojnowski, 2006). The dimers are interconnected via ππ stacking interactions between Cg1 and Cg2, where Cg1 is the centroid of the C1–C6 ring and Cg2 is the centroid of the C1–C6 ring at (1-x, -y, -z). The centroid-to-centroid (CC) distance is 3.851 (2) Å and the angle subtended by the plane normal to CC is 25.03°. Interactions of the C—H···Cl type are weak with the shortest H···Cl distance measuring to 2.86 Å.

The N···S distances lie in the range 3.226 (2)–3.301 (2) Å and are therefore comparable with values observed in zinc and cobalt silanethiolates complexes (Dołęga et al., 2008; Pladzyk & Baranowska, 2007) or aromatic thiolates (Baranowska, 2007; Baranowska et al. 2003).

Related literature top

For the structures of similar salts and comparison of bond distances, see: Baranowska et al. (2008); Dołęga et al. (2008); Baranowska (2007); Pladzyk & Baranowska (2007); Baranowska, Chojnacki, Konitz et al. (2006); Baranowska, Chojnacki, Gosiewska & Wojnowski (2006); Baranowska et al. (2003). For the graph-set description of hydrogen-bonding patterns, see: Bernstein et al. (1995); Etter (1990). For synthesis techniques, see: Perrin & Armarego (1988).

Experimental top

All manipulations were carried out under an atmosphere of nitrogen using standard Schlenk techniques. The solvents were purified and dried by standard methods (Perrin & Armarego, 1988).

C6Cl5SH (0.570 g, 2 mmol) was dissolved in tetrahydrofurane (ca 10 ml). Traces of impurities were removed by filtration under an argon atmosphere. Next, a portion of 2,2,6,6-tetramethylpiperidine (0338 ml, 2 mmol) was added at room temperature. The color of the mixture changed to dark red. Slow crystallization from THF at 5° C yielded yellow crystals suitable for X-ray diffraction.

Refinement top

All H atoms were located in the difference map and refined without constraints.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Structure of [C6Cl5S(-)H2N(+)C5H6Me4]2, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. C-bound H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of (I), viewed approximately down the a axis.
2,2,6,6-Tetramethylpiperidinium pentachlorobenzenethiolate top
Crystal data top
C9H20N+·C6Cl5SZ = 2
Mr = 423.63F(000) = 436
Triclinic, P1Dx = 1.529 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4230 (5) ÅCell parameters from 6782 reflections
b = 10.5081 (4) Åθ = 2.0–32.2°
c = 11.6142 (6) ŵ = 0.90 mm1
α = 110.946 (4)°T = 120 K
β = 102.614 (4)°Prism, yellow
γ = 95.286 (4)°0.21 × 0.14 × 0.09 mm
V = 920.39 (8) Å3
Data collection top
Oxford Diffraction KM4 CCD
diffractometer
3161 independent reflections
Graphite monochromator2930 reflections with I > 2σ(I)
Detector resolution: 8.1883 pixels mm-1Rint = 0.019
0.75° wide ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
h = 1010
Tmin = 0.779, Tmax = 0.866k = 1212
5583 measured reflectionsl = 1310
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097All H-atom parameters refined
S = 1.21 w = 1/[σ2(Fo2) + (0.0605P)2 + 0.2069P]
where P = (Fo2 + 2Fc2)/3
3161 reflections(Δ/σ)max < 0.001
279 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C9H20N+·C6Cl5Sγ = 95.286 (4)°
Mr = 423.63V = 920.39 (8) Å3
Triclinic, P1Z = 2
a = 8.4230 (5) ÅMo Kα radiation
b = 10.5081 (4) ŵ = 0.90 mm1
c = 11.6142 (6) ÅT = 120 K
α = 110.946 (4)°0.21 × 0.14 × 0.09 mm
β = 102.614 (4)°
Data collection top
Oxford Diffraction KM4 CCD
diffractometer
3161 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
2930 reflections with I > 2σ(I)
Tmin = 0.779, Tmax = 0.866Rint = 0.019
5583 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.097All H-atom parameters refined
S = 1.21Δρmax = 0.67 e Å3
3161 reflectionsΔρmin = 0.44 e Å3
279 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.93273 (6)0.07455 (4)0.24695 (4)0.02718 (15)
Cl20.82093 (6)0.14335 (4)0.03115 (4)0.02729 (15)
Cl30.58390 (6)0.08459 (5)0.24491 (4)0.03127 (16)
Cl40.44756 (6)0.19129 (5)0.17487 (4)0.02934 (15)
Cl50.57116 (6)0.41671 (5)0.09814 (4)0.02804 (15)
S10.80012 (6)0.36293 (4)0.32284 (4)0.02321 (15)
C10.7446 (2)0.23869 (17)0.16726 (15)0.0186 (4)
C20.7987 (2)0.11030 (17)0.13157 (16)0.0191 (4)
C30.7504 (2)0.01128 (17)0.00666 (17)0.0203 (4)
C40.6429 (2)0.03617 (18)0.08959 (15)0.0211 (4)
C50.5855 (2)0.16113 (18)0.05775 (16)0.0207 (4)
C60.6375 (2)0.26039 (18)0.06694 (17)0.0197 (4)
N10.89358 (18)0.38134 (15)0.61365 (13)0.0176 (3)
C70.7556 (2)0.43976 (19)0.66962 (16)0.0238 (4)
C80.8123 (3)0.4751 (2)0.81401 (17)0.0300 (4)
C90.8679 (2)0.3550 (2)0.84610 (18)0.0309 (4)
C101.0115 (2)0.31139 (19)0.79179 (17)0.0246 (4)
C110.9685 (2)0.26709 (17)0.64589 (16)0.0208 (4)
C120.7388 (3)0.5705 (2)0.64296 (19)0.0299 (4)
C130.5913 (2)0.3374 (2)0.60334 (19)0.0309 (4)
C140.8482 (3)0.12818 (19)0.57438 (19)0.0281 (4)
C151.1256 (2)0.25939 (19)0.60015 (18)0.0252 (4)
H14B0.758 (3)0.125 (2)0.611 (2)0.030 (5)*
H13B0.566 (3)0.305 (2)0.510 (2)0.029 (5)*
H15C1.177 (2)0.190 (2)0.6161 (19)0.025 (5)*
H13A0.511 (3)0.388 (3)0.627 (2)0.039 (6)*
H13C0.586 (3)0.253 (3)0.622 (2)0.036 (6)*
H14A0.802 (3)0.112 (2)0.486 (2)0.026 (5)*
H15A1.208 (3)0.347 (2)0.6435 (19)0.022 (5)*
H15B1.102 (3)0.235 (2)0.513 (2)0.037 (6)*
H14C0.908 (3)0.061 (2)0.580 (2)0.034 (6)*
H12B0.838 (3)0.636 (3)0.679 (3)0.049 (7)*
H10B1.046 (3)0.235 (2)0.808 (2)0.031 (5)*
H10A1.105 (3)0.388 (2)0.8295 (19)0.026 (5)*
H12C0.703 (3)0.549 (2)0.552 (2)0.029 (5)*
H9B0.780 (3)0.277 (2)0.810 (2)0.035 (6)*
H1B0.974 (3)0.452 (2)0.640 (2)0.024 (5)*
H12A0.661 (3)0.616 (2)0.682 (2)0.032 (6)*
H1A0.860 (3)0.349 (2)0.528 (2)0.024 (5)*
H9A0.896 (3)0.382 (2)0.935 (2)0.032 (5)*
H8A0.906 (3)0.553 (2)0.851 (2)0.025 (5)*
H8B0.728 (3)0.501 (2)0.846 (2)0.040 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0345 (3)0.0226 (2)0.0221 (2)0.00649 (19)0.00126 (19)0.01083 (18)
Cl20.0355 (3)0.0198 (2)0.0260 (3)0.00788 (19)0.0098 (2)0.0066 (2)
Cl30.0350 (3)0.0329 (3)0.0166 (2)0.0010 (2)0.00332 (19)0.00236 (19)
Cl40.0234 (3)0.0430 (3)0.0236 (2)0.0058 (2)0.00059 (19)0.0187 (2)
Cl50.0284 (3)0.0250 (3)0.0323 (3)0.01072 (19)0.0055 (2)0.0130 (2)
S10.0333 (3)0.0174 (2)0.0158 (2)0.00052 (18)0.00399 (19)0.00531 (18)
C10.0201 (8)0.0188 (8)0.0169 (8)0.0004 (6)0.0056 (7)0.0075 (7)
C20.0193 (8)0.0206 (8)0.0187 (8)0.0019 (7)0.0038 (7)0.0105 (7)
C30.0212 (9)0.0178 (8)0.0223 (9)0.0012 (7)0.0072 (7)0.0081 (7)
C40.0215 (9)0.0241 (9)0.0144 (8)0.0020 (7)0.0050 (7)0.0052 (7)
C50.0156 (8)0.0294 (9)0.0195 (8)0.0016 (7)0.0032 (7)0.0139 (7)
C60.0184 (8)0.0200 (8)0.0227 (8)0.0023 (6)0.0066 (7)0.0104 (7)
N10.0209 (8)0.0174 (7)0.0148 (7)0.0040 (6)0.0035 (6)0.0072 (6)
C70.0224 (9)0.0317 (9)0.0188 (8)0.0106 (7)0.0067 (7)0.0094 (7)
C80.0248 (10)0.0456 (12)0.0189 (9)0.0122 (9)0.0069 (8)0.0097 (8)
C90.0293 (10)0.0452 (12)0.0177 (9)0.0010 (9)0.0032 (8)0.0150 (8)
C100.0260 (10)0.0246 (9)0.0227 (9)0.0028 (8)0.0004 (7)0.0126 (7)
C110.0239 (9)0.0182 (8)0.0209 (8)0.0057 (7)0.0025 (7)0.0100 (7)
C120.0333 (11)0.0302 (10)0.0270 (10)0.0163 (9)0.0078 (9)0.0098 (8)
C130.0206 (10)0.0465 (12)0.0268 (10)0.0061 (9)0.0032 (8)0.0175 (9)
C140.0321 (11)0.0211 (9)0.0284 (10)0.0008 (8)0.0012 (8)0.0117 (8)
C150.0267 (10)0.0222 (9)0.0243 (10)0.0086 (8)0.0036 (8)0.0073 (8)
Geometric parameters (Å, º) top
Cl1—C21.7286 (16)C8—H8B0.89 (3)
Cl2—C31.7228 (18)C9—C101.516 (3)
Cl3—C41.7225 (16)C9—H9B0.95 (2)
Cl4—C51.7283 (16)C9—H9A0.94 (2)
Cl5—C61.7246 (18)C10—C111.535 (2)
S1—C11.7377 (16)C10—H10B0.94 (2)
C1—C61.411 (2)C10—H10A0.97 (2)
C1—C21.413 (2)C11—C151.528 (3)
C2—C31.392 (2)C11—C141.530 (2)
C3—C41.396 (3)C12—H12B0.94 (3)
C4—C51.394 (3)C12—H12C0.96 (2)
C5—C61.391 (2)C12—H12A0.95 (3)
N1—C71.525 (2)C13—H13B0.98 (2)
N1—C111.529 (2)C13—H13A0.92 (3)
N1—H1B0.87 (2)C13—H13C0.98 (2)
N1—H1A0.90 (2)C14—H14B0.95 (2)
C7—C121.524 (3)C14—H14A0.96 (2)
C7—C131.528 (3)C14—H14C0.91 (3)
C7—C81.533 (2)C15—H15C0.94 (2)
C8—C91.524 (3)C15—H15A0.99 (2)
C8—H8A0.98 (2)C15—H15B0.93 (2)
C6—C1—C2115.27 (15)C10—C9—H9A111.4 (14)
C6—C1—S1120.91 (13)C8—C9—H9A108.9 (13)
C2—C1—S1123.81 (13)H9B—C9—H9A108.0 (19)
C3—C2—C1122.83 (15)C9—C10—C11112.65 (15)
C3—C2—Cl1118.24 (13)C9—C10—H10B112.4 (14)
C1—C2—Cl1118.93 (13)C11—C10—H10B105.7 (13)
C2—C3—C4120.12 (16)C9—C10—H10A109.9 (12)
C2—C3—Cl2120.71 (13)C11—C10—H10A107.8 (12)
C4—C3—Cl2119.16 (14)H10B—C10—H10A108.1 (18)
C5—C4—C3118.69 (16)C15—C11—N1105.70 (13)
C5—C4—Cl3120.68 (13)C15—C11—C14109.75 (15)
C3—C4—Cl3120.62 (14)N1—C11—C14110.28 (14)
C6—C5—C4120.59 (16)C15—C11—C10110.55 (14)
C6—C5—Cl4120.17 (14)N1—C11—C10107.83 (13)
C4—C5—Cl4119.24 (13)C14—C11—C10112.49 (15)
C5—C6—C1122.46 (16)C7—C12—H12B112.2 (16)
C5—C6—Cl5118.30 (13)C7—C12—H12C111.0 (13)
C1—C6—Cl5119.22 (13)H12B—C12—H12C109 (2)
C7—N1—C11120.66 (13)C7—C12—H12A110.5 (14)
C7—N1—H1B104.8 (14)H12B—C12—H12A105 (2)
C11—N1—H1B106.9 (14)H12C—C12—H12A108.8 (19)
C7—N1—H1A109.8 (13)C7—C13—H13B111.6 (12)
C11—N1—H1A106.0 (13)C7—C13—H13A105.4 (15)
H1B—N1—H1A108.1 (18)H13B—C13—H13A106 (2)
C12—C7—N1106.27 (15)C7—C13—H13C114.9 (13)
C12—C7—C13108.56 (16)H13B—C13—H13C105.8 (18)
N1—C7—C13110.89 (15)H13A—C13—H13C113 (2)
C12—C7—C8110.81 (16)C11—C14—H14B111.3 (13)
N1—C7—C8106.89 (14)C11—C14—H14A111.4 (12)
C13—C7—C8113.20 (16)H14B—C14—H14A107.1 (18)
C9—C8—C7113.09 (16)C11—C14—H14C106.6 (14)
C9—C8—H8A108.4 (12)H14B—C14—H14C111 (2)
C7—C8—H8A107.6 (12)H14A—C14—H14C109.9 (19)
C9—C8—H8B110.8 (15)C11—C15—H15C110.0 (12)
C7—C8—H8B107.1 (15)C11—C15—H15A113.3 (12)
H8A—C8—H8B110 (2)H15C—C15—H15A107.1 (17)
C10—C9—C8110.57 (16)C11—C15—H15B111.8 (14)
C10—C9—H9B107.8 (14)H15C—C15—H15B105.8 (19)
C8—C9—H9B110.1 (14)H15A—C15—H15B108.5 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···S1i0.87 (2)2.44 (2)3.301 (2)170 (2)
N1—H1A···S10.90 (2)2.39 (2)3.226 (2)157 (2)
C14—H14C···Cl1ii0.91 (3)3.02 (2)3.803 (2)145 (2)
C15—H15B···Cl10.93 (2)2.88 (2)3.748 (2)156 (2)
C13—H13B···Cl3iii0.98 (2)3.02 (2)3.905 (2)151 (2)
C13—H13C···Cl4iv0.98 (2)3.08 (2)3.782 (2)129 (2)
C9—H9B···Cl4iv0.95 (2)2.92 (2)3.708 (2)141 (2)
C15—H15C···Cl4v0.94 (2)2.94 (2)3.646 (2)133 (2)
C8—H8B···Cl5vi0.89 (3)2.87 (3)3.748 (2)169 (2)
C10—H10A···Cl5i0.97 (2)3.02 (2)3.966 (2)167 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y, z+1; (iii) x+1, y, z; (iv) x, y, z+1; (v) x+1, y, z+1; (vi) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC9H20N+·C6Cl5S
Mr423.63
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)8.4230 (5), 10.5081 (4), 11.6142 (6)
α, β, γ (°)110.946 (4), 102.614 (4), 95.286 (4)
V3)920.39 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.21 × 0.14 × 0.09
Data collection
DiffractometerOxford Diffraction KM4 CCD
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.779, 0.866
No. of measured, independent and
observed [I > 2σ(I)] reflections
5583, 3161, 2930
Rint0.019
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.097, 1.21
No. of reflections3161
No. of parameters279
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.67, 0.44

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···S1i0.87 (2)2.44 (2)3.301 (2)170 (2)
N1—H1A···S10.90 (2)2.39 (2)3.226 (2)157 (2)
C14—H14C···Cl1ii0.91 (3)3.02 (2)3.803 (2)145 (2)
C15—H15B···Cl10.93 (2)2.88 (2)3.748 (2)156 (2)
C13—H13B···Cl3iii0.98 (2)3.02 (2)3.905 (2)151 (2)
C13—H13C···Cl4iv0.98 (2)3.08 (2)3.782 (2)129 (2)
C9—H9B···Cl4iv0.95 (2)2.92 (2)3.708 (2)141 (2)
C15—H15C···Cl4v0.94 (2)2.94 (2)3.646 (2)133 (2)
C8—H8B···Cl5vi0.89 (3)2.87 (3)3.748 (2)169 (2)
C10—H10A···Cl5i0.97 (2)3.02 (2)3.966 (2)167 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y, z+1; (iii) x+1, y, z; (iv) x, y, z+1; (v) x+1, y, z+1; (vi) x+1, y+1, z+1.
 

Acknowledgements

The authors thank Dr Anna Dołęga and Dr Jarosław Chojnacki for helpful discussions during the preparation of the manuscript.

References

First citationBaranowska, K. (2007). Acta Cryst. E63, o2653–o2655.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBaranowska, K., Chojnacki, J., Becker, B. & Wojnowski, W. (2003). Acta Cryst. E59, o765–o766.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBaranowska, K., Chojnacki, J., Gosiewska, M. & Wojnowski, W. (2006). Z. Anorg. Allg. Chem. 632, 1086–1090.  Web of Science CSD CrossRef CAS Google Scholar
First citationBaranowska, K., Chojnacki, J., Konitz, A., Wojnowski, W. & Becker, B. (2006). Polyhedron, 25, 1555–1560.  Web of Science CSD CrossRef CAS Google Scholar
First citationBaranowska, K., Liadis, K. & Wojnowski, W. (2008). Acta Cryst. E64, o1329.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDołęga, A., Pladzyk, A., Baranowska, K. & Wieczerzak, M. (2008). Inorg. Chem. Commun. 11, 847–850.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPerrin, D. D. & Armarego, W. L. F. (1988). Purification of Laboratory Chemicals. Oxford: Pergamon Press.  Google Scholar
First citationPladzyk, A. & Baranowska, K. (2007). Acta Cryst. E63, m1594.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds